Search results for: real time stress detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25932

Search results for: real time stress detection

24282 Enhanced Traffic Light Detection Method Using Geometry Information

Authors: Changhwan Choi, Yongwan Park

Abstract:

In this paper, we propose a method that allows faster and more accurate detection of traffic lights by a vision sensor during driving, DGPS is used to obtain physical location of a traffic light, extract from the image information of the vision sensor only the traffic light area at this location and ascertain if the sign is in operation and determine its form. This method can solve the problem in existing research where low visibility at night or reflection under bright light makes it difficult to recognize the form of traffic light, thus making driving unstable. We compared our success rate of traffic light recognition in day and night road environments. Compared to previous researches, it showed similar performance during the day but 50% improvement at night.

Keywords: traffic light, intelligent vehicle, night, detection, DGPS

Procedia PDF Downloads 325
24281 Quantum Dot Biosensing for Advancing Precision Cancer Detection

Authors: Sourav Sarkar, Manashjit Gogoi

Abstract:

In the evolving landscape of cancer diagnostics, optical biosensing has emerged as a promising tool due to its sensitivity and specificity. This study explores the potential of CdS/ZnS core-shell quantum dots (QDs) capped with 3-Mercaptopropionic acid (3-MPA), which aids in the linking chemistry of QDs to various cancer antibodies. The QDs, with their unique optical and electronic properties, have been integrated into the biosensor design. Their high quantum yield and size-dependent emission spectra have been exploited to improve the sensor’s detection capabilities. The study presents the design of this QD-enhanced optical biosensor. The use of these QDs can also aid multiplexed detection, enabling simultaneous monitoring of different cancer biomarkers. This innovative approach holds significant potential for advancing cancer diagnostics, contributing to timely and accurate detection. Future work will focus on optimizing the biosensor design for clinical applications and exploring the potential of QDs in other biosensing applications. This study underscores the potential of integrating nanotechnology and biosensing for cancer research, paving the way for next-generation diagnostic tools. It is a step forward in our quest for achieving precision oncology.

Keywords: quantum dots, biosensing, cancer, device

Procedia PDF Downloads 56
24280 Diagnostic Evaluation of Urinary Angiogenin (ANG) and Clusterin (CLU) as Biomarker for Bladder Cancer

Authors: Marwa I. Shabayek, Ola A. Said, Hanan A. Attaia, Heba A. Awida

Abstract:

Bladder carcinoma is an important worldwide health problem. Both cystoscopy and urine cytology used in detecting bladder cancer suffer from drawbacks where cystoscopy is an invasive method and urine cytology shows low sensitivity in low grade tumors. This study validates easier and less time-consuming techniques to evaluate the value of combined use of angiogenin and clusterin in comparison and combination with voided urine cytology in the detection of bladder cancer patients. This study includes malignant (bladder cancer patients, n= 50), benign (n=20), and healthy (n=20) groups. The studied groups were subjected to cystoscopic examination, detection of bilharzial antibodies, urine cytology, and estimation of urinary angiogenin and clusterin by ELISA. The overall sensitivity and specifcity were 66% and 75% for angiogenin, 70% and 82.5% for clusterin and 46% and 80% for voided urine cytology. Combined sensitivity of angiogenin and clusterin with urine cytology increased from 82 to 88%.

Keywords: angiogenin, bladder cancer, clusterin, cytology

Procedia PDF Downloads 297
24279 Genetic Algorithm for In-Theatre Military Logistics Search-and-Delivery Path Planning

Authors: Jean Berger, Mohamed Barkaoui

Abstract:

Discrete search path planning in time-constrained uncertain environment relying upon imperfect sensors is known to be hard, and current problem-solving techniques proposed so far to compute near real-time efficient path plans are mainly bounded to provide a few move solutions. A new information-theoretic –based open-loop decision model explicitly incorporating false alarm sensor readings, to solve a single agent military logistics search-and-delivery path planning problem with anticipated feedback is presented. The decision model consists in minimizing expected entropy considering anticipated possible observation outcomes over a given time horizon. The model captures uncertainty associated with observation events for all possible scenarios. Entropy represents a measure of uncertainty about the searched target location. Feedback information resulting from possible sensor observations outcomes along the projected path plan is exploited to update anticipated unit target occupancy beliefs. For the first time, a compact belief update formulation is generalized to explicitly include false positive observation events that may occur during plan execution. A novel genetic algorithm is then proposed to efficiently solve search path planning, providing near-optimal solutions for practical realistic problem instances. Given the run-time performance of the algorithm, natural extension to a closed-loop environment to progressively integrate real visit outcomes on a rolling time horizon can be easily envisioned. Computational results show the value of the approach in comparison to alternate heuristics.

Keywords: search path planning, false alarm, search-and-delivery, entropy, genetic algorithm

Procedia PDF Downloads 360
24278 Intuitive Decision Making When Facing Risks

Authors: Katharina Fellnhofer

Abstract:

The more information and knowledge that technology provides, the more important are profoundly human skills like intuition, the skill of using nonconscious information. As our world becomes more complex, shaken by crises, and characterized by uncertainty, time pressure, ambiguity, and rapidly changing conditions, intuition is increasingly recognized as a key human asset. However, due to methodological limitations of sample size or time frame or a lack of real-world or cross-cultural scope, precisely how to measure intuition when facing risks on a nonconscious level remains unclear. In light of the measurement challenge related to intuition’s nonconscious nature, a technique is introduced to measure intuition via hidden images as nonconscious additional information to trigger intuition. This technique has been tested in a within-subject fully online design with 62,721 real-world investment decisions made by 657 subjects in Europe and the United States. Bayesian models highlight the technique’s potential to measure skill at using nonconscious information for conscious decision making. Over the long term, solving the mysteries of intuition and mastering its use could be of immense value in personal and organizational decision-making contexts.

Keywords: cognition, intuition, investment decisions, methodology

Procedia PDF Downloads 86
24277 Keying Effect During Fracture of Stainless Steel

Authors: Farej Ahmed Emhmmed

Abstract:

Fracture of duplex stainless steels (DSS) was investigated in air and in 3.5 wt % NaCl solution. Tow sets of fatigued specimens were heat treated at 475ºC for different times and pulled to failure either in air or after kept in 3.5% NaCl with polarization of -900 mV/ SCE. Fracture took place in general by ferrite cleavage and austenite ductile fracture in transgranular mode. Specimens measured stiffness (Ms) was affected by the aging time, with higher values measured for specimens aged for longer times. Microstructural features played a role in "blocking" the crack propagation process leading to lower the CTOD values specially for specimens aged for short times. Unbroken ligaments/ austenite were observed at the crack wake. These features may exerted a bridging stress, blocking effect, at the crack tip giving resistance to the crack propagation process i.e the crack mouth opening was reduced. Higher stress intensity factor Kıc values were observed with increased amounts of crack growth suggesting longer zone of unbroken ligaments in the crack wake. The bridging zone was typically several mm in length. Attempt to model the bridge stress was suggested to understand the role of ligaments/unbroken austenite in increasing the fracture toughness factor.

Keywords: stainless steels, fracture toughness, crack keying effect, ligaments

Procedia PDF Downloads 360
24276 Real-Time Water Quality Monitoring and Control System for Fish Farms Based on IoT

Authors: Nadia Yaghoobi, Seyed Majid Esmaeilzadeh

Abstract:

Due to advancements in wireless communication, new sensor capabilities have been created. In addition to the automation industry, the Internet of Things (IoT) has been used in environmental issues and has provided the possibility of communication between different devices for data collection and exchange. Water quality depends on many factors which are essential for maintaining the minimum sustainability of water. Regarding the great dependence of fishes on the quality of the aquatic environment, water quality can directly affect their activity. Therefore, monitoring water quality is an important issue to consider, especially in the fish farming industry. The conventional method of water quality testing is to collect water samples manually and send them to a laboratory for testing and analysis. This time-consuming method is a waste of manpower and is not cost-effective. The water quality measurement system implemented in this project monitors water quality in real-time through various sensors (parameters: water temperature, water level, dissolved oxygen, humidity and ambient temperature, water turbidity, PH). The Wi-Fi module, ESP8266, transmits data collected by sensors wirelessly to ThingSpeak and the smartphone app. Also, with the help of these instantaneous data, water temperature and water level can be controlled by using a heater and a water pump, respectively. This system can have a detailed study of the pollution and condition of water resources and can provide an environment for safe fish farming.

Keywords: dissolved oxygen, IoT, monitoring, ThingSpeak, water level, water quality, WiFi module

Procedia PDF Downloads 194
24275 Enhancement Method of Network Traffic Anomaly Detection Model Based on Adversarial Training With Category Tags

Authors: Zhang Shuqi, Liu Dan

Abstract:

For the problems in intelligent network anomaly traffic detection models, such as low detection accuracy caused by the lack of training samples, poor effect with small sample attack detection, a classification model enhancement method, F-ACGAN(Flow Auxiliary Classifier Generative Adversarial Network) which introduces generative adversarial network and adversarial training, is proposed to solve these problems. Generating adversarial data with category labels could enhance the training effect and improve classification accuracy and model robustness. FACGAN consists of three steps: feature preprocess, which includes data type conversion, dimensionality reduction and normalization, etc.; A generative adversarial network model with feature learning ability is designed, and the sample generation effect of the model is improved through adversarial iterations between generator and discriminator. The adversarial disturbance factor of the gradient direction of the classification model is added to improve the diversity and antagonism of generated data and to promote the model to learn from adversarial classification features. The experiment of constructing a classification model with the UNSW-NB15 dataset shows that with the enhancement of FACGAN on the basic model, the classification accuracy has improved by 8.09%, and the score of F1 has improved by 6.94%.

Keywords: data imbalance, GAN, ACGAN, anomaly detection, adversarial training, data augmentation

Procedia PDF Downloads 105
24274 Qualitative Study of Pre-Service Teachers' Imagined Professional World vs. Real Experiences of In-Service Teachers

Authors: Masood Monjezi

Abstract:

The English teachers’ pedagogical identity construction is the way teachers go through the process of becoming teachers and how they maintain their teaching selves. The pedagogical identity of teachers is influenced by several factors within the individual and the society. The purpose of this study was to compare the imagined social world of the pre-service teachers with the real experiences the in-service teachers had in the context of Iran to see how prepared the pre-service teachers are with a view to their identity being. This study used a qualitative approach to collection and analysis of the data. Structured and semi-structured interviews, focus groups and process logs were used to collect the data. Then, using open coding, the data were analyzed. The findings showed that the imagined world of the pre-service teachers partly corresponded with the real world experiences of the in-service teachers leaving the pre-service teachers unprepared for their real world teaching profession. The findings suggest that the current approaches to English teacher training are in need of modification to better prepare the pre-service teachers for the future that expects them.

Keywords: imagined professional world, in-service teachers, pre-service teachers, real experiences, community of practice, identity

Procedia PDF Downloads 336
24273 Effect of Different Levels of Vitamin E and L-Carnitine on Performance of Broiler Chickens Under Heat Stress

Authors: S. Salari, M. A. Shirali, S. Tabatabaei, M. Sari, R. Jahanian

Abstract:

This study was conducted to investigate the effect of different levels of vitamin E and L-carnitine on performance, blood parameters and immune responses of broilers under heat stress. For this purpose 396 one- day- old Ross 308 broiler chicks were randomly distributed between 9 treatments with 4 replicates (11 birds in each replicate). Dietary treatments consisted of three levels of vitamin E (0, 100 and 200 mg/ kg) and three levels of L-carnitine (0, 50 and 100 mg/ kg) that was done in completely randomized design with 3X3 factorial arrangement for 42 days. During the first three weeks, chickens were reared at normal temperature. From the beginning of the fourth week, all chickens were maintenance in a temperature range from 24-38 ° C for heat stress. Performance parameters including average feed intake, weight gain and feed conversion ratio were recorded weekly. The results showed that the levels of vitamin E had no significant effect on feed intake, weight gain and feed conversion ratio during the experiment. The use of L-carnitine decreased feed intake during the experiment (P < 0/05). But did not affect average daily gain and feed conversion ratio. Also, there was not significant interaction between vitamin E and L-carnitine for performance parameters except average daily gain during the starter period. The results of this study indicate that the use of different levels of vitamin E and L-carnitine under heat stress did not affected performance parameters of broiler chickens.

Keywords: broiler, heat stress, l-carnitine, performance

Procedia PDF Downloads 481
24272 Analytical Modeling of Drain Current for DNA Biomolecule Detection in Double-Gate Tunnel Field-Effect Transistor Biosensor

Authors: Ashwani Kumar

Abstract:

Abstract- This study presents an analytical modeling approach for analyzing the drain current behavior in Tunnel Field-Effect Transistor (TFET) biosensors used for the detection of DNA biomolecules. The proposed model focuses on elucidating the relationship between the drain current and the presence of DNA biomolecules, taking into account the impact of various device parameters and biomolecule characteristics. Through comprehensive analysis, the model offers insights into the underlying mechanisms governing the sensing performance of TFET biosensors, aiding in the optimization of device design and operation. A non-local tunneling model is incorporated with other essential models to accurately trace the simulation and modeled data. An experimental validation of the model is provided, demonstrating its efficacy in accurately predicting the drain current response to DNA biomolecule detection. The sensitivity attained from the analytical model is compared and contrasted with the ongoing research work in this area.

Keywords: biosensor, double-gate TFET, DNA detection, drain current modeling, sensitivity

Procedia PDF Downloads 57
24271 Design and Development of an Autonomous Beach Cleaning Vehicle

Authors: Mahdi Allaoua Seklab, Süleyman BaşTürk

Abstract:

In the quest to enhance coastal environmental health, this study introduces a fully autonomous beach cleaning machine, a breakthrough in leveraging green energy and advanced artificial intelligence for ecological preservation. Designed to operate independently, the machine is propelled by a solar-powered system, underscoring a commitment to sustainability and the use of renewable energy in autonomous robotics. The vehicle's autonomous navigation is achieved through a sophisticated integration of LIDAR and a camera system, utilizing an SSD MobileNet V2 object detection model for accurate and real-time trash identification. The SSD framework, renowned for its efficiency in detecting objects in various scenarios, is coupled with the lightweight and precise highly MobileNet V2 architecture, making it particularly suited for the computational constraints of on-board processing in mobile robotics. Training of the SSD MobileNet V2 model was conducted on Google Colab, harnessing cloud-based GPU resources to facilitate a rapid and cost-effective learning process. The model was refined with an extensive dataset of annotated beach debris, optimizing the parameters using the Adam optimizer and a cross-entropy loss function to achieve high-precision trash detection. This capability allows the machine to intelligently categorize and target waste, leading to more effective cleaning operations. This paper details the design and functionality of the beach cleaning machine, emphasizing its autonomous operational capabilities and the novel application of AI in environmental robotics. The results showcase the potential of such technology to fill existing gaps in beach maintenance, offering a scalable and eco-friendly solution to the growing problem of coastal pollution. The deployment of this machine represents a significant advancement in the field, setting a new standard for the integration of autonomous systems in the service of environmental stewardship.

Keywords: autonomous beach cleaning machine, renewable energy systems, coastal management, environmental robotics

Procedia PDF Downloads 27
24270 Efficacy of Vitamins A, C and E on the Growth Performance of Broiler Chickens Subjected to Heat Stress

Authors: Desierin Rodrin, Magdalena Alcantara, Cristina Olo

Abstract:

The increase in environmental temperatures brought about by climate change impacts negatively the growth performance of broilers that may be solved by manipulating the diet of the animals. Hence, this study was conducted to evaluate the effects of different vitamin supplements on the growth performance of broiler chickens subjected to ambient (31°C) and heat stress (34°C) temperatures. The treatments were: I- Control (no vitamin supplement), II- Vitamin A (4.5 mg/kg of feed), III- Vitamin C (250 mg/kg of feed), IV- Vitamin E (250 mg/kg of feed), V- Vitamin C and E (250 mg/kg of feed and 250 mg/kg of feed), VI- Vitamin A and E (4.5 mg/kg of feed and 250 mg/kg of feed), VII- Vitamin A and C (4.5 mg/kg of feed and 250 mg/kg of feed), and VIII- Vitamin A, C and E (4.5 mg/kg of feed, 250 mg/kg of feed and 250 mg/kg of feed). The birds (n=240) were distributed randomly into eight treatments replicated three times, with each replicates having five birds. Ambient temperature was maintained using a 25 watts bulb for every 20 birds, while heat stress condition was sustained at 34°C for about 9 hours daily by using a 50 watts bulb per 5 birds. The interaction of vitamin supplements and temperatures did not significantly (P>0.05) affected body weight, average daily gain, feed consumption and feed conversion efficiency throughout the growing period. Similarly, supplementation of different vitamins did not improve (P>0.05) the overall production performance of birds throughout the rearing period. Birds raised in heat stress (34°C) condition had significantly lower ((P<0.05) body weight, average daily gain, and feed consumption compared to birds raised in ambient temperature at weeks 3, 4 and 5 of rearing. Supplementation of vitamins A, C, and E in the diet of broilers did not alleviate the effect of heat stress in the growth performance of broilers.

Keywords: broiler growth performance, heat stress, vitamin supplementation, vitamin A, vitamin C, vitamin E

Procedia PDF Downloads 292
24269 Segmental Motion of Polymer Chain at Glass Transition Probed by Single Molecule Detection

Authors: Hiroyuki Aoki

Abstract:

The glass transition phenomenon has been extensively studied for a long time. The glass transition of polymer materials is assigned to the transition of the dynamics of the chain backbone segment. However, the detailed mechanism of the transition behavior of the segmental motion is still unclear. In the current work, the single molecule detection technique was employed to reveal the trajectory of the molecular motion of the single polymer chain. The center segment of poly(butyl methacrylate) chain was labeled by a perylenediimide dye molecule and observed by a highly sensitive fluorescence microscope in a defocus condition. The translational and rotational diffusion of the center segment in a single polymer chain was analyzed near the glass transition temperature. The direct observation of the individual polymer chains revealed the intermittent behavior of the segmental motion, indicating the spatial inhomogeneity.

Keywords: glass transition, molecular motion, polymer materials, single molecule

Procedia PDF Downloads 337
24268 Ethylene Response Factor BnERF from Brassica napus L. Enhances Submergence Tolerance and Alleviates the Oxidative Damage Caused by Submergence in Arabidopsis thaliana

Authors: Sanxiong Fu, Yanyan Lv, Song Chen, Wei Zhang, Cunkou Qi

Abstract:

Ethylene response factor proteins are known to play an important role in regulating a variety of stress responses in plants, but their exact functions in submergence stress are not completely understood. In this study, we isolated BnERF from Brassica napus L. to study the function of BnERF in submergence tolerance. The expression of BnERF gene in Brassica napus L. and the expression of antioxidant enzyme genes in transgenic Arabidopsis were analyzed by Quantitative RT-PCR. It was found that expression of BnERF is apparently induced by submergence in Brassica napus L. and overexpression of BnERF in Arabidopsis increases the tolerance level to submergence and oxidative stress. Histochemical method detected lower level of H2O2, O2•− and malondialdehyde (MDA) in the transgenic Arabidopsis. Compared to wild type, transgenic lines also have higher soluble sugar content and higher activity of antioxidant enzymes, which helps protect the plants against the oxidative damage caused by submergence. It was concluded that BnERF can increase the tolerance of plants to submergence stress and BnERF might be involved in regulating soluble sugar content and the antioxidant system in the defense against submergence stress.

Keywords: antioxidant enzyme, Arabidopsis, ethylene response factor, submergence

Procedia PDF Downloads 310
24267 Accuracy of VCCT for Calculating Stress Intensity Factor in Metal Specimens Subjected to Bending Load

Authors: Sanjin Kršćanski, Josip Brnić

Abstract:

Virtual Crack Closure Technique (VCCT) is a method used for calculating stress intensity factor (SIF) of a cracked body that is easily implemented on top of basic finite element (FE) codes and as such can be applied on the various component geometries. It is a relatively simple method that does not require any special finite elements to be used and is usually used for calculating stress intensity factors at the crack tip for components made of brittle materials. This paper studies applicability and accuracy of VCCT applied on standard metal specimens containing trough thickness crack, subjected to an in-plane bending load. Finite element analyses were performed using regular 4-node, regular 8-node and a modified quarter-point 8-node 2D elements. Stress intensity factor was calculated from the FE model results for a given crack length, using data available from FE analysis and a custom programmed algorithm based on virtual crack closure technique. Influence of the finite element size on the accuracy of calculated SIF was also studied. The final part of this paper includes a comparison of calculated stress intensity factors with results obtained from analytical expressions found in available literature and in ASTM standard. Results calculated by this algorithm based on VCCT were found to be in good correlation with results obtained with mentioned analytical expressions.

Keywords: VCCT, stress intensity factor, finite element analysis, 2D finite elements, bending

Procedia PDF Downloads 305
24266 Data Analysis Tool for Predicting Water Scarcity in Industry

Authors: Tassadit Issaadi Hamitouche, Nicolas Gillard, Jean Petit, Valerie Lavaste, Celine Mayousse

Abstract:

Water is a fundamental resource for the industry. It is taken from the environment either from municipal distribution networks or from various natural water sources such as the sea, ocean, rivers, aquifers, etc. Once used, water is discharged into the environment, reprocessed at the plant or treatment plants. These withdrawals and discharges have a direct impact on natural water resources. These impacts can apply to the quantity of water available, the quality of the water used, or to impacts that are more complex to measure and less direct, such as the health of the population downstream from the watercourse, for example. Based on the analysis of data (meteorological, river characteristics, physicochemical substances), we wish to predict water stress episodes and anticipate prefectoral decrees, which can impact the performance of plants and propose improvement solutions, help industrialists in their choice of location for a new plant, visualize possible interactions between companies to optimize exchanges and encourage the pooling of water treatment solutions, and set up circular economies around the issue of water. The development of a system for the collection, processing, and use of data related to water resources requires the functional constraints specific to the latter to be made explicit. Thus the system will have to be able to store a large amount of data from sensors (which is the main type of data in plants and their environment). In addition, manufacturers need to have 'near-real-time' processing of information in order to be able to make the best decisions (to be rapidly notified of an event that would have a significant impact on water resources). Finally, the visualization of data must be adapted to its temporal and geographical dimensions. In this study, we set up an infrastructure centered on the TICK application stack (for Telegraf, InfluxDB, Chronograf, and Kapacitor), which is a set of loosely coupled but tightly integrated open source projects designed to manage huge amounts of time-stamped information. The software architecture is coupled with the cross-industry standard process for data mining (CRISP-DM) data mining methodology. The robust architecture and the methodology used have demonstrated their effectiveness on the study case of learning the level of a river with a 7-day horizon. The management of water and the activities within the plants -which depend on this resource- should be considerably improved thanks, on the one hand, to the learning that allows the anticipation of periods of water stress, and on the other hand, to the information system that is able to warn decision-makers with alerts created from the formalization of prefectoral decrees.

Keywords: data mining, industry, machine Learning, shortage, water resources

Procedia PDF Downloads 121
24265 An Approach for the Assessment of Semi-Elliptical Surface Crack

Authors: Muhammad Naweed, Usman Tariq Murtaza, Waseem Siddique

Abstract:

A pallet body approach is a finite element-based computational approach used for the modeling and assessment of a three-dimensional surface crack. The approach is capable of inserting the crack in an engineering structure and generating high-quality hexahedral mesh in the cracked region of the structure. The approach is capable of computing the stress intensity factors along a semi-elliptical surface crack numerically. The objective of this work is to present that the stress intensity factors produced by the approach can be used with confidence for capturing the parameters during the fatigue crack growth.

Keywords: pallet body approach, semi-elliptical surface crack, stress intensity factors, fatigue crack growth

Procedia PDF Downloads 100
24264 Protective Role of Peroxiredoxin V against Ischemia/Reperfusion-Induced Acute Kidney Injury in Mice

Authors: Eun Gyeong Lee, Ji Young Park, Hyun Ae Woo

Abstract:

Reactive oxygen species (ROS) production is involved in ischemia/reperfusion (I/R) injury in kidney of mice. Oxidative stress develops from an imbalance between ROS production and reduced antioxidant defenses. Many enzymatic and nonenzymatic antioxidant systems including peroxiredoxins (Prxs) are present in kidney to maintain an appropriate level of ROS and prevent oxidative damage. Prxs are a family of peroxidases that reduce peroxides, with a conserved cysteine residue serving as the site of oxidation by peroxides. In this study, we examined the protective role of Prx V against I/R-induced acute kidney injury (AKI) using Prx V wild type (WT) and knockout (KO) mice. We compared the response of Prx V WT and KO mice in mice model of I/R injury. Renal structure, functions, oxidative stress markers, protein levels of oxidative damage marker were worse in Prx V KO mice. Ablation of Prx V enhanced susceptibility to I/R-induced oxidative stress. Prx V KO mice were seen to have more severe renal damage than Prx V WT mice in mice model of I/R injury. Our results demonstrate that Prx V is protective against I/R-induced AKI.

Keywords: peroxiredoxin, ischemia/reperfusion, kidney, oxidative stress

Procedia PDF Downloads 386
24263 Band Gap Tuning Based on Adjustable Stiffness of Local ‎Resonators ‎

Authors: Hossein Alimohammadi, Kristina Vassiljeva, Hassan HosseinNia, Eduard Petlenkov

Abstract:

This research article discusses the mechanisms for bandgap tuning of beam-type resonators to achieve ‎broadband vibration suppression through adjustable stiffness. The method involves changing the center of ‎mass of the cantilever-type resonator to achieve piezo-free tuning of stiffness. The study investigates the ‎effect of the center of masses variation (δ) of attached masses on the bandgap and vibration suppression ‎performance of a non-uniform beam-type resonator within a phononic structure. The results suggest that the ‎cantilever-type resonator beam can be used to achieve tunability and real-time control and indicate that ‎varying δ significantly impacts the bandgap and transmittance response. Additionally, the research explores ‎the use of the first and second modes of resonators for tunability and real-time control. These findings examine ‎the feasibility of this approach, demonstrate the potential for improving resonator performance, and provide ‎insights into the design and optimization of metamaterial beams for vibration suppression applications.

Keywords: bandgap, adjustable stiffness, spatial variation, tunability

Procedia PDF Downloads 85
24262 Experimental Characterization of Flowable Cement Pastes Made with Marble Waste

Authors: F. Messaoudi, O. Haddad, R. Bouras, S. Kaci

Abstract:

The development of self-compacting concrete (SCC) marks a huge step towards improved efficiency and working conditions on construction sites and in the precast industry. SCC flows easily into more complex shapes and through reinforcement bars, reduces the manpower required for the placement; no vibration is required to ensure correct compaction of concrete. This concrete contains a high volume of binder which is controlled by their rheological behavior. The paste consists of binders (Portland cement with or without supplementary cementitious materials), water, chemical admixtures and fillers. In this study, two series of tests were performed on self-compacting cement pastes made with marble waste additions as the mineral addition. The first series of this investigation was to determine the flow time of paste using Marsh cone, the second series was to determine the rheological parameters of the same paste namely yield stress and plastic viscosity using the rheometer Haake RheoStress 1. The results of this investigation allowed us to study the evolution of the yield stress, viscosity and the flow time Marsh cone paste as a function of the composition of the paste. A correlation between the results obtained on the flow test Marsh cone and those of the plastic viscosity on the mottled different cement pastes is proposed.

Keywords: adjuvant, rheological parameter, self-compacting cement pastes, waste marble

Procedia PDF Downloads 276
24261 Principle Component Analysis on Colon Cancer Detection

Authors: N. K. Caecar Pratiwi, Yunendah Nur Fuadah, Rita Magdalena, R. D. Atmaja, Sofia Saidah, Ocky Tiaramukti

Abstract:

Colon cancer or colorectal cancer is a type of cancer that attacks the last part of the human digestive system. Lymphoma and carcinoma are types of cancer that attack human’s colon. Colon cancer causes deaths about half a million people every year. In Indonesia, colon cancer is the third largest cancer case for women and second in men. Unhealthy lifestyles such as minimum consumption of fiber, rarely exercising and lack of awareness for early detection are factors that cause high cases of colon cancer. The aim of this project is to produce a system that can detect and classify images into type of colon cancer lymphoma, carcinoma, or normal. The designed system used 198 data colon cancer tissue pathology, consist of 66 images for Lymphoma cancer, 66 images for carcinoma cancer and 66 for normal / healthy colon condition. This system will classify colon cancer starting from image preprocessing, feature extraction using Principal Component Analysis (PCA) and classification using K-Nearest Neighbor (K-NN) method. Several stages in preprocessing are resize, convert RGB image to grayscale, edge detection and last, histogram equalization. Tests will be done by trying some K-NN input parameter setting. The result of this project is an image processing system that can detect and classify the type of colon cancer with high accuracy and low computation time.

Keywords: carcinoma, colorectal cancer, k-nearest neighbor, lymphoma, principle component analysis

Procedia PDF Downloads 205
24260 Effect of Single Overload Ratio and Stress Ratio on Fatigue Crack Growth

Authors: M. Benachour, N. Benachour, M. Benguediab

Abstract:

In this investigation, variation of cyclic loading effect on fatigue crack growth is studied. This study is performed on 2024 T351 and 7050-T74 aluminum alloys, used in aeronautical structures. The propagation model used in this study is NASGRO model. In constant amplitude loading (CA), the effect of stress ratio has been investigated. Fatigue life and fatigue crack growth rate were affected by this factor. Results showed an increasing in fatigue crack growth rates (FCGRs) with increasing stress ratio. Variable amplitude loading (VAL) can take many forms i.e with a single overload, overload band etc. The shape of these loads affects strongly the fracture life and FCGRs. The application of a single overload (ORL) decrease the FCGR and increase the delay crack length caused by the formation of a larger plastic zone compared to the plastic zone due without VAL. The fatigue behavior of the both material under single overload has been compared.

Keywords: fatigue crack growth, overload ratio, stress ratio, generalized willenborg model, retardation, al-alloys

Procedia PDF Downloads 363
24259 Surface Hole Defect Detection of Rolled Sheets Based on Pixel Classification Approach

Authors: Samira Taleb, Sakina Aoun, Slimane Ziani, Zoheir Mentouri, Adel Boudiaf

Abstract:

Rolling is a pressure treatment technique that modifies the shape of steel ingots or billets between rotating rollers. During this process, defects may form on the surface of the rolled sheets and are likely to affect the performance and quality of the finished product. In our study, we developed a method for detecting surface hole defects using a pixel classification approach. This work includes several steps. First, we performed image preprocessing to delimit areas with and without hole defects on the sheet image. Then, we developed the histograms of each area to generate the gray level membership intervals of the pixels that characterize each area. As we noticed an intersection between the characteristics of the gray level intervals of the images of the two areas, we finally performed a learning step based on a series of detection tests to refine the membership intervals of each area, and to choose the defect detection criterion in order to optimize the recognition of the surface hole.

Keywords: classification, defect, surface, detection, hole

Procedia PDF Downloads 16
24258 Digimesh Wireless Sensor Network-Based Real-Time Monitoring of ECG Signal

Authors: Sahraoui Halima, Dahani Ameur, Tigrine Abedelkader

Abstract:

DigiMesh technology represents a pioneering advancement in wireless networking, offering cost-effective and energy-efficient capabilities. Its inherent simplicity and adaptability facilitate the seamless transfer of data between network nodes, extending the range and ensuring robust connectivity through autonomous self-healing mechanisms. In light of these advantages, this study introduces a medical platform harnessed with DigiMesh wireless network technology characterized by low power consumption, immunity to interference, and user-friendly operation. The primary application of this platform is the real-time, long-distance monitoring of Electrocardiogram (ECG) signals, with the added capacity for simultaneous monitoring of ECG signals from multiple patients. The experimental setup comprises key components such as Raspberry Pi, E-Health Sensor Shield, and Xbee DigiMesh modules. The platform is composed of multiple ECG acquisition devices labeled as Sensor Node 1 and Sensor Node 2, with a Raspberry Pi serving as the central hub (Sink Node). Two communication approaches are proposed: Single-hop and multi-hop. In the Single-hop approach, ECG signals are directly transmitted from a sensor node to the sink node through the XBee3 DigiMesh RF Module, establishing peer-to-peer connections. This approach was tested in the first experiment to assess the feasibility of deploying wireless sensor networks (WSN). In the multi-hop approach, two sensor nodes communicate with the server (Sink Node) in a star configuration. This setup was tested in the second experiment. The primary objective of this research is to evaluate the performance of both Single-hop and multi-hop approaches in diverse scenarios, including open areas and obstructed environments. Experimental results indicate the DigiMesh network's effectiveness in Single-hop mode, with reliable communication over distances of approximately 300 meters in open areas. In the multi-hop configuration, the network demonstrated robust performance across approximately three floors, even in the presence of obstacles, without the need for additional router devices. This study offers valuable insights into the capabilities of DigiMesh wireless technology for real-time ECG monitoring in healthcare applications, demonstrating its potential for use in diverse medical scenarios.

Keywords: DigiMesh protocol, ECG signal, real-time monitoring, medical platform

Procedia PDF Downloads 79
24257 Experimental Investigation on Effect of Different Heat Treatments on Phase Transformation and Superelasticity of NiTi Alloy

Authors: Erfan Asghari Fesaghandis, Reza Ghaffari Adli, Abbas Kianvash, Hossein Aghajani, Homa Homaie

Abstract:

NiTi alloys possess magnificent superelastic, shape memory, high strength and biocompatible properties. For improving mechanical properties, foremost, superelasticity behavior, heat treatment process is carried out. In this paper, two different heat treatment methods were undertaken: (1) solid solution, and (2) aging. The effect of each treatment in a constant time is investigated. Five samples were prepared to study the structure and optimize mechanical properties under different time and temperature. For measuring the upper plateau stress, lower plateau stress and residual strain, tensile test is carried out. The samples were aged at two different temperatures to see difference between aging temperatures. The sample aged at 500 °C has a bigger crystallite size and lower amount of Ni which causes the mentioned sample to possess poor pseudo elasticity behaviour than the other aged sample. The sample aged at 460 °C has shown remarkable superelastic properties. The mentioned sample’s higher plateau is 580 MPa with the lowest residual strain (0.17%) while other samples have possessed higher residual strains. X-ray diffraction was used to investigate the produced phases.

Keywords: heat treatment, phase transformation, superelasticity, NiTi alloy

Procedia PDF Downloads 130
24256 Hybrid Anomaly Detection Using Decision Tree and Support Vector Machine

Authors: Elham Serkani, Hossein Gharaee Garakani, Naser Mohammadzadeh, Elaheh Vaezpour

Abstract:

Intrusion detection systems (IDS) are the main components of network security. These systems analyze the network events for intrusion detection. The design of an IDS is through the training of normal traffic data or attack. The methods of machine learning are the best ways to design IDSs. In the method presented in this article, the pruning algorithm of C5.0 decision tree is being used to reduce the features of traffic data used and training IDS by the least square vector algorithm (LS-SVM). Then, the remaining features are arranged according to the predictor importance criterion. The least important features are eliminated in the order. The remaining features of this stage, which have created the highest level of accuracy in LS-SVM, are selected as the final features. The features obtained, compared to other similar articles which have examined the selected features in the least squared support vector machine model, are better in the accuracy, true positive rate, and false positive. The results are tested by the UNSW-NB15 dataset.

Keywords: decision tree, feature selection, intrusion detection system, support vector machine

Procedia PDF Downloads 265
24255 Detection of Transgenes in Cotton (Gossypium hirsutum L.) by using Biotechnology/Molecular Biological Techniques

Authors: Ahmad Ali Shahid, M Shakil Shaukat

Abstract:

Agriculture is the backbone of economy of Pakistan and Cotton is the major agricultural export and supreme source of raw fiber for our textile industry. To combat against the developing resistance in the target insects and combating these challenges wholesomely, a novel combination of pyramided/stacked genes was conceptualized and later realized, through the means of biotechnology i.e., transformation of three genes namely, Cry1Ac, Cry2A, and EPSP synthase (glyphosate tolerant) genes in the locally cultivated cotton variety. The progenies of the transformed plants were successfully raised and screened under the tunnel conditions for two generations and the present study focused on the screening of plants which were confirmed for containing all of these three genes and their expressions. Initially, the screening was done through glyphosate spray assay and the plants which were healthy and showed no damage on leaves were selected after 07 days of spray. In the laboratory, the DNA of these plants were isolated and subjected to amplification of the three genes. Thus, seventeen out of twenty were confirmed positive for Cry1Ac gene and ten out of twenty were positive for Cry2A gene and all twenty were positive for presence of EPSP synthase gene. Then, the ten plant samples which were confirmed with presence of all three genes were subjected to expression analysis of these proteins through ELISA. The results showed that eight out of ten plants were actively expressing the three transgenes. Real-time PCR was also done to quantify the expression levels of the EPSP synthase gene. Finally, eight plants were confirmed for the presence and active expression of all three genes in T3 generation of the triple gene transformed cotton. These plants may be subjected to T4 generation to develop a new stable variety in due course of time.

Keywords: agriculture, cotton, transformation, cry genes, ELISA, PCR

Procedia PDF Downloads 394
24254 Developing an Accurate AI Algorithm for Histopathologic Cancer Detection

Authors: Leah Ning

Abstract:

This paper discusses the development of a machine learning algorithm that accurately detects metastatic breast cancer (cancer has spread elsewhere from its origin part) in selected images that come from pathology scans of lymph node sections. Being able to develop an accurate artificial intelligence (AI) algorithm would help significantly in breast cancer diagnosis since manual examination of lymph node scans is both tedious and oftentimes highly subjective. The usage of AI in the diagnosis process provides a much more straightforward, reliable, and efficient method for medical professionals and would enable faster diagnosis and, therefore, more immediate treatment. The overall approach used was to train a convolution neural network (CNN) based on a set of pathology scan data and use the trained model to binarily classify if a new scan were benign or malignant, outputting a 0 or a 1, respectively. The final model’s prediction accuracy is very high, with 100% for the train set and over 70% for the test set. Being able to have such high accuracy using an AI model is monumental in regard to medical pathology and cancer detection. Having AI as a new tool capable of quick detection will significantly help medical professionals and patients suffering from cancer.

Keywords: breast cancer detection, AI, machine learning, algorithm

Procedia PDF Downloads 91
24253 Development of a Work-Related Stress Management Program Guaranteeing Fitness-For-Duty for Human Error Prevention

Authors: Hyeon-Kyo Lim, Tong-Il Jang, Yong-Hee Lee

Abstract:

Human error is one of the most dreaded factors that may result in unexpected accidents, especially in nuclear power plants. For accident prevention, it is quite indispensable to analyze and to manage the influence of any factor which may raise the possibility of human errors. Out of lots factors, stress has been reported to have a significant influence on human performance. Therefore, this research aimed to develop a work-related stress management program which can guarantee Fitness-for-Duty (FFD) of the workers in nuclear power plants, especially those working in main control rooms. Major stress factors were elicited through literal surveys and classified into major categories such as demands, supports, and relationships. To manage those factors, a test and intervention program based on 4-level approaches was developed over the whole employment cycle including selection and screening of workers, job allocation, and job rotation. In addition, a managerial care program was introduced with the concept of Employee-Assistance-Program (EAP) program. Reviews on the program conducted by ex-operators in nuclear power plants showed responses in the affirmative, and suggested additional treatment to guarantee high performance of human workers, not in normal operations but also in emergency situations.

Keywords: human error, work performance, work stress, Fitness-For-Duty (FFD), Employee Assistance Program (EAP)

Procedia PDF Downloads 404