Search results for: state machine
8282 Present State of Local Public Transportation Service in Local Municipalities of Japan and Its Effects on Population
Authors: Akiko Kondo, Akio Kondo
Abstract:
We are facing regional problems to low birth rate and longevity in Japan. Under this situation, there are some local municipalities which lose their vitality. The aims of this study are to clarify the present state of local public transportation services in local municipalities and relation between local public transportation services and population quantitatively. We conducted a questionnaire survey concerning regional agenda in all local municipalities in Japan. We obtained responses concerning the present state of convenience in use of public transportation and local public transportation services. Based on the data gathered from the survey, it is apparent that we should some sort of measures concerning public transportation services. Convenience in use of public transportation becomes an object of public concern in many rural regions. It is also clarified that some local municipalities introduce a demand bus for the purpose of promotion of administrative and financial efficiency. They also introduce a demand taxi in order to secure transportation to weak people in transportation and eliminate of blank area related to public transportation services. In addition, we construct a population model which includes explanatory variables of present states of local public transportation services. From this result, we can clarify the relation between public transportation services and population quantitatively.Keywords: public transportation, local municipality, regional analysis, regional issue
Procedia PDF Downloads 4008281 Effect of Yttrium Doping on Properties of Bi2Sr1.9Ca0.1-xYxCu2O7+δ (Bi-2202) Cuprate Ceramics
Authors: Y. Boudjadja, A. Amira, A. Saoudel, A. Varilci, S. P. Altintas, C. Terzioglu
Abstract:
In this work, we report the effect of Y3+ doping on structural, mechanical and electrical properties of Bi-2202 phase. Samples of Bi2Sr1.9Ca0.1-xYxCu2O7+δ with x = 0, 0.025, 0.05, 0.075 and 0.1 are elaborated in air by conventional solid state reaction and characterized by X-Ray Diffraction (XRD), Scanning Electronic Microscopy (SEM) combined with EDS spectroscopy, density, Vickers micro-hardness and resistivity measurements. A good correlation between the variations of the bulk density and the Vickers micro-hardness with doping is obtained. The SEM photograph shows that the samples are composed of grains with a flat shape that characterizes the Bi-based cuprates. Quantitative EDS analysis confirms the reduction of Ca content and the increase of Y content when x is increased. The variation of resistivity with temperature shows that only samples with x = 0, 0.025 and 0.05 present an onset transition to the superconducting state. The higher onset transition temperature is obtained for x = 0.025 and is about 93.62 K. The transition is wide and is realized in two steps confirming then the presence of the low Tc Bi-2201 phase in the samples. For x = 0.075 and 0.1, a transition to a semiconducting state is seen at low temperatures. Some physical parameters are extracted from these curves and discussed.Keywords: Bi-2202 phase, doping, structure, mechanical and electrical properties
Procedia PDF Downloads 3238280 Controlling Youths Participation in Politics in Sokoto State: A Constructive Inclusiveness for Good Governance in Nigeria
Authors: Umar Ubandawaki
Abstract:
Political participation involves voluntary and deliberate efforts by the members of a political system to determine the kinds of political institution and individuals that will govern them and equally influence the mobilization and allocation of the available societal resources. Over the years, youths in Nigeria participated actively in political party rallies and voting to elect their leaders and representatives in governance. This paper examines categories and nature of participation in politics as well as factors that derived youths into politics in Sokoto State. Through the use of qualitative and quantitative data generated from focus group discussions, interviews and questionnaire, the paper find out that youth, in Sokoto State, have been induced in participatory activities that encourage political thuggery and manipulation of electoral outcomes. Moreover, they are neglected in the mobilization and allocation of the available resources of the society i.e they are denied dividends of good governance. The paper recommends that youths should be engaged into positive participatory activities for ensuring inclusiveness and promotion of good governance in Nigeria. It is hoped that this will enlighten youth and policy implementers on the constructive strategies in controlling youth’s participation in politics in Nigeria.Keywords: democracy, governance, inclusivenes, participation and politic
Procedia PDF Downloads 3518279 Automated Feature Extraction and Object-Based Detection from High-Resolution Aerial Photos Based on Machine Learning and Artificial Intelligence
Authors: Mohammed Al Sulaimani, Hamad Al Manhi
Abstract:
With the development of Remote Sensing technology, the resolution of optical Remote Sensing images has greatly improved, and images have become largely available. Numerous detectors have been developed for detecting different types of objects. In the past few years, Remote Sensing has benefited a lot from deep learning, particularly Deep Convolution Neural Networks (CNNs). Deep learning holds great promise to fulfill the challenging needs of Remote Sensing and solving various problems within different fields and applications. The use of Unmanned Aerial Systems in acquiring Aerial Photos has become highly used and preferred by most organizations to support their activities because of their high resolution and accuracy, which make the identification and detection of very small features much easier than Satellite Images. And this has opened an extreme era of Deep Learning in different applications not only in feature extraction and prediction but also in analysis. This work addresses the capacity of Machine Learning and Deep Learning in detecting and extracting Oil Leaks from Flowlines (Onshore) using High-Resolution Aerial Photos which have been acquired by UAS fixed with RGB Sensor to support early detection of these leaks and prevent the company from the leak’s losses and the most important thing environmental damage. Here, there are two different approaches and different methods of DL have been demonstrated. The first approach focuses on detecting the Oil Leaks from the RAW Aerial Photos (not processed) using a Deep Learning called Single Shoot Detector (SSD). The model draws bounding boxes around the leaks, and the results were extremely good. The second approach focuses on detecting the Oil Leaks from the Ortho-mosaiced Images (Georeferenced Images) by developing three Deep Learning Models using (MaskRCNN, U-Net and PSP-Net Classifier). Then, post-processing is performed to combine the results of these three Deep Learning Models to achieve a better detection result and improved accuracy. Although there is a relatively small amount of datasets available for training purposes, the Trained DL Models have shown good results in extracting the extent of the Oil Leaks and obtaining excellent and accurate detection.Keywords: GIS, remote sensing, oil leak detection, machine learning, aerial photos, unmanned aerial systems
Procedia PDF Downloads 348278 State Violence: The Brazilian Amnesty Law and the Fight Against Impunity
Authors: Flavia Kroetz
Abstract:
From 1964 to 1985, Brazil was ruled by a dictatorial regime that, under the discourse of fight against terrorism and subversion, implemented cruel and atrocious practices against anyone who opposed the State ideology. At the same time, several Latin American countries faced dictatorial periods and experienced State repression through apparatuses of violence institutionalized in the very governmental structure. Despite the correspondence between repressive methods adopted by authoritarian regimes in States such as Argentina, Chile, El Salvador, Peru and Uruguay, the mechanisms of democratic transition adopted with the end of each dictatorship were significantly different. While some States have found ways to deal with past atrocities through serious and transparent investigations of the crimes perpetrated in the name of repression, in others, as in Brazil, a culture of impunity remains rooted in society, manifesting itself in the widespread disbelief of the population in governmental and democratic institutions. While Argentina, Chile, Peru and Uruguay are convincing examples of the possibility and importance of the prosecution of crimes such as torture, forced disappearance and murder committed by the State, El Salvador demonstrates the complete failure to punish or at least remove from power the perpetrators of serious crimes against civilians and political opponents. In a scenario of widespread violations of human rights, State violence becomes entrenched within society as a daily and even necessary practice. In Brazil, a lack of political and judicial will withstands the impunity of those who, during the military regime, committed serious crimes against human rights under the authority of the State. If the reproduction of violence is a direct consequence of the culture of denial and the rejection of everyone considered to be different, ‘the other’, then the adoption of transitional mechanisms that underpin the historical and political contexts of the time seems essential. Such mechanisms must strengthen democracy through the effective implementation of the rights to memory and to truth, the right to justice and reparations for victims and their families, as well as institutional changes in order to remove from power those who, when in power, could not distinguish between legality and authoritarianism. Against this background, this research analyses the importance of transitional justice for the restoration of democracy, considering the adoption of amnesty laws as a strategy to preclude criminal prosecution of offenses committed during dictatorial regimes. The study investigates the scope of Law No 6.683/79, the Brazilian amnesty law, which, according to a 2010 decision of the Brazilian Constitutional Supreme Court, granted amnesty to those responsible for political crimes and related crimes, committed between September 2, 1961 and August 15, 1979. Was the purpose of this Law to grant amnesty to violent crimes committed by the State? If so, is it possible to recognize the legitimacy of a Congress composed of indirectly elected politicians controlled by the dictatorship?Keywords: amnesty law, criminal justice, dictatorship, state violence
Procedia PDF Downloads 4388277 Evaluation of Gesture-Based Password: User Behavioral Features Using Machine Learning Algorithms
Authors: Lakshmidevi Sreeramareddy, Komalpreet Kaur, Nane Pothier
Abstract:
Graphical-based passwords have existed for decades. Their major advantage is that they are easier to remember than an alphanumeric password. However, their disadvantage (especially recognition-based passwords) is the smaller password space, making them more vulnerable to brute force attacks. Graphical passwords are also highly susceptible to the shoulder-surfing effect. The gesture-based password method that we developed is a grid-free, template-free method. In this study, we evaluated the gesture-based passwords for usability and vulnerability. The results of the study are significant. We developed a gesture-based password application for data collection. Two modes of data collection were used: Creation mode and Replication mode. In creation mode (Session 1), users were asked to create six different passwords and reenter each password five times. In replication mode, users saw a password image created by some other user for a fixed duration of time. Three different duration timers, such as 5 seconds (Session 2), 10 seconds (Session 3), and 15 seconds (Session 4), were used to mimic the shoulder-surfing attack. After the timer expired, the password image was removed, and users were asked to replicate the password. There were 74, 57, 50, and 44 users participated in Session 1, Session 2, Session 3, and Session 4 respectfully. In this study, the machine learning algorithms have been applied to determine whether the person is a genuine user or an imposter based on the password entered. Five different machine learning algorithms were deployed to compare the performance in user authentication: namely, Decision Trees, Linear Discriminant Analysis, Naive Bayes Classifier, Support Vector Machines (SVMs) with Gaussian Radial Basis Kernel function, and K-Nearest Neighbor. Gesture-based password features vary from one entry to the next. It is difficult to distinguish between a creator and an intruder for authentication. For each password entered by the user, four features were extracted: password score, password length, password speed, and password size. All four features were normalized before being fed to a classifier. Three different classifiers were trained using data from all four sessions. Classifiers A, B, and C were trained and tested using data from the password creation session and the password replication with a timer of 5 seconds, 10 seconds, and 15 seconds, respectively. The classification accuracies for Classifier A using five ML algorithms are 72.5%, 71.3%, 71.9%, 74.4%, and 72.9%, respectively. The classification accuracies for Classifier B using five ML algorithms are 69.7%, 67.9%, 70.2%, 73.8%, and 71.2%, respectively. The classification accuracies for Classifier C using five ML algorithms are 68.1%, 64.9%, 68.4%, 71.5%, and 69.8%, respectively. SVMs with Gaussian Radial Basis Kernel outperform other ML algorithms for gesture-based password authentication. Results confirm that the shorter the duration of the shoulder-surfing attack, the higher the authentication accuracy. In conclusion, behavioral features extracted from the gesture-based passwords lead to less vulnerable user authentication.Keywords: authentication, gesture-based passwords, machine learning algorithms, shoulder-surfing attacks, usability
Procedia PDF Downloads 1078276 Remote Sensing Approach to Predict the Impacts of Land Use/Land Cover Change on Urban Thermal Comfort Using Machine Learning Algorithms
Authors: Ahmad E. Aldousaria, Abdulla Al Kafy
Abstract:
Urbanization is an incessant process that involves the transformation of land use/land cover (LULC), resulting in a reduction of cool land covers and thermal comfort zones (TCZs). This study explores the directional shrinkage of TCZs in Kuwait using Landsat satellite data from 1991 – 2021 to predict the future LULC and TCZ distribution for 2026 and 2031 using cellular automata (CA) and artificial neural network (ANN) algorithms. Analysis revealed a rapid urban expansion (40 %) in SE, NE, and NW directions and TCZ shrinkage in N – NW and SW directions with 25 % of the very uncomfortable area. The predicted result showed an urban area increase from 44 % in 2021 to 47 % and 52 % in 2026 and 2031, respectively, where uncomfortable zones were found to be concentrated around urban areas and bare lands in N – NE and N – NW directions. This study proposes an effective and sustainable framework to control TCZ shrinkage, including zero soil policies, planned landscape design, manmade water bodies, and rooftop gardens. This study will help urban planners and policymakers to make Kuwait an eco–friendly, functional, and sustainable country.Keywords: land cover change, thermal environment, green cover loss, machine learning, remote sensing
Procedia PDF Downloads 2278275 Investigation of the Effects of Processing Parameters on Pla Based 3D Printed Tensile Samples
Authors: Saifullah Karimullah
Abstract:
Additive manufacturing techniques are becoming more common with the latest technological advancements. It is composed to bring a revolution in the way products are designed, planned, manufactured, and distributed to end users. Fused deposition modeling (FDM) based 3D printing is one of those promising aspects that have revolutionized the prototyping processes. The purpose of this design and study project is to design a customized laboratory-scale FDM-based 3D printer from locally available sources. The primary goal is to design and fabricate the FDM-based 3D printer. After the fabrication, a tensile test specimen would be designed in Solid Works or [Creo computer-aided design (CAD)] software. A .stl file is generated of the tensile test specimen through slicing software and the G-codes are inserted via a computer for the test specimen to be printed. Different parameters were under studies like printing speed, layer thickness and infill density of the printed object. Some parameters were kept constant such as temperature, extrusion rate, raster orientation etc. Different tensile test specimens were printed for a different sets of parameters of the FDM-based 3d printer. The tensile test specimen were subjected to tensile tests using a universal testing machine (UTM). Design Expert software has been used for analyses, So Different results were obtained from the different tensile test specimens. The best, average and worst specimen were also observed under a compound microscope to investigate the layer bonding in between.Keywords: additive manufacturing techniques, 3D printing, CAD software, UTM machine
Procedia PDF Downloads 1038274 Application of Sub-health Diagnosis and Reasoning Method for Avionics
Authors: Weiran An, Junyou Shi
Abstract:
Health management has become one of the design goals in the research and development of new generation avionics systems, and is an important complement and development for the testability and fault diagnosis technology. Currently, the research and application for avionics system health dividing and diagnosis technology is still at the starting stage, lack of related technologies and methods reserve. In this paper, based on the health three-state dividing of avionics products, state lateral transfer coupling modeling and diagnosis reasoning method considering sub-health are researched. With the study of typical case application, the feasibility and correctness of the method and the software are verified.Keywords: sub-health, diagnosis reasoning, three-valued coupled logic, extended dependency model, avionics
Procedia PDF Downloads 3338273 The Asymmetric Proximal Support Vector Machine Based on Multitask Learning for Classification
Authors: Qing Wu, Fei-Yan Li, Heng-Chang Zhang
Abstract:
Multitask learning support vector machines (SVMs) have recently attracted increasing research attention. Given several related tasks, the single-task learning methods trains each task separately and ignore the inner cross-relationship among tasks. However, multitask learning can capture the correlation information among tasks and achieve better performance by training all tasks simultaneously. In addition, the asymmetric squared loss function can better improve the generalization ability of the models on the most asymmetric distributed data. In this paper, we first make two assumptions on the relatedness among tasks and propose two multitask learning proximal support vector machine algorithms, named MTL-a-PSVM and EMTL-a-PSVM, respectively. MTL-a-PSVM seeks a trade-off between the maximum expectile distance for each task model and the closeness of each task model to the general model. As an extension of the MTL-a-PSVM, EMTL-a-PSVM can select appropriate kernel functions for shared information and private information. Besides, two corresponding special cases named MTL-PSVM and EMTLPSVM are proposed by analyzing the asymmetric squared loss function, which can be easily implemented by solving linear systems. Experimental analysis of three classification datasets demonstrates the effectiveness and superiority of our proposed multitask learning algorithms.Keywords: multitask learning, asymmetric squared loss, EMTL-a-PSVM, classification
Procedia PDF Downloads 1348272 A Machine Learning Framework Based on Biometric Measurements for Automatic Fetal Head Anomalies Diagnosis in Ultrasound Images
Authors: Hanene Sahli, Aymen Mouelhi, Marwa Hajji, Amine Ben Slama, Mounir Sayadi, Farhat Fnaiech, Radhwane Rachdi
Abstract:
Fetal abnormality is still a public health problem of interest to both mother and baby. Head defect is one of the most high-risk fetal deformities. Fetal head categorization is a sensitive task that needs a massive attention from neurological experts. In this sense, biometrical measurements can be extracted by gynecologist doctors and compared with ground truth charts to identify normal or abnormal growth. The fetal head biometric measurements such as Biparietal Diameter (BPD), Occipito-Frontal Diameter (OFD) and Head Circumference (HC) needs to be monitored, and expert should carry out its manual delineations. This work proposes a new approach to automatically compute BPD, OFD and HC based on morphological characteristics extracted from head shape. Hence, the studied data selected at the same Gestational Age (GA) from the fetal Ultrasound images (US) are classified into two categories: Normal and abnormal. The abnormal subjects include hydrocephalus, microcephaly and dolichocephaly anomalies. By the use of a support vector machines (SVM) method, this study achieved high classification for automated detection of anomalies. The proposed method is promising although it doesn't need expert interventions.Keywords: biometric measurements, fetal head malformations, machine learning methods, US images
Procedia PDF Downloads 2888271 Optimization in the Compressive Strength of Iron Slag Self-Compacting Concrete
Authors: Luis E. Zapata, Sergio Ruiz, María F. Mantilla, Jhon A. Villamizar
Abstract:
Sand as fine aggregate for concrete production needs a feasible substitute due to several environmental issues. In this work, a study of the behavior of self-compacting concrete mixtures under replacement of sand by iron slag from 0.0% to 50.0% of weight and variations of water/cementitious material ratio between 0.3 and 0.5 is presented. Control fresh state tests of Slump flow, T500, J-ring and L-box were determined. In the hardened state, compressive strength was determined and optimization from response surface analysis was performed. The study of the variables in the hardened state was developed based on inferential statistical analyses using central composite design methodology and posterior analyses of variance (ANOVA). An increase in the compressive strength up to 50% higher than control mixtures at 7, 14, and 28 days of maturity was the most relevant result regarding the presence of iron slag as replacement of natural sand. Considering the obtained result, it is possible to infer that iron slag is an acceptable alternative replacement material of the natural fine aggregate to be used in structural concrete.Keywords: ANOVA, iron slag, response surface analysis, self-compacting concrete
Procedia PDF Downloads 1448270 Microfiber Release During Laundry Under Different Rinsing Parameters
Authors: Fulya Asena Uluç, Ehsan Tuzcuoğlu, Songül Bayraktar, Burak Koca, Alper Gürarslan
Abstract:
Microplastics are contaminants that are widely distributed in the environment with a detrimental ecological effect. Besides this, recent research has proved the existence of microplastics in human blood and organs. Microplastics in the environment can be divided into two main categories: primary and secondary microplastics. Primary microplastics are plastics that are released into the environment as microscopic particles. On the other hand, secondary microplastics are the smaller particles that are shed as a result of the consumption of synthetic materials in textile products as well as other products. Textiles are the main source of microplastic contamination in aquatic ecosystems. Laundry of synthetic textiles (34.8%) accounts for an average annual discharge of 3.2 million tons of primary microplastics into the environment. Recently, microfiber shedding from laundry research has gained traction. However, no comprehensive study was conducted from the standpoint of rinsing parameters during laundry to analyze microfiber shedding. The purpose of the present study is to quantify microfiber shedding from fabric under different rinsing conditions and determine the effective rinsing parameters on microfiber release in a laundry environment. In this regard, a parametric study is carried out to investigate the key factors affecting the microfiber release from a front-load washing machine. These parameters are the amount of water used during the rinsing step and the spinning speed at the end of the washing cycle. Minitab statistical program is used to create a design of the experiment (DOE) and analyze the experimental results. Tests are repeated twice and besides the controlled parameters, other washing parameters are kept constant in the washing algorithm. At the end of each cycle, released microfibers are collected via a custom-made filtration system and weighted with precision balance. The results showed that by increasing the water amount during the rinsing step, the amount of microplastic released from the washing machine increased drastically. Also, the parametric study revealed that increasing the spinning speed results in an increase in the microfiber release from textiles.Keywords: front load, laundry, microfiber, microfiber release, microfiber shedding, microplastic, pollution, rinsing parameters, sustainability, washing parameters, washing machine
Procedia PDF Downloads 988269 Thermal Instability in Solid under Irradiation
Authors: P. Selyshchev
Abstract:
Construction materials for nuclear facilities are operated under extreme thermal and radiation conditions. First of all, they are nuclear fuel, fuel assemblies, and reactor vessel. It places high demands on the control of their state, stability of their state, and their operating conditions. An irradiated material is a typical example of an open non-equilibrium system with nonlinear feedbacks between its elements. Fluxes of energy, matter and entropy maintain states which are far away from thermal equilibrium. The links that arise under irradiation are inherently nonlinear. They form the mechanisms of feed-backs that can lead to instability. Due to this instability the temperature of the sample, heat transfer, and the defect density can exceed the steady-state value in several times. This can lead to change of typical operation and an accident. Therefore, it is necessary to take into account the thermal instability to avoid the emergency situation. The point is that non-thermal energy can be accumulated in materials because irradiation produces defects (first of all these are vacancies and interstitial atoms), which are metastable. The stored energy is about energy of defect formation. Thus, an annealing of the defects is accompanied by releasing of non-thermal stored energy into thermal one. Temperature of the material grows. Increase of temperature results in acceleration of defect annealing. Density of the defects drops and temperature grows more and more quickly. The positive feed-back is formed and self-reinforcing annealing of radiation defects develops. To describe these phenomena a theoretical approach to thermal instability is developed via formalism of complex systems. We consider system of nonlinear differential equations for different components of microstructure and temperature. The qualitative analysis of this non-linear dynamical system is carried out. Conditions for development of instability have been obtained. Points of bifurcation have been found. Convenient way to represent obtained results is a set of phase portraits. It has been shown that different regimes of material state under irradiation can develop. Thus degradation of irradiated material can be limited by means of choice appropriate kind of evolution of materials under irradiation.Keywords: irradiation, material, non-equilibrium state, nonlinear feed-back, thermal instability
Procedia PDF Downloads 2688268 Analysis of Microbiological Quality and Detection of Antibiotic Residue in Bovine Raw Milk Produced in Blida State, Algeria
Authors: M. N. Boukhatem, M. A. Ferhat, K. Mansour
Abstract:
Bovine raw milk represents a favorable environment for the growth of several food-spoilage strains and some pathogens. It must meet stringent standards to ensure the highest microbiological and toxicological qualities.In order to assess the microbiological risks associated with the consumption of this food, we conducted this study to determine the microbiological quality of bovine raw milk (54 samples) commercialized at the state of Blida (Algeria). The samples analyzed were unsatisfactory in terms of total flora where 61.11% of samples were considered as non acceptable in terms of quality standards, fecal coliforms (40.74%), fecal streptococci (55.55%) and staphylococci (74.07%). Salmonella and Clostridium strains were not detected in all the samples. Furthermore, antibiotic residues were found in 26% of analysed samples. These results reflect non-compliance with the rules of good hygiene practices at milking, storage, transportatio, and sale of milk. Bovine raw milk consumed presents a serious health risk to the population of the study areas.The livestock coaching actors and dissemination of good hygiene practices throughout the production chain are needed to improve the quality of local milk.Keywords: bovine raw milk, microbiological quality, fecal coliforms, antibiotic residue, Blida state
Procedia PDF Downloads 2388267 Output Voltage Analysis of CMOS Colpitts Oscillator with Short Channel Device
Authors: Maryam Ebrahimpour, Amir Ebrahimi
Abstract:
This paper presents the steady-state amplitude analysis of MOS Colpitts oscillator with short channel device. The proposed method is based on a large signal analysis and the nonlinear differential equations that govern the oscillator circuit behaviour. Also, the short channel effects are considered in the proposed analysis and analytical equations for finding the steady-state oscillation amplitude are derived. The output voltage calculated from this analysis is in excellent agreement with simulations for a wide range of circuit parameters.Keywords: colpitts oscillator, CMOS, electronics, circuits
Procedia PDF Downloads 3518266 Development of Automatic Laser Scanning Measurement Instrument
Authors: Chien-Hung Liu, Yu-Fen Chen
Abstract:
This study used triangular laser probe and three-axial direction mobile platform for surface measurement, programmed it and applied it to real-time analytic statistics of different measured data. This structure was used to design a system integration program: using triangular laser probe for scattering or reflection non-contact measurement, transferring the captured signals to the computer through RS-232, and using RS-485 to control the three-axis platform for a wide range of measurement. The data captured by the laser probe are formed into a 3D surface. This study constructed an optical measurement application program in the concept of visual programming language. First, the signals are transmitted to the computer through RS-232/RS-485, and then the signals are stored and recorded in graphic interface timely. This programming concept analyzes various messages, and makes proper presentation graphs and data processing to provide the users with friendly graphic interfaces and data processing state monitoring, and identifies whether the present data are normal in graphic concept. The major functions of the measurement system developed by this study are thickness measurement, SPC, surface smoothness analysis, and analytical calculation of trend line. A result report can be made and printed promptly. This study measured different heights and surfaces successfully, performed on-line data analysis and processing effectively, and developed a man-machine interface for users to operate.Keywords: laser probe, non-contact measurement, triangulation measurement principle, statistical process control, labVIEW
Procedia PDF Downloads 3608265 Monitoring the Vegetation Cover Dynamics of the African Great Green Wall in Yobe State Nigeria
Authors: Isa Muhammad Zumo
Abstract:
The African Great Green Wall (GGW) is a significant initiative in northern Nigeria because it promotes land restoration and conservation utilizing both commercial and species of forest trees while also helping to mitigate desertification and hazards from the sand dunes and shifting Sahara deserts. Conflicts and weather, however, pose a significant danger to the achievement of these goals. The scientific method for monitoring the vegetation dynamics since inception has not received the required attention, despite the African Development Bank (ADB)'s help in funding the project and its integration into the state's development plans for GGW initiatives. This study will monitor the changes in the vegetation cover of the great green wall within Yobe State Nigeria from 2014 to 2023. The vegetation dynamics will be monitored using Landsat 8 Operational Land Imager (OLI) for 6 years at 2 years intervals. The result will show the fluctuations in the vegetation cover density within the period of study. This will guide the design and implementation of policies of the GGW in achieving its objectives. The result can also contribute to the realization of Sustainable Development Goal (SDG) Target 13.2: Integrate climate change measures into national policies, strategies, and planning.Keywords: monitoring, green wall, Landsat 8, Nigeria
Procedia PDF Downloads 848264 Forecasting Thermal Energy Demand in District Heating and Cooling Systems Using Long Short-Term Memory Neural Networks
Authors: Kostas Kouvaris, Anastasia Eleftheriou, Georgios A. Sarantitis, Apostolos Chondronasios
Abstract:
To achieve the objective of almost zero carbon energy solutions by 2050, the EU needs to accelerate the development of integrated, highly efficient and environmentally friendly solutions. In this direction, district heating and cooling (DHC) emerges as a viable and more efficient alternative to conventional, decentralized heating and cooling systems, enabling a combination of more efficient renewable and competitive energy supplies. In this paper, we develop a forecasting tool for near real-time local weather and thermal energy demand predictions for an entire DHC network. In this fashion, we are able to extend the functionality and to improve the energy efficiency of the DHC network by predicting and adjusting the heat load that is distributed from the heat generation plant to the connected buildings by the heat pipe network. Two case-studies are considered; one for Vransko, Slovenia and one for Montpellier, France. The data consists of i) local weather data, such as humidity, temperature, and precipitation, ii) weather forecast data, such as the outdoor temperature and iii) DHC operational parameters, such as the mass flow rate, supply and return temperature. The external temperature is found to be the most important energy-related variable for space conditioning, and thus it is used as an external parameter for the energy demand models. For the development of the forecasting tool, we use state-of-the-art deep neural networks and more specifically, recurrent networks with long-short-term memory cells, which are able to capture complex non-linear relations among temporal variables. Firstly, we develop models to forecast outdoor temperatures for the next 24 hours using local weather data for each case-study. Subsequently, we develop models to forecast thermal demand for the same period, taking under consideration past energy demand values as well as the predicted temperature values from the weather forecasting models. The contributions to the scientific and industrial community are three-fold, and the empirical results are highly encouraging. First, we are able to predict future thermal demand levels for the two locations under consideration with minimal errors. Second, we examine the impact of the outdoor temperature on the predictive ability of the models and how the accuracy of the energy demand forecasts decreases with the forecast horizon. Third, we extend the relevant literature with a new dataset of thermal demand and examine the performance and applicability of machine learning techniques to solve real-world problems. Overall, the solution proposed in this paper is in accordance with EU targets, providing an automated smart energy management system, decreasing human errors and reducing excessive energy production.Keywords: machine learning, LSTMs, district heating and cooling system, thermal demand
Procedia PDF Downloads 1428263 Optimization of Wire EDM Parameters for Fabrication of Micro Channels
Authors: Gurinder Singh Brar, Sarbjeet Singh, Harry Garg
Abstract:
Wire Electric Discharge Machining (WEDM) is thermal machining process capable of machining very hard electrically conductive material irrespective of their hardness. WEDM is being widely used to machine micro-scale parts with the high dimensional accuracy and surface finish. The objective of this paper is to optimize the process parameters of wire EDM to fabricate the microchannels and to calculate the surface finish and material removal rate of microchannels fabricated using wire EDM. The material used is aluminum 6061 alloy. The experiments were performed using CNC wire cut electric discharge machine. The effect of various parameters of WEDM like pulse on time (TON) with the levels (100, 150, 200), pulse off time (TOFF) with the levels (25, 35, 45) and current (IP) with the levels (105, 110, 115) were investigated to study the effect on output parameter i.e. Surface Roughness and Material Removal Rate (MRR). Each experiment was conducted under different conditions of a pulse on time, pulse off time and peak current. For material removal rate, TON and Ip were the most significant process parameter. MRR increases with the increase in TON and Ip and decreases with the increase in TOFF. For surface roughness, TON and Ip have the maximum effect and TOFF was found out to be less effective.Keywords: microchannels, Wire Electric Discharge Machining (WEDM), Metal Removal Rate (MRR), surface finish
Procedia PDF Downloads 4998262 A Comparative Asessment of Some Algorithms for Modeling and Forecasting Horizontal Displacement of Ialy Dam, Vietnam
Authors: Kien-Trinh Thi Bui, Cuong Manh Nguyen
Abstract:
In order to simulate and reproduce the operational characteristics of a dam visually, it is necessary to capture the displacement at different measurement points and analyze the observed movement data promptly to forecast the dam safety. The accuracy of forecasts is further improved by applying machine learning methods to data analysis progress. In this study, the horizontal displacement monitoring data of the Ialy hydroelectric dam was applied to machine learning algorithms: Gaussian processes, multi-layer perceptron neural networks, and the M5-rules algorithm for modelling and forecasting of horizontal displacement of the Ialy hydropower dam (Vietnam), respectively, for analysing. The database which used in this research was built by collecting time series of data from 2006 to 2021 and divided into two parts: training dataset and validating dataset. The final results show all three algorithms have high performance for both training and model validation, but the MLPs is the best model. The usability of them are further investigated by comparison with a benchmark models created by multi-linear regression. The result show the performance which obtained from all the GP model, the MLPs model and the M5-Rules model are much better, therefore these three models should be used to analyze and predict the horizontal displacement of the dam.Keywords: Gaussian processes, horizontal displacement, hydropower dam, Ialy dam, M5-Rules, multi-layer perception neural networks
Procedia PDF Downloads 2108261 Towards Automatic Calibration of In-Line Machine Processes
Authors: David F. Nettleton, Elodie Bugnicourt, Christian Wasiak, Alejandro Rosales
Abstract:
In this presentation, preliminary results are given for the modeling and calibration of two different industrial winding MIMO (Multiple Input Multiple Output) processes using machine learning techniques. In contrast to previous approaches which have typically used ‘black-box’ linear statistical methods together with a definition of the mechanical behavior of the process, we use non-linear machine learning algorithms together with a ‘white-box’ rule induction technique to create a supervised model of the fitting error between the expected and real force measures. The final objective is to build a precise model of the winding process in order to control de-tension of the material being wound in the first case, and the friction of the material passing through the die, in the second case. Case 1, Tension Control of a Winding Process. A plastic web is unwound from a first reel, goes over a traction reel and is rewound on a third reel. The objectives are: (i) to train a model to predict the web tension and (ii) calibration to find the input values which result in a given tension. Case 2, Friction Force Control of a Micro-Pullwinding Process. A core+resin passes through a first die, then two winding units wind an outer layer around the core, and a final pass through a second die. The objectives are: (i) to train a model to predict the friction on die2; (ii) calibration to find the input values which result in a given friction on die2. Different machine learning approaches are tested to build models, Kernel Ridge Regression, Support Vector Regression (with a Radial Basis Function Kernel) and MPART (Rule Induction with continuous value as output). As a previous step, the MPART rule induction algorithm was used to build an explicative model of the error (the difference between expected and real friction on die2). The modeling of the error behavior using explicative rules is used to help improve the overall process model. Once the models are built, the inputs are calibrated by generating Gaussian random numbers for each input (taking into account its mean and standard deviation) and comparing the output to a target (desired) output until a closest fit is found. The results of empirical testing show that a high precision is obtained for the trained models and for the calibration process. The learning step is the slowest part of the process (max. 5 minutes for this data), but this can be done offline just once. The calibration step is much faster and in under one minute obtained a precision error of less than 1x10-3 for both outputs. To summarize, in the present work two processes have been modeled and calibrated. A fast processing time and high precision has been achieved, which can be further improved by using heuristics to guide the Gaussian calibration. Error behavior has been modeled to help improve the overall process understanding. This has relevance for the quick optimal set up of many different industrial processes which use a pull-winding type process to manufacture fibre reinforced plastic parts. Acknowledgements to the Openmind project which is funded by Horizon 2020 European Union funding for Research & Innovation, Grant Agreement number 680820Keywords: data model, machine learning, industrial winding, calibration
Procedia PDF Downloads 2418260 Challenges Being Faced by Students of Arabic and Islamic Studies in Tetiary Institutions in Nigeria: Case Study of Some Selected Tetiary Instutions of Yobe State, Nigeria
Authors: Muhammad Alhaji Maidugu
Abstract:
The role played by Arabic and Islamic Studies in the history of Nigeria - particularly Northern part of the country - cannot be overemphasized. Before the British colonialism, Arabic language was the official language in some of the great empires in Nigeria such as the Kanem Borno Empire. Islam, on the other hand, is the state religion. Both the rulers and the ruled were deeply involved in the pursuit of Arabic and Islamic knowledge traveling as far as Egypt, Saudia Arabia for scholarship. Their homes are like a modern library where Islamic books are kept and used to teach the community the different fields of Arabic and Islamic Studies. Scholars of Arabic and Islamic Studies were highly regarded and well respected in the society as they were the decision makers, diplomats and advisers to the authorities. Unfortunately, the colonizers used their influence and force to replace this language with a foreign language. In fact, they tried to exterminate it. Arabic became less important in the country. Arabic and Islamic Students became less significant and anybody studying Arabic or Islamic Studies is looked down at with disdain, and the course is considered unprofessional. This paper aims at casting a glance in the position of Arabic and Islamic Studies in Yobe State, Nigeria and social, political, economical and moral challenges faced by the students at institutions of learning.Keywords: challenges, students of Arabic and Islamic studies, tertiary, institutions, Yobe
Procedia PDF Downloads 3598259 State, Public Policies, and Rights: Public Expenditure and Social and Welfare Policies in America, as Opposed to Argentina
Authors: Mauro Cristeche
Abstract:
This paper approaches the intervention of the American State in the social arena and the modeling of the rights system from the Argentinian experience, by observing the characteristics of its federal budgetary system, the evolution of social public spending and welfare programs in recent years, labor and poverty statistics, and the changes on the labor market structure. The analysis seeks to combine different methodologies and sources: in-depth interviews with specialists, analysis of theoretical and mass-media material, and statistical sources. Among the results, it could be mentioned that the tendency to state interventionism (what has been called ‘nationalization of social life’) is quite evident in the United States, and manifests itself in multiple forms. The bibliography consulted, and the experts interviewed pointed out this increase of the state presence in historical terms (beyond short-term setbacks) in terms of increase of public spending, fiscal pressure, public employment, protective and control mechanisms, the extension of welfare policies to the poor sectors, etc. In fact, despite the significant differences between both countries, the United States and Argentina have common patterns of behavior in terms of the aforementioned phenomena. On the other hand, dissimilarities are also important. Some of them are determined by each country's own political history. The influence of political parties on the economic model seems more decisive in the United States than in Argentina, where the tendency to state interventionism is more stable. The centrality of health spending is evident in America, while in Argentina that discussion is more concentrated in the social security system and public education. The biggest problem of the labor market in the United States is the disqualification as a consequence of the technological development while in Argentina it is a result of its weakness. Another big difference is the huge American public spending on Defense. Then, the more federal character of the American State is also a factor of differential analysis against a centralized Argentine state. American public employment (around 10%) is comparatively quite lower than the Argentinian (around 18%). The social statistics show differences, but inequality and poverty have been growing as a trend in the last decades in both countries. According to public rates, poverty represents 14% in The United States and 33% in Argentina. American public spending is important (welfare spending and total public spending represent around 12% and 34% of GDP, respectively), but a bit lower than Latin-American or European average). In both cases, the tendency to underemployment and disqualification unemployment does not assume a serious gravity. Probably one of the most important aspects of the analysis is that private initiative and public intervention are much more intertwined in the United States, which makes state intervention more ‘fuzzy’, while in Argentina the difference is clearer. Finally, the power of its accumulation of capital and, more specifically, of the industrial and services sectors in the United States, which continues to be the engine of the economy, express great differences with Argentina, supported by its agro-industrial power and its public sector.Keywords: state intervention, welfare policies, labor market, system of rights, United States of America
Procedia PDF Downloads 1318258 Burden of Communicable and Non-Communicable Disease in India: A Regional Analysis
Authors: Ajit Kumar Yadav, Priyanka Yadav, F. Ram
Abstract:
In present study is an effort to analyse the burden of diseases in the state. Disability Adjusted Life Years (DALY) is estimated non-communicable diseases. Multi-rounds (52nd, 60th and 71st round) of the National Sample Surveys (NSSO), conducted in 1995-96, 2004 and 2014 respectively, and Million Deaths Study (MDS) of 2001-03, 2006 and 2013-14 datasets are used. Descriptive and multivariate analyses are carried out to identify the determinants of different types of self-reported morbidity and DALY. The prevalence was higher for population aged 60 and above, among females, illiterates, and rich across the time period and for all the selected morbidities. The results were found to be significant at P<0.001. The estimation of DALY revealed that, the burden of communicable diseases was higher during infancy, noticeably among males than females in 2002. However, females aged 1-5 years were more vulnerable to report communicable diseases than the corresponding males. The age distribution of DALY indicates that individuals aged below 5 years and above 60 year were more susceptible to ill health. The growing incidence of non-communicable diseases especially among the older generations put additional burden on the health system in the state. The state has to grapple with the unsettled preventable infectious diseases in one hand and growing non-communicable in other hand.Keywords: disease burden, non-communicable, communicable, India and region
Procedia PDF Downloads 2518257 Extended Kalman Filter and Markov Chain Monte Carlo Method for Uncertainty Estimation: Application to X-Ray Fluorescence Machine Calibration and Metal Testing
Authors: S. Bouhouche, R. Drai, J. Bast
Abstract:
This paper is concerned with a method for uncertainty evaluation of steel sample content using X-Ray Fluorescence method. The considered method of analysis is a comparative technique based on the X-Ray Fluorescence; the calibration step assumes the adequate chemical composition of metallic analyzed sample. It is proposed in this work a new combined approach using the Kalman Filter and Markov Chain Monte Carlo (MCMC) for uncertainty estimation of steel content analysis. The Kalman filter algorithm is extended to the model identification of the chemical analysis process using the main factors affecting the analysis results; in this case, the estimated states are reduced to the model parameters. The MCMC is a stochastic method that computes the statistical properties of the considered states such as the probability distribution function (PDF) according to the initial state and the target distribution using Monte Carlo simulation algorithm. Conventional approach is based on the linear correlation, the uncertainty budget is established for steel Mn(wt%), Cr(wt%), Ni(wt%) and Mo(wt%) content respectively. A comparative study between the conventional procedure and the proposed method is given. This kind of approaches is applied for constructing an accurate computing procedure of uncertainty measurement.Keywords: Kalman filter, Markov chain Monte Carlo, x-ray fluorescence calibration and testing, steel content measurement, uncertainty measurement
Procedia PDF Downloads 2838256 Data-Driven Insights Into Juvenile Recidivism: Leveraging Machine Learning for Rehabilitation Strategies
Authors: Saiakhil Chilaka
Abstract:
Juvenile recidivism presents a significant challenge to the criminal justice system, impacting both the individuals involved and broader societal safety. This study aims to identify the key factors influencing recidivism and successful rehabilitation outcomes by utilizing a dataset of over 25,000 individuals from the NIJ Recidivism Challenge. We employed machine learning techniques, particularly Random Forest Classification, combined with SHAP (SHapley Additive exPlanations) for model interpretability. Our findings indicate that supervision risk score, percent days employed, and education level are critical factors affecting recidivism, with higher levels of supervision, successful employment, and education contributing to lower recidivism rates. Conversely, Gang Affiliation emerged as a significant risk factor for reoffending. The model achieved an accuracy of 68.8%, highlighting its utility in identifying high-risk individuals and informing targeted interventions. These results suggest that a comprehensive approach involving personalized supervision, vocational training, educational support, and anti-gang initiatives can significantly reduce recidivism and enhance rehabilitation outcomes for juveniles, providing critical insights for policymakers and juvenile justice practitioners.Keywords: juvenile, justice system, data analysis, SHAP
Procedia PDF Downloads 238255 Intestacy and Business Continuity among Entrepreneurs in Ondo State, Nigeria
Authors: Igbekoyi Olusola Esther, Olurankinse Felix
Abstract:
This paper examined the factors that militate against Will writing among entrepreneurs in Ondo State Nigeria and the effect of intestate death on business continuity after the exit of the entrepreneurs. The paper was written with a view to providing information on the reasons why intestate death is common among entrepreneurs in Ondo State and the effects on continuity of business after death of the initial owners. Data were obtained from primary source through the administration of questionnaires to entrepreneurs drawn from 50 registered manufacturing companies. These companies have been in existence for a minimum of 10 years with minimum staff strength of 20 workers each. These companies were selected using the purposive random sampling technique in order to capture firms that meet the requirements of this paper. Data obtained were analyzed using descriptive statistics, chi-square and regression analysis. The findings of the paper revealed that administration of Will, traditional beliefs, Will execution procedures, age and non- admissibility of Wills in court are the major factors that militates against Will writing among entrepreneurs in Ondo State. It was also discovered that chaos and instability in business, reduction in sales and productivity, poor succession planning, polygamous nature of marriages, difficulty in sourcing for funds and gender preference are joint predictors of business continuity in event intestate death which is evident in the result where R2 =.954;(F 6, 26)= 89.644; (P < 0.01). The individual beta co-efficient, t- statistics and significance of each variable revealed that gender preference (.735; 7.031; .000) and poor succession plan (.402; 2.840; .009) have significant positive effect on business continuity; while reduction in sales and productivity (-.059; -.335; .740) and difficulty in sourcing for funds (-.217; -1.367; .188) have negative effect; other variables also have positive relationship but they are not significant. It is therefore concluded that business continuity after the exit of the entrepreneur is highly dependent on the rebuilding of confidence on Wills administration in ondo state Nigeria, proper succession planning and elimination of gender preferences.Keywords: intestacy, business continuity, entrepreneurs, will, succession planning
Procedia PDF Downloads 3298254 Risk Measurement and Management Strategies in Poultry Farm Enterprises in Imo State, Nigeria
Authors: Donatus Otuiheoma Ohajianya, Augusta Onyekachi Unamba
Abstract:
This study analyzed risk among poultry farm enterprises in Imo State of Nigeria. Specifically, it examined sources of risks, the major risks associated with poultry farm enterprise, and the risk-reducing strategies among the poultry farm enterprises in the study area. Primary data collected in 2015 with validated questionnaire from 120 proportionately and randomly selected poultry farm enterprises were used for the study. The data were analyzed with descriptive statistics and W-Statistic that was validated with Pearson Criterion (X2). The results showed that major risk sources affecting poultry farm enterprises were production, marketing, financial and political in that order. The results found a W-Statistic value of 0.789, which was verified by Pearson Criterion to obtain X2-Calculated value of 4.65 which is lower that X2-Critical value of 11.07 at 5% significant level. The risk-reducing strategies were found to be diversification, savings, co-operative marketing, borrowing, and insurance. It was recommended that government and donor agencies should make policies aimed at encouraging poultry farm enterprises adopt the highlighted risk-reducing strategies in risk management to improve their productivity and farm income.Keywords: risk, measurement, management, poultry farm, Imo State
Procedia PDF Downloads 3008253 Acoustic Analysis of Ball Bearings to Identify Localised Race Defect
Authors: M. Solairaju, Nithin J. Thomas, S. Ganesan
Abstract:
Each and every rotating part of a machine element consists of bearings within its structure. In particular, the rolling element bearings such as cylindrical roller bearing and deep groove ball bearings are frequently used. Improper handling, excessive loading, improper lubrication and sealing cause bearing damage. Hence health monitoring of bearings is an important aspect for radiation pattern of bearing vibration is computed using the dipole model. Sound pressure level for defect-free and race defect the prolonged life of machinery and auto motives. This paper presents modeling and analysis of Acoustic response of deep groove ball bearing with localized race defects. Most of the ball bearings, especially in machine tool spindles and high-speed applications are pre-loaded along an axial direction. The present study is carried out with axial preload. Based on the vibration response, the orbit motion of the inner race is studied, and it was found that the oscillation takes place predominantly in the axial direction. Simplified acoustic is estimated. Acoustic response shows a better indication in identifying the defective bearing. The computed sound signal is visualized in diagrammatic representation using Symmetrised Dot Pattern (SDP). SDP gives better visual distinction between the defective and defect-free bearingKeywords: bearing, dipole, noise, sound
Procedia PDF Downloads 294