Search results for: recovery stress
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5591

Search results for: recovery stress

3941 Non-Linear Velocity Fields in Turbulent Wave Boundary Layer

Authors: Shamsul Chowdhury

Abstract:

The objective of this paper is to present the detailed analysis of the turbulent wave boundary layer produced by progressive finite-amplitude waves theory. Most of the works have done for the mass transport in the turbulent boundary layer assuming the eddy viscosity is not time varying, where the sediment movement is induced by the mean velocity. Near the ocean bottom, the waves produce a thin turbulent boundary layer, where the flow is highly rotational, and shear stress associated with the fluid motion cannot be neglected. The magnitude and the predominant direction of the sediment transport near the bottom are known to be closely related to the flow in the wave induced boundary layer. The magnitude of water particle velocity at the Crest phase differs from the one of the Trough phases due to the non-linearity of the waves, which plays an important role to determine the sediment movement. The non-linearity of the waves become predominant in the surf zone area, where the sediment movement occurs vigorously. Therefore, in order to describe the flow near the bottom and relationship between the flow and the movement of the sediment, the analysis was done using the non-linear boundary layer equation and the finite amplitude wave theory was applied to represent the velocity fields in the turbulent wave boundary layer. At first, the calculation was done for turbulent wave boundary layer by two-dimensional model where throughout the calculation is non-linear. But Stokes second order wave profile is adopted at the upper boundary. The calculated profile was compared with the experimental data. Finally, the calculation is done based on various modes of the velocity and turbulent energy. The mean velocity is found to differ from condition of the relative depth and the roughness. It is also found that due to non-linearity, the absolute value for velocity and turbulent energy as well as Reynolds stress are asymmetric. The mean velocity of the laminar boundary layer is always positive but in the turbulent boundary layer plays a very complicated role.

Keywords: wave boundary, mass transport, mean velocity, shear stress

Procedia PDF Downloads 262
3940 Innovative Pump Design Using the Concept of Viscous Fluid Sinusoidal Excitation

Authors: Ahmed H. Elkholy

Abstract:

The concept of applying a prescribed oscillation to viscous fluids to aid or increase flow is used to produce a maintenance free pump. Application of this technique to fluids presents unique problems such as physical separation; control of heat and mass transfer in certain industrial applications; and improvement of some fluid process methods. The problem as stated is to obtain the velocity distribution, wall shear stress and energy expended when a pipe containing a stagnant viscous fluid is externally excited by a sinusoidal pulse, one end of the pipe being pinned. On the other hand, the effect of different parameters on the results are presented. Such parameters include fluid viscosity, frequency of oscillations and pipe geometry. It was found that the flow velocity through the pump is maximum at the pipe wall, and it decreases rapidly towards the pipe centerline. The frequency of oscillation should be above a certain value in order to obtain meaningful flow velocity. The amount of energy absorbed in the system is mainly due to pipe wall strain energy, while the fluid pressure and kinetic energies are comparatively small.

Keywords: sinusoidal excitation, pump, shear stress, flow

Procedia PDF Downloads 315
3939 Possible Neuroprotective Mechanism of Remote Limb Ischemic Post Conditioning against Global Cerebral Ischemic Injury

Authors: Sruthi Ramagiri, Rajeev Taliyan

Abstract:

Background and purpose: Recent investigations on ischemia and reperfusion injury postulate that transient ischemia of remote organs after a prolonged ischemic insult confers neuroprotection. However, the molecular mechanisms of the remote limb ischemic post-conditioning (RIPOC) are yet to be elucidated. The current study was designed to investigate the protective mechanism of RIPOC against cerebral ischemic injury using global model of stroke. Materials and methods: Global ischemic reperfusion injury (IR) was achieved by 30 minutes ischemia of cerebral artery, followed by reperfusion for 24 hours. Induction of global ischemia was followed by 4 brief episodes (30 seconds each) of ischemia and reperfusion of femoral artery to accomplish RIPOC. 5-Hydroxy Decanoic acid (5-HD), a KATP channel blocker (20 mg/kg) was administered after induction of global ischemia and RIPOC intervention. Results: IR injury ensue significant behavioural deficits as manifested by rotarod performance and spontaneous locomotor activity when compared to sham control. Furthermore, IR injury significantly increased oxidonitrative stress and infarct volume as evidenced by biochemical parameters (MDA, GSH, Nitrite, SOD) and 2,3,5-triphenyltetrazolium chloride (TTC) staining respectively. Moreover, RIPOC intervention ameliorated the behavioural performance, attenuated the oxidative stress and infarct volume when compared to IR injury group. However, administration of 5-HD increased the oxidative stress and infarct size while deteriorating the behavioural parameters when compared to RIPOC group. Conclusions: In a nutshell, cerebral IR injury has significantly induced the neuronal damage, whereas RIPOC intervention decreased the neuronal injury. Moreover, 5-HD abolished the neuroprotection offered by RIPOC indicating the putative role of KATP channel opening in RIPOC against cerebral ischemic injury.

Keywords: RIPOC, cerebral injury, KATP channel, neuroprotection

Procedia PDF Downloads 470
3938 Hepatoprotective Assessment of L-Ascorbate 1-(2-Hydroxyethyl)-4,6-Dimethyl-1, 2-Dihydropyrimidine-2-On Exposure to Carbon Tetrachloride

Authors: Nail Nazarov, Alexandra Vyshtakalyuk, Vyacheslav Semenov, Irina Galyametdinova, Vladimir Zobov, Vladimir Reznik

Abstract:

Among hepatic pyrimidine used as a means of stimulating protein synthesis and recovery of liver cells in her damaged toxic and infectious etiology. When an experimental toxic hepatitis hepatoprotective activity detected some pyrimidine derivatives. There are literature data on oksimetiluratcila hepatoprotective effect. For analogs of pyrimidine nucleobases - drugs Methyluracilum pentoxy and hepatoprotective effect of weakly expressed. According to the American scientists broad spectrum of biological activity, including hepatoprotective properties, have a 2,4-dioxo-5-arilidenimino uracils. Influenced Xymedon medicinal preparation (1- (beta-hydroxyethyl) -4,6-dimethyl-1,2-dihydro-2-oksopirimidin) developed as a means of stimulating the regeneration of tissue revealed increased activity of microsomal oxidases human liver. In studies on the model of toxic liver damage in rats have shown hepatoprotective effect xymedon and stimulating its impact on the recovery of the liver tissue. Hepatoprotective properties of the new compound in the series of pyrimidine derivatives L-ascorbate 1-(2-hydroxyethyl)-4,6-dimethyl-1,2-dihydropirimidine-2-one synthesized on the basis Xymedon preparation were firstly investigated on rats under the carbon tetrachloride action. It was shown the differences of biochemical parameters from the reference value and severity of structural-morphological liver violations decreased in comparison with control group under the influence of the compound injected before exposure carbon tetrachloride. Hepatoprotective properties of the investigated compound were more pronounced in comparison with Xymedon.

Keywords: hepatoprotectors, pyrimidine derivatives, toxic liver damage, xymedon

Procedia PDF Downloads 425
3937 Proposed Organizational Development Interventions in Managing Occupational Stressors for Business Schools in Batangas City

Authors: Marlon P. Perez

Abstract:

The study intended to determine the level of occupational stress that was experienced by faculty members of private and public business schools in Batangas City with the end in view of proposing organizational development interventions in managing occupational stressors. Stressors such as factors intrinsic to the job, role in the organization, relationships at work, career development and organizational structure and climate were used as determinants of occupational stress level. Descriptive method of research was used as its research design. There were only 64 full-time faculty members coming from private and public business schools in Batangas City – University of Batangas, Lyceum of the Philippines University-Batangas, Golden Gate Colleges, Batangas State University and Colegio ng Lungsod ng Batangas. Survey questionnaire was used as data gathering instrument. It was found out that all occupational stressors were assessed stressful when grouped according to its classification of tertiary schools while response of subject respondents differs on their assessment of occupational stressors. Age variable has become significantly related to respondents’ assessments on factors intrinsic to the job and career development; however, it was not significantly related to role in the organization, relationships at work and organizational structure and climate. On the other hand, gender, marital status, highest educational attainment, employment status, length of service, area of specialization and classification of tertiary school were revealed to be not significantly related to all occupational stressors. Various organizational development interventions have been proposed to manage the occupational stressors that are experienced by business faculty members in the institution.

Keywords: occupational stress, business school, organizational development, intervention, stressors, faculty members, assessment, manage

Procedia PDF Downloads 431
3936 Experimental and Numerical Investigation of “Machining Induced Residual Stresses” during Orthogonal Machining of Alloy Steel AISI 4340

Authors: Theena Thayalan, K. N. Ramesh Babu

Abstract:

Machining induced residual stress (RS) is one of the most important surface integrity parameters that characterize the near surface layer of a mechanical component, which plays a crucial role in controlling the performance, especially its fatigue life. Since experimental determination of RS is expensive and time consuming, it would be of great benefit if they could be predicted. In such case, it would be possible to select the cutting parameters required to produce a favorable RS profile. In the present study, an effort has been made to develop a 'two dimensional finite element model (FEM)' to simulate orthogonal cutting process and to predict surface and sub-surface RS using the commercial FEA software DEFORM-2D. The developed finite element model has been validated through experimental investigation of RS. In the experimentation, the orthogonal cutting tests were carried out on AISI 4340 by varying the cutting speed (VC) and uncut chip thickness (f) at three levels and the surface & sub-surface RS has been measured using XRD and Electro polishing techniques. The comparison showed that the RS obtained using developed numerical model is in reasonable agreement with that of experimental data.

Keywords: FEM, machining, residual stress, XRF

Procedia PDF Downloads 348
3935 Classifying Affective States in Virtual Reality Environments Using Physiological Signals

Authors: Apostolos Kalatzis, Ashish Teotia, Vishnunarayan Girishan Prabhu, Laura Stanley

Abstract:

Emotions are functional behaviors influenced by thoughts, stimuli, and other factors that induce neurophysiological changes in the human body. Understanding and classifying emotions are challenging as individuals have varying perceptions of their environments. Therefore, it is crucial that there are publicly available databases and virtual reality (VR) based environments that have been scientifically validated for assessing emotional classification. This study utilized two commercially available VR applications (Guided Meditation VR™ and Richie’s Plank Experience™) to induce acute stress and calm state among participants. Subjective and objective measures were collected to create a validated multimodal dataset and classification scheme for affective state classification. Participants’ subjective measures included the use of the Self-Assessment Manikin, emotional cards and 9 point Visual Analogue Scale for perceived stress, collected using a Virtual Reality Assessment Tool developed by our team. Participants’ objective measures included Electrocardiogram and Respiration data that were collected from 25 participants (15 M, 10 F, Mean = 22.28  4.92). The features extracted from these data included heart rate variability components and respiration rate, both of which were used to train two machine learning models. Subjective responses validated the efficacy of the VR applications in eliciting the two desired affective states; for classifying the affective states, a logistic regression (LR) and a support vector machine (SVM) with a linear kernel algorithm were developed. The LR outperformed the SVM and achieved 93.8%, 96.2%, 93.8% leave one subject out cross-validation accuracy, precision and recall, respectively. The VR assessment tool and data collected in this study are publicly available for other researchers.

Keywords: affective computing, biosignals, machine learning, stress database

Procedia PDF Downloads 142
3934 Flow Control around Bluff Bodies by Attached Permeable Plates

Authors: Gokturk Memduh Ozkan, Huseyin Akilli

Abstract:

The aim of present study is to control the unsteady flow structure downstream of a circular cylinder by use of attached permeable plates. Particle image velocimetry (PIV) technique and dye visualization experiments were performed in deep water and the flow characteristics were evaluated by means of time-averaged streamlines, Reynolds Shear Stress and Turbulent Kinetic Energy concentrations. The permeable plate was made of a chrome-nickel screen having a porosity value of β=0.6 and it was attached on the cylinder surface along its midspan. Five different angles were given to the plate (θ=0°, 15°, 30°, 45°, 60°) with respect to the centerline of the cylinder in order to examine its effect on the flow control. It was shown that the permeable plate is effective on elongating the vortex formation length and reducing the fluctuations in the wake region. Compared to the plain cylinder, the reductions in the values of maximum Reynolds shear stress and Turbulent Kinetic Energy were evaluated as 72.5% and 66%, respectively for the plate angles of θ=45° and 60° which were also found to be suggested for applications concerning the vortex shedding and consequent Vortex-Induced Vibrations.

Keywords: bluff body, flow control, permeable plate, PIV, VIV, vortex shedding

Procedia PDF Downloads 361
3933 Design, Modification and Structural Analysis of Bicycle Sprocket Using ANSYS

Authors: Roman Kalvin, Saba Arif, Anam Nadeem, Burhan Ali Ghumman, Juntakan Taweekun

Abstract:

Bicycles are important parts of the transportation industry. In the current world, use of sprocket is very high on bicycles these days. Sprocket and chains are important parts of the transmission of power in the bicycle. However, transmission of power is highly dependent on sprocket design. In conventional bicycles, sprockets are made up of mild steel which undergoes wear and tears with the passage of time due to high pressures applied on it. In the current research, a new sprocket is designed by changing its structure and material to carbon fiber from mild steel. The existing sprocket of a bicycle is compared with the new and modified sprocket design. However, new design has structural and material changes as well. According to the results, in carbon fiber, sprocket deformation is 0.091 mm while sprocket stress value is 371.13N/mm². Also, comparison based analysis is done by physical testing and software analysis. There is 8.1% variation in software and experimental results of steel. Additionally, the difference between both methods comes 8 to 9%. This improved design can be used in future for more durability and long run timings for bicycles.

Keywords: sprocket, mild steel, drafting, stress, deformation

Procedia PDF Downloads 254
3932 Effect of Fiber Types and Elevated Temperatures on the Bond Characteristic of Fiber Reinforced Concretes

Authors: Erdoğan Özbay, Hakan T. Türker, Müzeyyen Balçıkanlı, Mohamed Lachemi

Abstract:

In this paper, the effects of fiber types and elevated temperatures on compressive strength, modulus of rapture and the bond characteristics of fiber reinforced concretes (FRC) are presented. By using the three different types of fibers (steel fiber-SF, polypropylene-PPF and polyvinyl alcohol-PVA), FRC specimens were produced and exposed to elevated temperatures up to 800 ºC for 1.5 hours. In addition, a plain concrete (without fiber) was produced and used as a control. Test results obtained showed that the steel fiber reinforced concrete (SFRC) had the highest compressive strength, modulus of rapture and bond stress values at room temperatures, the residual bond, flexural and compressive strengths of both FRC and plain concrete dropped sharply after exposure to high temperatures. The results also indicated that the reduction of bond, flexural and compressive strengths with increasing the exposed temperature was relatively less for SFRC than for plain, and FRC with PPF and PVA.

Keywords: bond stress, compressive strength, elevated temperatures, fiber reinforced concrete, modulus of rapture

Procedia PDF Downloads 422
3931 Rheological Study of Natural Sediments: Application in Filling of Estuaries

Authors: S. Serhal, Y. Melinge, D. Rangeard, F. Hage Chehadeh

Abstract:

Filling of estuaries is an international problem that can cause economic and environmental damage. This work aims the study of the rheological structuring mechanisms of natural sedimentary liquid-solid mixture in estuaries in order to better understand their filling. The estuary of the Rance river, located in Brittany, France is particularly targeted by the study. The aim is to provide answers on the rheological behavior of natural sediments by detecting structural factors influencing the rheological parameters. So we can better understand the fillings estuarine areas and especially consider sustainable solutions of ‘cleansing’ of these areas. The sediments were collected from the trap of Lyvet in Rance estuary. This trap was created by the association COEUR (Comité Opérationnel des Elus et Usagers de la Rance) in 1996 in order to facilitate the cleansing of the estuary. It creates a privileged area for the deposition of sediments and consequently makes the cleansing of the estuary easier. We began our work with a preliminary study to establish the trend of the rheological behavior of the suspensions and to specify the dormant phase which precedes the beginning of the biochemical reactivity of the suspensions. Then we highlight the visco-plastic character at younger age using the Kinexus rheometer, plate-plate geometry. This rheological behavior of suspensions is represented by the Bingham model using dynamic yield stress and viscosity which can be a function of volume fraction, granular extent, and chemical reactivity. The evolution of the viscosity as a function of the solid volume fraction is modeled by the Krieger-Dougherty model. On the other hand, the analysis of the dynamic yield stress showed a fairly functional link with the solid volume fraction.

Keywords: estuaries, rheological behavior, sediments, Kinexus rheometer, Bingham model, viscosity, yield stress

Procedia PDF Downloads 160
3930 Adaptation Mechanisms of the Polyextremophile Natranaerobius Thermophilus to Saline-Alkaline-Hermal Environments

Authors: Qinghua Xing, Xinyi Tao, Haisheng Wang, Baisuo Zhao

Abstract:

The first true anaerobic, halophilic alkali thermophile, Natranaerobius thermophilus DSM 18059T, serves as a valuable model for studying cellular adaptations to saline, alkaline and thermal extremes. To uncover the adaptive strategies employed by N. thermophilus in coping with these challenges, we conducted a comprehensive iTRAQ-based quantitative proteomic analysis under different conditions of salinity (3.5 M vs. 2.5 M Na+), pH (pH 9.6 vs. pH 8.6), and temperature (52°C vs. 42°C). The increased intracellular accumulation of glycine betaine, through both synthesis and transport, plays a critical role in N. thermophilus' adaptation to these combined stresses. Under all three stress conditions, the up-regulation of Trk family proteins responsible for K+ transport is observed. Intracellular K+ concentration rises in response to salt and pH levels. Multiple types of Na+/H+ antiporter (NhaC family, Mrp family and CPA family) and a diverse range of FOF1-ATP synthase are identified as vital components for maintaining ionic balance under different stress conditions. Importantly, proteins involved in amino acid metabolism, carbohydrate metabolism, ABC transporters, signaling and chemotaxis, as well as biological macromolecule repair and protection, exhibited significant up-regulation in response to these extreme conditions. These metabolic pathways emerge as critical factors in N. thermophilus' adaptation mechanisms under extreme environmental stress. To validate the proteomic data, ddPCR analysis confirmed changes in mRNA expression, thereby corroborating the up-regulation and down-regulation patterns of 19 co-up-regulated and 36 key proteins under saline, alkaline and thermal stresses. This research enriches our understanding of the complex regulatory systems that enable polyextremophiles to survive in combined extreme conditions.

Keywords: polyextremophiles, natranaerobius thermophilus, saline- alkaline- thermal stresses, combined extremes

Procedia PDF Downloads 55
3929 Rehabilitation Team after Brain Damages as Complex System Integrating Consciousness

Authors: Olga Maksakova

Abstract:

A work with unconscious patients after acute brain damages besides special knowledge and practical skills of all the participants requires a very specific organization. A lot of said about team approach in neurorehabilitation, usually as for outpatient mode. Rehabilitologists deal with fixed patient problems or deficits (motion, speech, cognitive or emotional disorder). Team-building means superficial paradigm of management psychology. Linear mode of teamwork fits casual relationships there. Cases with deep altered states of consciousness (vegetative states, coma, and confusion) require non-linear mode of teamwork: recovery of consciousness might not be the goal due to phenomenon uncertainty. Rehabilitation team as Semi-open Complex System includes the patient as a part. Patient's response pattern becomes formed not only with brain deficits but questions-stimuli, context, and inquiring person. Teamwork is sourcing of phenomenology knowledge of patient's processes as Third-person approach is replaced with Second- and after First-person approaches. Here is a chance for real-time change. Patient’s contacts with his own body and outward things create a basement for restoration of consciousness. The most important condition is systematic feedbacks to any minimal movement or vegetative signal of the patient. Up to now, recovery work with the most severe contingent is carried out in the mode of passive physical interventions, while an effective rehabilitation team should include specially trained psychologists and psychotherapists. It is they who are able to create a network of feedbacks with the patient and inter-professional ones building up the team. Characteristics of ‘Team-Patient’ system (TPS) are energy, entropy, and complexity. Impairment of consciousness as the absence of linear contact appears together with a loss of essential functions (low energy), vegetative-visceral fits (excessive energy and low order), motor agitation (excessive energy and excessive order), etc. Techniques of teamwork are different in these cases for resulting optimization of the system condition. Directed regulation of the system complexity is one of the recovery tools. Different signs of awareness appear as a result of system self-organization. Joint meetings are an important part of teamwork. Regular or event-related discussions form the language of inter-professional communication, as well as the patient's shared mental model. Analysis of complex communication process in TPS may be useful for creation of the general theory of consciousness.

Keywords: rehabilitation team, urgent rehabilitation, severe brain damage, consciousness disorders, complex system theory

Procedia PDF Downloads 146
3928 Numerical Investigation of Poling Vector Angle on Adaptive Sandwich Plate Deflection

Authors: Alireza Pouladkhan, Mohammad Yavari Foroushani, Ali Mortazavi

Abstract:

This paper presents a finite element model for a sandwich plate containing a piezoelectric core. A sandwich plate with a piezoelectric core is constructed using the shear mode of piezoelectric materials. The orientation of poling vector has a significant effect on deflection and stress induced in the piezo-actuated adaptive sandwich plate. In the present study, the influence of this factor for a clamped-clamped-free-free and simple-simple-free-free square sandwich plate is investigated using Finite Element Method. The study uses ABAQUS (v.6.7) software to derive the finite element model of the sandwich plate. By using this model, the study gives the influences of the poling vector angle on the response of the smart structure and determines the maximum transverse displacement and maximum stress induced.

Keywords: finite element method, sandwich plate, poling vector, piezoelectric materials, smart structure, electric enthalpy

Procedia PDF Downloads 233
3927 The Development of Liquid Chromatography Tandem Mass Spectrometry Method for Citrinin Determination in Dry-Fermented Meat Products

Authors: Ana Vulic, Tina Lesic, Nina Kudumija, Maja Kis, Manuela Zadravec, Nada Vahcic, Tomaz Polak, Jelka Pleadin

Abstract:

Mycotoxins are toxic secondary metabolites produced by numerous types of molds. They can contaminate both food and feed so that they represent a serious public health concern. Production of dry-fermented meat products involves ripening, during which molds can overgrow the product surface, produce mycotoxins, and consequently contaminate the final product. Citrinin is a mycotoxin produced mainly by the Penicillium citrinum. Data on citrinin occurrence in both food and feed are limited. Therefore, there is a need for research on citrinin occurrence in these types of meat products. The LC-MS/MS method for citrinin determination was developed and validated. Sample preparation was performed using immunoaffinity columns, which resulted in clean sample extracts. Method validation included the determination of the limit of detection (LOD), the limit of quantification (LOQ), recovery, linearity, and matrix effect in accordance to the latest validation guidance. The determined LOD and LOQ were 0.60 µg/kg and 1.98 µg/kg, respectively, showing a good method sensitivity. The method was tested for its linearity in the calibration range of 1 µg/L to 10 µg/L. The recovery was 100.9 %, while the matrix effect was 0.7 %. This method was employed in the analysis of 47 samples of dry-fermented sausages collected from local households. Citrinin wasn’t detected in any of these samples, probably because of the short ripening period of the tested sausages that takes three months tops. The developed method shall be used to test other types of traditional dry-cured products, such as prosciuttos, whose surface is usually more heavily overgrown by surface molds due to the longer ripening period.

Keywords: citrinin, dry-fermented meat products, LC-MS/MS, mycotoxins

Procedia PDF Downloads 122
3926 Changes in Religious Belief after Flood Disasters

Authors: Sapora Sipon, Mohd Fo’ad Sakdan, Che Su Mustaffa, Najib Ahmad Marzuki, Mohamad Sukeri Khalid, Mohd Taib Ariffin, Husni Mohd Radzi, Salhah Abdullah

Abstract:

Flood disasters occur throughout the world including Malaysia. The major flood disaster that hit Malaysia in the 2014-2015 episodes proved the psychosocial and mental health consequences such as vivid images of destruction, upheaval, death and loss of lives. Flood, flood survivors reported that flood has changed one looks at their religious belief. The main objective of this paper is to investigate the changes in religious belief after the 2014-2015 Malaysia flood disaster. The total population of 1300 respondents who experienced the 2014-2015 Malaysia flood were surveyed a month after the disaster. The questionnaires were used to measure religiosity and stress. The results provide compelling evidence that religion played an important role in the lives of Malaysia flood disasters’ survivor where more than half of the respondents (>75%) experiencing the strengthening of their religious belief. It was also reported the victims’ strengthening of their religious belief proved to be a powerful factor in reducing stress in the aftermath of the flood.

Keywords: religious belief, flood disaster, humanity, society

Procedia PDF Downloads 407
3925 One-Dimensional Numerical Simulation of the Nonlinear Instability Behavior of an Electrified Viscoelastic Liquid Jet

Authors: Fang Li, Xie-Yuan Yin, Xie-Zhen Yin

Abstract:

Instability and breakup of electrified viscoelastic liquid jets are involved in various applications such as inkjet printing, fuel atomization, the pharmaceutical industry, electrospraying, and electrospinning. Studying on the instability of electrified viscoelastic liquid jets is of theoretical and practical significance. We built a one-dimensional electrified viscoelastic model to study the nonlinear instability behavior of a perfecting conducting, slightly viscoelastic liquid jet under a radial electric field. The model is solved numerically by using an implicit finite difference scheme together with a boundary element method. It is found that under a radial electric field a viscoelastic liquid jet still evolves into a beads-on-string structure with a thin filament connecting two adjacent droplets as in the absence of an electric field. A radial electric field exhibits limited influence on the decay of the filament thickness in the nonlinear evolution process of a viscoelastic jet, in contrast to its great enhancing effect on the linear instability of the jet. On the other hand, a radial electric field can induce axial non-uniformity of the first normal stress difference within the filament. Particularly, the magnitude of the first normal stress difference near the midpoint of the filament can be greatly decreased by a radial electric field. Decreasing the extensional stress by a radial electric field may found applications in spraying, spinning, liquid bridges and others. In addition, the effect of a radial electric field on the formation of satellite droplets is investigated on the parametric plane of the dimensionless wave number and the electrical Bond number. It is found that satellite droplets may be formed for a larger axial wave number at a larger radial electric field. The present study helps us gain insight into the nonlinear instability characteristics of electrified viscoelastic liquid jets.

Keywords: non linear instability, one-dimensional models, radial electric fields, viscoelastic liquid jets

Procedia PDF Downloads 391
3924 Four-Way Coupled CFD-Dem Simulation of Concrete Pipe Flow Using a Non-Newtonian Rheological Model: Investigating the Simulation of Lubrication Layer Formation and Plug Flow Zones

Authors: Tooran Tavangar, Masoud Hosseinpoor, Jeffrey S. Marshall, Ammar Yahia, Kamal Henri Khayat

Abstract:

In this study, a four-way coupled CFD-DEM methodology was used to simulate the behavior of concrete pipe flow. Fresh concrete, characterized as a biphasic suspension, features aggregates comprising the solid-suspended phase with diverse particle-size distributions (PSD) within a non-Newtonian cement paste/mortar matrix forming the liquid phase. The fluid phase was simulated using CFD, while the aggregates were modeled using DEM. Interaction forces between the fluid and solid particles were considered through CFD-DEM computations. To capture the viscoelastic characteristics of the suspending fluid, a bi-viscous approach was adopted, incorporating a critical shear rate proportional to the yield stress of the mortar. In total, three diphasic suspensions were simulated, each featuring distinct particle size distributions and a concentration of 10% for five subclasses of spherical particles ranging from 1 to 17 mm in a suspending fluid. The adopted bi-viscous approach successfully simulated both un-sheared (plug flow) and sheared zones. Furthermore, shear-induced particle migration (SIPM) was assessed by examining coefficients of variation in particle concentration across the pipe. These SIPM values were then compared with results obtained using CFD-DEM under the Newtonian assumption. The study highlighted the crucial role of yield stress in the mortar phase, revealing that lower yield stress values can lead to increased flow rates and higher SIPM across the pipe.

Keywords: computational fluid dynamics, concrete pumping, coupled CFD-DEM, discrete element method, plug flow, shear-induced particle migration.

Procedia PDF Downloads 67
3923 Hydrodynamic Analysis of Payload Bay Berthing of an Underwater Vehicle With Vertically Actuated Thrusters

Authors: Zachary Cooper-Baldock, Paulo E. Santos, Russell S. A. Brinkworth, Karl Sammut

Abstract:

- In recent years, large unmanned underwater vehicles such as the Boeing Voyager and Anduril Ghost Shark have been developed. These vessels can be structured to contain onboard internal payload bays. These payload bays can serve a variety of purposes – including the launch and recovery (LAR) of smaller underwater vehicles. The LAR of smaller vessels is extremely important, as it enables transportation over greater distances, increased time on station, data transmission and operational safety. The larger vessel and its payload bay structure complicate the LAR of UUVs in contrast to static docks that are affixed to the seafloor, as they actively impact the local flow field. These flow field impacts require analysis to determine if UUV vessels can be safely launched and recovered inside the motherships. This research seeks to determine the hydrodynamic forces exerted on a vertically over-actuated, small, unmanned underwater vehicle (OUUV) during an internal LAR manoeuvre and compare this to an under-actuated vessel (UUUV). In this manoeuvre, the OUUV is navigated through the stern wake region of the larger vessel to a set point within the internal payload bay. The manoeuvre is simulated using ANSYS Fluent computational fluid dynamics models, covering the entire recovery of the OUUV and UUUV. The analysis of the OUUV is compared against the UUUV to determine the differences in the exerted forces. Of particular interest are the drag, pressure, turbulence and flow field effects exerted as the OUUV is driven inside the payload bay of the larger vessel. The hydrodynamic forces and flow field disturbances are used to determine the feasibility of making such an approach. From the simulations, it was determined that there was no significant detrimental physical forces, particularly with regard to turbulence. The flow field effects exerted by the OUUV are significant. The vertical thrusters exert significant wake structures, but their orientation ensures the wake effects are exerted below the UUV, minimising the impact. It was also seen that OUUV experiences higher drag forces compared to the UUUV, which will correlate to an increased energy expenditure. This investigation found no key indicators that recovery via a mothership payload bay was not feasible. The turbulence, drag and pressure phenomenon were of a similar magnitude to existing static and towed dock structures.

Keywords: underwater vehicles, submarine, autonomous underwater vehicles, auv, computational fluid dynamics, flow fields, pressure, turbulence, drag

Procedia PDF Downloads 78
3922 Numerical Investigation of the Integration of a Micro-Combustor with a Free Piston Stirling Engine in an Energy Recovery System

Authors: Ayodeji Sowale, Athanasios Kolios, Beatriz Fidalgo, Tosin Somorin, Aikaterini Anastasopoulou, Alison Parker, Leon Williams, Ewan McAdam, Sean Tyrrel

Abstract:

Recently, energy recovery systems are thriving and raising attention in the power generation sector, due to the request for cleaner forms of energy that are friendly and safe for the environment. This has created an avenue for cogeneration, where Combined Heat and Power (CHP) technologies have been recognised for their feasibility, and use in homes and small-scale businesses. The efficiency of combustors and the advantages of the free piston Stirling engines over other conventional engines in terms of output power and efficiency, have been observed and considered. This study presents the numerical analysis of a micro-combustor with a free piston Stirling engine in an integrated model of a Nano Membrane Toilet (NMT) unit. The NMT unit will use the micro-combustor to produce waste heat of high energy content from the combustion of human waste and the heat generated will power the free piston Stirling engine which will be connected to a linear alternator for electricity production. The thermodynamic influence of the combustor on the free piston Stirling engine was observed, based on the heat transfer from the flue gas to working gas of the free piston Stirling engine. The results showed that with an input of 25 MJ/kg of faecal matter, and flue gas temperature of 773 K from the micro-combustor, the free piston Stirling engine generates a daily output power of 428 W, at thermal efficiency of 10.7% with engine speed of 1800 rpm. An experimental investigation into the integration of the micro-combustor and free piston Stirling engine with the NMT unit is currently underway.

Keywords: free piston stirling engine, micro-combustor, nano membrane toilet, thermodynamics

Procedia PDF Downloads 259
3921 Synthesis of La0.8Sr0.05Ca0.15Fe0.8Co0.2O3-δ -Ce0.9Gd0.1O1.95 Composite Cathode Material for Solid Oxide Fuel Cell with Lanthanum and Cerium Recycled from Wasted Glass Polishing Powder

Authors: Jun-Lun Jiang, Bing-Sheng Yu

Abstract:

Processing of flat-panel displays generates huge amount of wasted glass polishing powder, with high concentration of cerium and other elements such as lanthanum. According to the current statistics, consumption of polishing powder was approximately ten thousand tons per year in the world. Nevertheless, wasted polishing powder was usually buried or burned. If the lanthanum and cerium compounds in the wasted polishing powder could be recycled, that will greatly reduce enterprise cost and implement waste circulation. Cathodes of SOFCs are the principal consisting of rare earth elements such as lanthanum and cerium. In this study, we recycled the lanthanum and cerium from wasted glass polishing powder by acid-solution method, and synthesized La0.8Sr0.05Ca0.15Fe0.8Co0.8O3-δ and Gd0.1Ce0.9O2 (LSCCF-GDC) composite cathode material for SOFCs by glycinenitrate combustion (GNP) method. The results show that the recovery rates of lanthanum and cerium could accomplish up to 80% and 100% under 10N nitric acid solution within one hour. Comparing with the XRD data of the commercial LSCCF-GDC powder and the LSCCF-GDC product synthesized with chemicals, we find that the LSCCF-GDC was successfully synthesized with the recycled La & Ce solution by GNP method. The effect of adding ammonia to the product was also discussed, the grain size is finer and recovery rate of the product is higher without the addition of ammonia to the solution.

Keywords: glass polishing powder, acid solution, recycling, composite cathodes of solid oxide fuel, cell (SOFC), perovskite, glycine-nitrate combustion(GNP) method

Procedia PDF Downloads 272
3920 A Numerical Method to Evaluate the Elastoplastic Material Properties of Fiber Reinforced Composite

Authors: M. Palizvan, M. H. Sadr, M. T. Abadi

Abstract:

The representative volume element (RVE) plays a central role in the mechanics of random heterogeneous materials with a view to predicting their effective properties. In this paper, a computational homogenization methodology, developed to determine effective linear elastic properties of composite materials, is extended to predict the effective nonlinear elastoplastic response of long fiber reinforced composite. Finite element simulations of volumes of different sizes and fiber volume fractures are performed for calculation of the overall response RVE. The dependencies of the overall stress-strain curves on the number of fibers inside the RVE are studied in the 2D cases. Volume averaged stress-strain responses are generated from RVEs and compared with the finite element calculations available in the literature at moderate and high fiber volume fractions. For these materials, the existence of an RVE is demonstrated for the sizes of RVE corresponding to 10–100 times the diameter of the fibers. In addition, the response of small size RVE is found anisotropic, whereas the average of all large ones leads to recover the isotropic material properties.

Keywords: homogenization, periodic boundary condition, elastoplastic properties, RVE

Procedia PDF Downloads 153
3919 Design Improvement of Worm Gearing for Better Energy Utilization

Authors: Ahmed Elkholy

Abstract:

Most power transmission cases use gearing in general, and worm gearing, in particular for energy utilization. Therefore, designing gears for minimum weight and maximum power transmission is the main target of this study. In this regard, a new approach has been developed to estimate the load share and stress distribution of worm gear sets. The approach is based upon considering the instantaneous tooth meshing stiffness where the worm gear drive was modelled as a series of spur gear slices, and each slice was analyzed separately using a well-established criteria. By combining the results obtained for all slices, the entire worm gear set loading and stressing was determined. The geometric modelling method presented, allows tooth elastic deformation and tooth root stresses of worm gear drives under different load conditions to be investigated. On the basis of the method introduced in this study, the instantaneous meshing stiffness and load share were obtained. In comparison with existing methods, this approach has both good analytical accuracy and less computing time.

Keywords: gear, load/stress distribution, worm, wheel, tooth stiffness, contact line

Procedia PDF Downloads 422
3918 Life Time Improvement of Clamp Structural by Using Fatigue Analysis

Authors: Pisut Boonkaew, Jatuporn Thongsri

Abstract:

In hard disk drive manufacturing industry, the process of reducing an unnecessary part and qualifying the quality of part before assembling is important. Thus, clamp was designed and fabricated as a fixture for holding in testing process. Basically, testing by trial and error consumes a long time to improve. Consequently, the simulation was brought to improve the part and reduce the time taken. The problem is the present clamp has a low life expectancy because of the critical stress that occurred. Hence, the simulation was brought to study the behavior of stress and compressive force to improve the clamp expectancy with all probability of designs which are present up to 27 designs, which excluding the repeated designs. The probability was calculated followed by the full fractional rules of six sigma methodology which was provided correctly. The six sigma methodology is a well-structured method for improving quality level by detecting and reducing the variability of the process. Therefore, the defective will be decreased while the process capability increasing. This research focuses on the methodology of stress and fatigue reduction while compressive force still remains in the acceptable range that has been set by the company. In the simulation, ANSYS simulates the 3D CAD with the same condition during the experiment. Then the force at each distance started from 0.01 to 0.1 mm will be recorded. The setting in ANSYS was verified by mesh convergence methodology and compared the percentage error with the experimental result; the error must not exceed the acceptable range. Therefore, the improved process focuses on degree, radius, and length that will reduce stress and still remain in the acceptable force number. Therefore, the fatigue analysis will be brought as the next process in order to guarantee that the lifetime will be extended by simulating through ANSYS simulation program. Not only to simulate it, but also to confirm the setting by comparing with the actual clamp in order to observe the different of fatigue between both designs. This brings the life time improvement up to 57% compared with the actual clamp in the manufacturing. This study provides a precise and trustable setting enough to be set as a reference methodology for the future design. Because of the combination and adaptation from the six sigma method, finite element, fatigue and linear regressive analysis that lead to accurate calculation, this project will able to save up to 60 million dollars annually.

Keywords: clamp, finite element analysis, structural, six sigma, linear regressive analysis, fatigue analysis, probability

Procedia PDF Downloads 235
3917 Plant Water Relations and Forage Quality in Leucaena leucocephala (Lam.) de Wit and Acacia saligna (Labill.) as Affected by Salinity Stress

Authors: Maher J. Tadros

Abstract:

This research was conducted to study the effect of different salinity concentrations on the plant water relation and forage quality on two multipurpose forest trees species seedlings Leucaena leucocephala (Lam.) de wit and Acacia saligna (Labill.). Five different salinity concentrations mixture between sodium chloride and calcium chloride (v/v, 1:1) were applied. The control (Distilled Water), 2000, 4000, 6000, and 8000 ppm were used to water the seedlings for 3 months. The research results presented showed a marked variation among the two species in response to salinity. The Leucaena was able to withstand the highest level of salinity compared to Acacia all over the studied parameters except in the relative water content. Although all the morphological characteristics studied for the two species showed a marked decrease under the different salinity concentrations, except the shoot/root ratio that showed a trend of increase. The water stress measure the leaf water potential was more negative with as the relative water content increase under that saline conditions compared to the control. The forage quality represented by the crude protein and nitrogen content were low at 6000 ppm compared to the 8000 ppm in L. Leucocephala that increased compared that level in A. saligna. Also the results showed that growing both Leucaena and Acacia provide a good source of forage when that grow under saline condition which will be of great benefits to the agricultural sector especially in the arid and semiarid areas were these species can provide forage with high quality forage all year around when grown under irrigation with saline. This research recommended such species to be utilized and grown for forages under saline conditions.

Keywords: plant water relations, growth performance, salinity stress, protein content, forage quality, multipurpose trees

Procedia PDF Downloads 393
3916 Comparison of the Effects of Rod Types of Rigid Fixation Devices on the Loads in the Lumbar Spine: A Finite Element Analysis

Authors: Bokku Kang, Changsoo Chon, Han Sung Kim

Abstract:

We developed new design of rod of pedicle screw system that is beneficial in maintaining the spacing between the vertebrae and assessed the performance of the posterior fixation screw systems by numerical analysis according to the range of motion (flexion, extension, lateral bending, and axial rotation) of the vertebral column after inserting the pedicle screws. The simulation results showed that the conventional rod was the most low equivalent stress value among implant units in the case of flexion, extension and lateral bending of the vertebrae. In all cases except the torsional rotation, the results showed that the stress level of the single and double rounded rod exceeded about 30% to 70% compare to the conventional rod. Therefore, this product is not suitable for actual application in the field yet and it seems that product design optimization is necessary. Acknowledgement: This research was supported by the Ministry of Trade, Industry & Energy (MOTIE), Korea Institute for Advancement of Technology (KIAT) through the Encouragement Program for The Industries of Economic Cooperation Region.

Keywords: lumber spine, internal fixation device, finite element method, biomechanics

Procedia PDF Downloads 378
3915 Finite Eigenstrains in Nonlinear Elastic Solid Wedges

Authors: Ashkan Golgoon, Souhayl Sadik, Arash Yavari

Abstract:

Eigenstrains in nonlinear solids are created due to anelastic effects such as non-uniform temperature distributions, growth, remodeling, and defects. Eigenstrains understanding is indispensable, as they can generate residual stresses and strongly affect the overall response of solids. Here, we study the residual stress and deformation fields of an incompressible isotropic infinite wedge with a circumferentially-symmetric distribution of finite eigenstrains. We construct a material manifold, whose Riemannian metric explicitly depends on the eigenstrain distribution, thereby we turn the problem into a classical nonlinear elasticity problem, where we find an embedding of the Riemannian material manifold into the ambient Euclidean space. In particular, we find exact solutions for the residual stress and deformation fields of a neo-Hookean wedge having a symmetric inclusion with finite radial and circumferential eigenstrains. Moreover, we numerically solve a similar problem when a symmetric Mooney-Rivlin inhomogeneity with finite eigenstrains is placed in a neo-Hookean wedge. Generalization of the eigenstrain problem to other geometries are also discussed.

Keywords: finite eigenstrains, geometric mechanics, inclusion, inhomogeneity, nonlinear elasticity

Procedia PDF Downloads 255
3914 Effect of Vesicular Arbuscular mycorrhiza on Phytoremedial Potential and Physiological Changes in Solanum melongena Plants Grown under Heavy Metal Stress

Authors: Ritu Chaturvedi, Mayank Varun, M. S. Paul

Abstract:

Heavy metal contamination of soil is a growing area of concern since the soil is the matrix that supports flora and impacts humans directly. Phytoremediation of contaminated sites is gaining popularity due to its cost effectiveness and solar driven nature. Some hyperaccumulators have been identified for their potential. Metal-accumulating plants have various mechanisms to cope up with stress and one of them is increasing antioxidative capacity. The aim of this research is to assess the effect of Vesicular arbuscular mycorrhiza (VAM) application on the phytoremedial potential of Solanum melongena (Eggplant) and level of photosynthetic pigments along with antioxidative enzymes. Results showed that VAM application increased shoot length, root proliferation pattern of plants. The level of photosynthetic pigments, proline, SOD, CAT, APX altered significantly in response to heavy metal treatment. In conclusion, VAM increased the uptake of heavy metals which lead to the activation of the defense system in plants for scavenging free radicals.

Keywords: heavy metal, phytoextraction, phytostabilization, reactive oxygen species

Procedia PDF Downloads 275
3913 Challenges in Experimental Testing of a Stiff, Overconsolidated Clay

Authors: Maria Konstadinou, Etienne Alderlieste, Anderson Peccin da Silva, Ben Arntz, Leonard van der Bijl, Wouter Verschueren

Abstract:

The shear strength and compression properties of stiff Boom clay from Belgium at the depth of about 30 m has been investigated by means of cone penetration and laboratory testing. The latter consisted of index classification, constant rate of strain, direct, simple shear, and unconfined compression tests. The Boom clay samples exhibited strong swelling tendencies. The suction pressure was measured via different procedures and has been compared to the expected in-situ stress. The undrained shear strength and OCR profile determined from CPTs is not compatible with the experimental measurements, which gave significantly lower values. The observed response can be attributed to the presence of pre-existing discontinuities, as shown in microscale CT scans of the samples. The results of this study demonstrate that the microstructure of the clay prior to testing has an impact on the mechanical behaviour and can cause inconsistencies in the comparison of the laboratory test results with in-situ data.

Keywords: boom clay, laboratory testing, overconsolidation ratio, stress-strain response, swelling, undrained shear strength

Procedia PDF Downloads 146
3912 Contributory Antioxidant Role of Testosterone and Oxidative Stress Biomarkers in Males Exposed to Mixed Chemicals in an Automobile Repair Community

Authors: Saheed A. Adekola, Mabel A. Charles-Davies, Ridwan A. Adekola

Abstract:

Background: Testosterone is a known androgenic and anabolic steroid, primarily secreted in the testes. It plays an important role in the development of testes and prostate and has a range of biological actions. There is evidence that exposure to mixed chemicals in the workplace leads to the generation of free radicals and inadequate antioxidants leading to oxidative stress, which may serve as an early indicator of a pathophysiologic state. Based on findings, testosterone shows direct antioxidant effects by increasing the activities of antioxidant enzymes like glutathione peroxidase, thus indirectly contributing to antioxidant capacity. Objective: To evaluate the antioxidant role of testosterone as well as the relationship between testosterone and oxidative stress biomarkers in males exposed to mixed chemicals in the automobile repair community. Methods: The study included 43 participants aged 22- 60years exposed to mixed chemicals (EMC) from the automobile repair community. Forty (40) apparently healthy, unexposed, age-matched controls were recruited after informed consent. Demographic, sexual and anthropometric characteristics were obtained from pre-test structured questionnaires using standard methods. Blood samples (10mls) were collected from each subject into plain bottles and sera obtained were used for biochemical analyses. Serum levels of testosterone and luteinizing hormone (LH) were determined by enzyme immunoassay method, EIA (Immunometrics UK.LTD). Levels of total antioxidant capacity (TAC), total plasma peroxide (TPP), Malondialdehyde (MDA), hydrogen peroxide (H2O2), glutathione peroxide (GPX), superoxide dismutase (SOD), glutathione-S-transferase (GST), and reduced glutathione (GSH) were determined using spectrophotometric methods respectively. Results obtained were analyzed using the Student’s t-test and Chi-square test for quantitative variables and qualitative variables respectively. Multiple regression was used to find associations and relationships between the variables. Results: Significant higher concentrations of TPP, MDA, OSI, H2O2 and GST were observed in EMC compared with controls (p < 0.001). Within EMC, significantly higher levels of testosterone, LH and TAC were observed in eugonadic when compared with hypogonadic participants (p < 0.001). Diastolic blood pressure, waist circumference, waist height ratio and waist hip ratio were significantly higher in participants EMC compared with the controls. Sexual history and dietary intake showed that the controls had normal erection during sex and took more vegetables in their diet which may therefore be beneficial. Conclusion: The significantly increased levels of total antioxidant capacity in males exposed to mixed chemicals despite their exposure may probably reflect the contributory antioxidant role testosterone that prevents oxidative stress.

Keywords: mixed chemicals, oxidative stress, antioxidant, hypogonadism testosterone

Procedia PDF Downloads 145