Search results for: passive vibration damping
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1671

Search results for: passive vibration damping

21 Foucault and Governmentality: International Organizations and State Power

Authors: Sara Dragisic

Abstract:

Using the theoretical analysis of the birth of biopolitics that Foucault performed through the history of liberalism and neoliberalism, in this paper we will try to show how, precisely through problematizing the role of international institutions, the model of governance differs from previous ways of objectifying body and life. Are the state and its mechanisms still a Leviathan to fight against, or can it be even the driver of resistance against the proponents of modern governance and the biopolitical power? Do paradigmatic examples of biopolitics still appear through sovereignty and (international) law, or is it precisely this sphere that shows a significant dose of incompetence and powerlessness in relation to, not only the economic sphere (Foucault’s critique of neoliberalism) but also the new politics of freedom? Have the struggle for freedom and human rights, as well as the war on terrorism, opened a new spectrum of biopolitical processes, which are manifested precisely through new international institutions and humanitarian discourse? We will try to answer these questions, in the following way. On the one hand, we will show that the views of authors such as Agamben and Hardt and Negri, in whom the state and sovereignty are seen as enemies to be defeated or overcome, fail to see how such attempts could translate into the politicization of life like it is done in many examples through the doctrine of liberal interventionism and humanitarianism. On the other hand, we will point out that it is precisely the humanitarian discourse and the defense of the right to intervention that can be the incentive and basis for the politicization of the category of life and lead to the selective application of human rights. Zizek example of the killing of United Nations workers and doctors in a village during the Vietnam War, who were targeted even before police or soldiers, because they were precisely seen as a powerful instrument of American imperialism (as they were sincerely trying to help the population), will be focus of this part of the analysis. We’ll ask the question whether such interpretation is a kind of liquidation of the extreme left of the political (Laclau) or on this basis can be explained at least in part the need to review the functioning of international organizations, ranging from those dealing with humanitarian aid (and humanitarian military interventions) to those dealing with protection and the security of the population, primarily from growing terrorism. Based on the above examples, we will also explain how the discourse of terrorism itself plays a dual role: it can appear as a tool of liberal biopolitics, although, more superficially, it mostly appears as an enemy that wants to destroy the liberal system and its values. This brings us to the basic problem that this paper will tackle: do the mechanisms of institutional struggle for human rights and freedoms, which is often seen as opposed to the security mechanisms of the state, serve the governance of citizens in such a way that the latter themselves participate in producing biopolitical governmental practices? Is the freedom today "nothing but the correlative development of apparatuses of security" (Foucault)? Or, we can continue this line of Foucault’s argumentation and enhance the interpretation with the important question of what precisely today reflects the change in the rationality of governance in which society is transformed from a passive object into a subject of its own production. Finally, in order to understand the skills of biopolitical governance in modern civil society, it is necessary to pay attention to the status of international organizations, which seem to have become a significant place for the implementation of global governance. In this sense, the power of sovereignty can turn out to be an insufficiently strong power of security policy, which can go hand in hand with freedom policies, through neoliberal governmental techniques.

Keywords: neoliberalism, Foucault, sovereignty, biopolitics, international organizations, NGOs, Agamben, Hardt&Negri, Zizek, security, state power

Procedia PDF Downloads 182
20 User-Controlled Color-Changing Textiles: From Prototype to Mass Production

Authors: Joshua Kaufman, Felix Tan, Morgan Monroe, Ayman Abouraddy

Abstract:

Textiles and clothing have been a staple of human existence for millennia, yet the basic structure and functionality of textile fibers and yarns has remained unchanged. While color and appearance are essential characteristics of a textile, an advancement in the fabrication of yarns that allows for user-controlled dynamic changes to the color or appearance of a garment has been lacking. Touch-activated and photosensitive pigments have been used in textiles, but these technologies are passive and cannot be controlled by the user. The technology described here allows the owner to control both when and in what pattern the fabric color-change takes place. In addition, the manufacturing process is compatible with mass-producing the user-controlled, color-changing yarns. The yarn fabrication utilizes a fiber spinning system that can produce either monofilament or multifilament yarns. For products requiring a more robust fabric (backpacks, purses, upholstery, etc.), larger-diameter monofilament yarns with a coarser weave are suitable. Such yarns are produced using a thread-coater attachment to encapsulate a 38-40 AWG metal wire inside a polymer sheath impregnated with thermochromic pigment. Conversely, products such as shirts and pants requiring yarns that are more flexible and soft against the skin comprise multifilament yarns of much smaller-diameter individual fibers. Embedding a metal wire in a multifilament fiber spinning process has not been realized to date. This research has required collaboration with Hills, Inc., to design a liquid metal-injection system to be combined with fiber spinning. The new system injects molten tin into each of 19 filaments being spun simultaneously into a single yarn. The resulting yarn contains 19 filaments, each with a tin core surrounded by a polymer sheath impregnated with thermochromic pigment. The color change we demonstrate is distinct from garments containing LEDs that emit light in various colors. The pigment itself changes its optical absorption spectrum to appear a different color. The thermochromic color-change is induced by a temperature change in the inner metal wire within each filament when current is applied from a small battery pack. The temperature necessary to induce the color change is near body temperature and not noticeable by touch. The prototypes already developed either use a simple push button to activate the battery pack or are wirelessly activated via a smart-phone app over Wi-Fi. The app allows the user to choose from different activation patterns of stripes that appear in the fabric continuously. The power requirements are mitigated by a large hysteresis in the activation temperature of the pigment and the temperature at which there is full color return. This was made possible by a collaboration with Chameleon International to develop a new, customized pigment. This technology enables a never-before seen capability: user-controlled, dynamic color and pattern change in large-area woven and sewn textiles and fabrics with wide-ranging applications from clothing and accessories to furniture and fixed-installation housing and business décor. The ability to activate through Wi-Fi opens up possibilities for the textiles to be part of the ‘Internet of Things.’ Furthermore, this technology is scalable to mass-production levels for wide-scale market adoption.

Keywords: activation, appearance, color, manufacturing

Procedia PDF Downloads 264
19 Worldwide GIS Based Earthquake Information System/Alarming System for Microzonation/Liquefaction and It’s Application for Infrastructure Development

Authors: Rajinder Kumar Gupta, Rajni Kant Agrawal, Jaganniwas

Abstract:

One of the most frightening phenomena of nature is the occurrence of earthquake as it has terrible and disastrous effects. Many earthquakes occur every day worldwide. There is need to have knowledge regarding the trends in earthquake occurrence worldwide. The recoding and interpretation of data obtained from the establishment of the worldwide system of seismological stations made this possible. From the analysis of recorded earthquake data, the earthquake parameters and source parameters can be computed and the earthquake catalogues can be prepared. These catalogues provide information on origin, time, epicenter locations (in term of latitude and longitudes) focal depths, magnitude and other related details of the recorded earthquakes. Theses catalogues are used for seismic hazard estimation. Manual interpretation and analysis of these data is tedious and time consuming. A geographical information system is a computer based system designed to store, analyzes and display geographic information. The implementation of integrated GIS technology provides an approach which permits rapid evaluation of complex inventor database under a variety of earthquake scenario and allows the user to interactively view results almost immediately. GIS technology provides a powerful tool for displaying outputs and permit to users to see graphical distribution of impacts of different earthquake scenarios and assumptions. An endeavor has been made in present study to compile the earthquake data for the whole world in visual Basic on ARC GIS Plate form so that it can be used easily for further analysis to be carried out by earthquake engineers. The basic data on time of occurrence, location and size of earthquake has been compiled for further querying based on various parameters. A preliminary analysis tool is also provided in the user interface to interpret the earthquake recurrence in region. The user interface also includes the seismic hazard information already worked out under GHSAP program. The seismic hazard in terms of probability of exceedance in definite return periods is provided for the world. The seismic zones of the Indian region are included in the user interface from IS 1893-2002 code on earthquake resistant design of buildings. The City wise satellite images has been inserted in Map and based on actual data the following information could be extracted in real time: • Analysis of soil parameters and its effect • Microzonation information • Seismic hazard and strong ground motion • Soil liquefaction and its effect in surrounding area • Impacts of liquefaction on buildings and infrastructure • Occurrence of earthquake in future and effect on existing soil • Propagation of earth vibration due of occurrence of Earthquake GIS based earthquake information system has been prepared for whole world in Visual Basic on ARC GIS Plate form and further extended micro level based on actual soil parameters. Individual tools has been developed for liquefaction, earthquake frequency etc. All information could be used for development of infrastructure i.e. multi story structure, Irrigation Dam & Its components, Hydro-power etc in real time for present and future.

Keywords: GIS based earthquake information system, microzonation, analysis and real time information about liquefaction, infrastructure development

Procedia PDF Downloads 300
18 Use of Pheromones, Active Surveillance and Treated Cattle to Prevent the Establishment of the Tropical Bont Tick in Puerto Rico and the Americas

Authors: Robert Miller, Fred Soltero, Sandra Allan, Denise Bonilla

Abstract:

The Tropical Bont Tick (TBT), Amblyomma variegatum, was introduced to the Caribbean in the mid-1700s. Since it has spread throughout the Caribbean dispersed by cattle egrets (Bubulcus ibis). Tropical Bont Ticks vector many pathogens to livestock and humans. However, only the livestock diseases heartwater, Ehrlichia (Cowdria) ruminantium, and dermatophilosis, Dermatophilus congolensis, are associated with TBT in the Caribbean. African tick bite fever (Rickettsia africae) is widespread in Caribbean TBT but human cases are rare. The Caribbean Amblyomma Programme (CAP) was an effort led by the Food and Agricultural Organization to eradicate TBTs from participating islands. This 10-year effort successfully eradicated TBT from many islands. However, most are reinfested since its termination. Pheromone technology has been developed to aid in TBT control. Although not part of the CAP treatment scheme, this research established that pheromones in combination with pesticide greatly improves treatment efficiencies. Additionally, pheromone combined with CO₂ traps greatly improves active surveillance success. St. Croix has a history of TBT outbreaks. Passive surveillance detected outbreaks in 2016 and in May of 2021. Surveillance efforts are underway to determine the extent of TBT on St Croix. Puerto Rico is the next island in the archipelago and is at a greater risk of re-infestation due to active outbreaks in St Croix. Tropical Bont Ticks were last detected in Puerto Rico in the 1980s. The infestation started on the small Puerto Rican island of Vieques, the closest landmass to St Croix, and spread to the main island through cattle movements. This infestation was eradicated with the help of the Tropical Cattle Tick (TCT), Rhipicephalus (Boophilus) microplus, eradication program. At the time, large percentages of Puerto Rican cattle were treated for ticks along with the necessary material and manpower mobilized for the effort. Therefore, a shift of focus from the TCT to TBT prevented its establishment in Puerto Rico. Currently, no large-scale treatment of TCTs occurs in Puerto Rico. Therefore, the risk of TBT establishment is now greater than it was in the 1980s. From Puerto Rico, the risk of TBT movement to the American continent increases significantly. The establishment of TBTs in the Americas would cause $1.2 billion USD in losses to the livestock industry per year. The USDA Agricultural Research Service recently worked with the USDA Animal Health Inspection Service and the Puerto Rican Department of Agriculture to modernize the management of the TCT. This modernized program uses safer pesticides and has successfully been used to eradicate pesticide-susceptible and -resistant ticks throughout the island. The objective of this work is to prevent the infestation of Puerto Rico by TBTs by combining the current TCT management efforts with TBT surveillance in Vieques. The combined effort is designed to eradicate TCT from Vieques while using the treated cattle as trap animals for TBT using pheromone impregnated tail tags attached to treated animals. Additionally, active surveillance using CO₂-baited traps combined with pheromone will be used to actively survey the environment for free-living TBT. Knowledge gained will inform TBT control efforts in St. Croix.

Keywords: Amblyomma variegatum, caribbean, eradication, Rhipicephalus (boophilus) microplus, pheromone

Procedia PDF Downloads 155
17 Flexible Ethylene-Propylene Copolymer Nanofibers Decorated with Ag Nanoparticles as Effective 3D Surface-Enhanced Raman Scattering Substrates

Authors: Yi Li, Rui Lu, Lianjun Wang

Abstract:

With the rapid development of chemical industry, the consumption of volatile organic compounds (VOCs) has increased extensively. In the process of VOCs production and application, plenty of them have been transferred to environment. As a result, it has led to pollution problems not only in soil and ground water but also to human beings. Thus, it is important to develop a sensitive and cost-effective analytical method for trace VOCs detection in environment. Surface-enhanced Raman Spectroscopy (SERS), as one of the most sensitive optical analytical technique with rapid response, pinpoint accuracy and noninvasive detection, has been widely used for ultratrace analysis. Based on the plasmon resonance on the nanoscale metallic surface, SERS technology can even detect single molecule due to abundant nanogaps (i.e. 'hot spots') on the nanosubstrate. In this work, a self-supported flexible silver nitrate (AgNO3)/ethylene-propylene copolymer (EPM) hybrid nanofibers was fabricated by electrospinning. After an in-situ chemical reduction using ice-cold sodium borohydride as reduction agent, numerous silver nanoparticles were formed on the nanofiber surface. By adjusting the reduction time and AgNO3 content, the morphology and dimension of silver nanoparticles could be controlled. According to the principles of solid-phase extraction, the hydrophobic substance is more likely to partition into the hydrophobic EPM membrane in an aqueous environment while water and other polar components are excluded from the analytes. By the enrichment of EPM fibers, the number of hydrophobic molecules located on the 'hot spots' generated from criss-crossed nanofibers is greatly increased, which further enhances SERS signal intensity. The as-prepared Ag/EPM hybrid nanofibers were first employed to detect common SERS probe molecule (p-aminothiophenol) with the detection limit down to 10-12 M, which demonstrated an excellent SERS performance. To further study the application of the fabricated substrate for monitoring hydrophobic substance in water, several typical VOCs, such as benzene, toluene and p-xylene, were selected as model compounds. The results showed that the characteristic peaks of these target analytes in the mixed aqueous solution could be distinguished even at a concentration of 10-6 M after multi-peaks gaussian fitting process, including C-H bending (850 cm-1), C-C ring stretching (1581 cm-1, 1600 cm-1) of benzene, C-H bending (844 cm-1 ,1151 cm-1), C-C ring stretching (1001 cm-1), CH3 bending vibration (1377 cm-1) of toluene, C-H bending (829 cm-1), C-C stretching (1614 cm-1) of p-xylene. The SERS substrate has remarkable advantages which combine the enrichment capacity from EPM and the Raman enhancement of Ag nanoparticles. Meanwhile, the huge specific surface area resulted from electrospinning is benificial to increase the number of adsoption sites and promotes 'hot spots' formation. In summary, this work provides powerful potential in rapid, on-site and accurate detection of trace VOCs using a portable Raman.

Keywords: electrospinning, ethylene-propylene copolymer, silver nanoparticles, SERS, VOCs

Procedia PDF Downloads 149
16 Creation of a Test Machine for the Scientific Investigation of Chain Shot

Authors: Mark McGuire, Eric Shannon, John Parmigiani

Abstract:

Timber harvesting increasingly involves mechanized equipment. This has increased the efficiency of harvesting, but has also introduced worker-safety concerns. One such concern arises from the use of harvesters. During operation, harvesters subject saw chain to large dynamic mechanical stresses. These stresses can, under certain conditions, cause the saw chain to fracture. The high speed of harvester saw chain can cause the resulting open chain loop to fracture a second time due to the dynamic loads placed upon it as it travels through space. If a second fracture occurs, it can result in a projectile consisting of one-to-several chain links. This projectile is referred to as a chain shot. It has speeds similar to a bullet but typically has greater mass and is a significant safety concern. Numerous examples exist of chain shots penetrating bullet-proof barriers and causing severe injury and death. Improved harvester-cab barriers can help prevent injury however a comprehensive scientific understanding of chain shot is required to consistently reduce or prevent it. Obtaining this understanding requires a test machine with the capability to cause chain shot to occur under carefully controlled conditions and accurately measure the response. Worldwide few such test machine exist. Those that do focus on validating the ability of barriers to withstand a chain shot impact rather than obtaining a scientific understanding of the chain shot event itself. The purpose of this paper is to describe the design, fabrication, and use of a test machine capable of a comprehensive scientific investigation of chain shot. The capabilities of this machine are to test all commercially-available saw chains and bars at chain tensions and speeds meeting and exceeding those typically encountered in harvester use and accurately measure the corresponding key technical parameters. The test machine was constructed inside of a standard shipping container. This provides space for both an operator station and a test chamber. In order to contain the chain shot under any possible test conditions, the test chamber was lined with a base layer of AR500 steel followed by an overlay of HDPE. To accommodate varying bar orientations and fracture-initiation sites, the entire saw chain drive unit and bar mounting system is modular and capable of being located anywhere in the test chamber. The drive unit consists of a high-speed electric motor with a flywheel. Standard Ponsse harvester head components are used to bar mounting and chain tensioning. Chain lubrication is provided by a separate peristaltic pump. Chain fracture is initiated through ISO standard 11837. Measure parameters include shaft speed, motor vibration, bearing temperatures, motor temperature, motor current draw, hydraulic fluid pressure, chain force at fracture, and high-speed camera images. Results show that the machine is capable of consistently causing chain shot. Measurement output shows fracture location and the force associated with fracture as a function of saw chain speed and tension. Use of this machine will result in a scientific understanding of chain shot and consequently improved products and greater harvester operator safety.

Keywords: chain shot, safety, testing, timber harvesters

Procedia PDF Downloads 136
15 Effect of Chitosan Oligosaccharide from Tenebrio Molitor on Prebiotics

Authors: Hyemi Kim, Jay Kim, Kyunghoon Han, Ra-Yeong Choi, In-Woo Kim, Hyung Joo Suh, Ki-Bae Hong, Sung Hee Han

Abstract:

Chitosan is used in various industries such as food and medical care because it is known to have various functions such as anti-obesity, anti-inflammatory and anti-cancer benefits. Most of the commercial chitosan is extracted from crustaceans. As the harvest rate of snow crabs and red snow crabs decreases and safety issues arise due to environmental pollution, research is underway to extract chitosan from insects. In this study, we used Response Surface Methodology (RSM) to predict the optimal conditions to produce chitosan oligosaccharides from mealworms (MCOS), which can be absorbed through the intestine as low-molecular-weight chitosan. The experimentally confirmed optimal conditions for MCOS production using chitosanase were found to be a substrate concentration of 2.5%, enzyme addition of 30 mg/g and a reaction time of 6 hours. The chemical structure and physicochemical properties of the produced MCOS were measured using MALDI-TOF mass spectra and FTIR spectra. The MALDI-TOF mass spectra revealed peaks corresponding to the dimer (375.045), trimer (525.214), tetramer (693.243), pentamer (826.296), and hexamer (987.360). In the FTIR spectra, commercial chitosan oligosaccharides exhibited a weak peak pattern at 3500-2500 cm-1, unlike chitosan or chitosan oligosaccharides. There was a difference in the peak at 3200~3500 cm-1, where different vibrations corresponding to OH and amine groups overlapped. Chitosan, chitosan oligosaccharide, and commercial chitosan oligosaccharide showed peaks at 2849, 2884, and 2885 cm-1, respectively, attributed to the absorption of the C-H stretching vibration of methyl or methine. The amide I, amide II, and amide III bands of chitosan, chitosan oligosaccharide, and commercial chitosan oligosaccharide exhibited peaks at 1620/1620/1602, 1553/1555/1505, and 1310/1309/1317 cm-1, respectively. Furthermore, the solubility of MCOS was 45.15±3.43, water binding capacity (WBC) was 299.25±4.57, and fat binding capacity (FBC) was 325.61±2.28 and the solubility of commercial chitosan oligosaccharides was 49.04±9.52, WBC was 280.55±0.50, and FBC was 157.22±18.15. Thus, the characteristics of MCOS and commercial chitosan oligosaccharides are similar. The results of investigating the impact of chitosan oligosaccharide on the proliferation of probiotics revealed increased growth in L. casei, L. acidophilus, and Bif. Bifidum. Therefore, the major short-chain fatty acids produced by gut microorganisms, such as acetic acid, propionic acid, and butyric acid, increased within 24 hours of adding 1% (p<0.01) and 2% (p<0.001) MCOS. The impact of MCOS on the overall gut microbiota was assessed, revealing that the Chao1 index did not show significant differences, but the Simpson index decreased in a concentration-dependent manner, indicating a higher species diversity. The addition of MCOS resulted in changes in the overall microbial composition, with an increase in Firmicutes and Verrucomicrobia (p<0.05) compared to the control group, while Proteobacteria and Actinobacteria (p<0.05) decreased. At the genus level, changes in microbiota due to MCOS supplementation showed an increase in beneficial bacteria like lactobacillus, Romboutsia, Turicibacter, and Akkermansia (p<0.0001) while harmful bacteria like Enterococcus, Morganella, Proterus, and Bacteroides (p<0.0001) decreased. In this study, chitosan oligosaccharides were successfully produced under established conditions from mealworms, and these chitosan oligosaccharides are expected to have prebiotic effects, similar to those obtained from crabs.

Keywords: mealworms, chitosan, chitosan oligosaccharide, prebiotics

Procedia PDF Downloads 51
14 Learning from Dendrites: Improving the Point Neuron Model

Authors: Alexander Vandesompele, Joni Dambre

Abstract:

The diversity in dendritic arborization, as first illustrated by Santiago Ramon y Cajal, has always suggested a role for dendrites in the functionality of neurons. In the past decades, thanks to new recording techniques and optical stimulation methods, it has become clear that dendrites are not merely passive electrical components. They are observed to integrate inputs in a non-linear fashion and actively participate in computations. Regardless, in simulations of neural networks dendritic structure and functionality are often overlooked. Especially in a machine learning context, when designing artificial neural networks, point neuron models such as the leaky-integrate-and-fire (LIF) model are dominant. These models mimic the integration of inputs at the neuron soma, and ignore the existence of dendrites. In this work, the LIF point neuron model is extended with a simple form of dendritic computation. This gives the LIF neuron increased capacity to discriminate spatiotemporal input sequences, a dendritic functionality as observed in another study. Simulations of the spiking neurons are performed using the Bindsnet framework. In the common LIF model, incoming synapses are independent. Here, we introduce a dependency between incoming synapses such that the post-synaptic impact of a spike is not only determined by the weight of the synapse, but also by the activity of other synapses. This is a form of short term plasticity where synapses are potentiated or depressed by the preceding activity of neighbouring synapses. This is a straightforward way to prevent inputs from simply summing linearly at the soma. To implement this, each pair of synapses on a neuron is assigned a variable,representing the synaptic relation. This variable determines the magnitude ofthe short term plasticity. These variables can be chosen randomly or, more interestingly, can be learned using a form of Hebbian learning. We use Spike-Time-Dependent-Plasticity (STDP), commonly used to learn synaptic strength magnitudes. If all neurons in a layer receive the same input, they tend to learn the same through STDP. Adding inhibitory connections between the neurons creates a winner-take-all (WTA) network. This causes the different neurons to learn different input sequences. To illustrate the impact of the proposed dendritic mechanism, even without learning, we attach five input neurons to two output neurons. One output neuron isa regular LIF neuron, the other output neuron is a LIF neuron with dendritic relationships. Then, the five input neurons are allowed to fire in a particular order. The membrane potentials are reset and subsequently the five input neurons are fired in the reversed order. As the regular LIF neuron linearly integrates its inputs at the soma, the membrane potential response to both sequences is similar in magnitude. In the other output neuron, due to the dendritic mechanism, the membrane potential response is different for both sequences. Hence, the dendritic mechanism improves the neuron’s capacity for discriminating spa-tiotemporal sequences. Dendritic computations improve LIF neurons even if the relationships between synapses are established randomly. Ideally however, a learning rule is used to improve the dendritic relationships based on input data. It is possible to learn synaptic strength with STDP, to make a neuron more sensitive to its input. Similarly, it is possible to learn dendritic relationships with STDP, to make the neuron more sensitive to spatiotemporal input sequences. Feeding structured data to a WTA network with dendritic computation leads to a significantly higher number of discriminated input patterns. Without the dendritic computation, output neurons are less specific and may, for instance, be activated by a sequence in reverse order.

Keywords: dendritic computation, spiking neural networks, point neuron model

Procedia PDF Downloads 113
13 A High-Throughput Enzyme Screening Method Using Broadband Coherent Anti-stokes Raman Spectroscopy

Authors: Ruolan Zhang, Ryo Imai, Naoko Senda, Tomoyuki Sakai

Abstract:

Enzymes have attracted increasing attentions in industrial manufacturing for their applicability in catalyzing complex chemical reactions under mild conditions. Directed evolution has become a powerful approach to optimize enzymes and exploit their full potentials under the circumstance of insufficient structure-function knowledge. With the incorporation of cell-free synthetic biotechnology, rapid enzyme synthesis can be realized because no cloning procedure such as transfection is needed. Its open environment also enables direct enzyme measurement. These properties of cell-free biotechnology lead to excellent throughput of enzymes generation. However, the capabilities of current screening methods have limitations. Fluorescence-based assay needs applicable fluorescent label, and the reliability of acquired enzymatic activity is influenced by fluorescent label’s binding affinity and photostability. To acquire the natural activity of an enzyme, another method is to combine pre-screening step and high-performance liquid chromatography (HPLC) measurement. But its throughput is limited by necessary time investment. Hundreds of variants are selected from libraries, and their enzymatic activities are then identified one by one by HPLC. The turn-around-time is 30 minutes for one sample by HPLC, which limits the acquirable enzyme improvement within reasonable time. To achieve the real high-throughput enzyme screening, i.e., obtain reliable enzyme improvement within reasonable time, a widely applicable high-throughput measurement of enzymatic reactions is highly demanded. Here, a high-throughput screening method using broadband coherent anti-Stokes Raman spectroscopy (CARS) was proposed. CARS is one of coherent Raman spectroscopy, which can identify label-free chemical components specifically from their inherent molecular vibration. These characteristic vibrational signals are generated from different vibrational modes of chemical bonds. With the broadband CARS, chemicals in one sample can be identified from their signals in one broadband CARS spectrum. Moreover, it can magnify the signal levels to several orders of magnitude greater than spontaneous Raman systems, and therefore has the potential to evaluate chemical's concentration rapidly. As a demonstration of screening with CARS, alcohol dehydrogenase, which converts ethanol and nicotinamide adenine dinucleotide oxidized form (NAD+) to acetaldehyde and nicotinamide adenine dinucleotide reduced form (NADH), was used. The signal of NADH at 1660 cm⁻¹, which is generated from nicotinamide in NADH, was utilized to measure the concentration of it. The evaluation time for CARS signal of NADH was determined to be as short as 0.33 seconds while having a system sensitivity of 2.5 mM. The time course of alcohol dehydrogenase reaction was successfully measured from increasing signal intensity of NADH. This measurement result of CARS was consistent with the result of a conventional method, UV-Vis. CARS is expected to have application in high-throughput enzyme screening and realize more reliable enzyme improvement within reasonable time.

Keywords: Coherent Anti-Stokes Raman Spectroscopy, CARS, directed evolution, enzyme screening, Raman spectroscopy

Procedia PDF Downloads 125
12 Mapping Contested Sites - Permanence Of The Temporary Mouttalos Case Study

Authors: M. Hadjisoteriou, A. Kyriacou Petrou

Abstract:

This paper will discuss ideas of social sustainability in urban design and human behavior in multicultural contested sites. It will focus on the potential of the re-reading of the “site” through mapping that acts as a research methodology and will discuss the chosen site of Mouttalos, Cyprus as a place of multiple identities. Through a methodology of mapping using a bottom up approach, a process of disassembling derives that acts as a mechanism to re-examine space and place by searching for the invisible and the non-measurable, understanding the site through its detailed inhabitation patterns. The significance of this study lies in the use of mapping as an active form of thinking rather than a passive process of representation that allows for a new site to be discovered, giving multiple opportunities for adaptive urban strategies and socially engaged design approaches. We will discuss the above thematic based on the chosen contested site of Mouttalos, a small Turkish Cypriot neighbourhood, in the old centre of Paphos (Ktima), SW of Cyprus. During the political unrest, between Greek and Turkish Cypriot communities, in 1963, the area became an enclave to the Turkish Cypriots, excluding any contact with the rest of the area. Following the Turkish invasion of 1974, the residents left their homes, plots and workplaces, resettling in the North of Cyprus. Greek Cypriot refugees moved into the area. The presence of the Greek Cypriot refugees is still considered to be a temporary resettlement. The buildings and the residents themselves exist in a state of uncertainty. The site is documented through a series of parallel investigations into the physical conditions and history of the site. Research methodologies use the process of mapping to expose the complex and often invisible layers of information that coexist. By registering the site through the subjective experiences, and everyday stories of inhabitants, a series of cartographic recordings reveals the space between: happening and narrative and especially space between different cultures and religions. Research put specific emphasis on engaging the public, promoting social interaction, identifying spatial patterns of occupation by previous inhabitants through social media. Findings exposed three main areas of interest. Firstly we identified inter-dependent relationships between permanence and temporality, characterised by elements such us, signage through layers of time, past events and periodical street festivals, unfolding memory and belonging. Secondly issues of co-ownership and occupation, found through particular narratives of exchange between the two communities and through appropriation of space. Finally formal and informal inhabitation of space, revealed through the presence of informal shared back yards, alternative paths, porous street edges and formal and informal landmarks. The importance of the above findings, was achieving a shift of focus from the built infrastructure to the soft network of multiple and complex relations of dependence and autonomy. Proposed interventions for this contested site were informed and led by a new multicultural identity where invisible qualities were revealed though the process of mapping, taking on issues of layers of time, formal and informal inhabitation and the “permanence of the temporary”.

Keywords: contested sites, mapping, social sustainability, temporary urban strategies

Procedia PDF Downloads 404
11 Linguistic Insights Improve Semantic Technology in Medical Research and Patient Self-Management Contexts

Authors: William Michael Short

Abstract:

Semantic Web’ technologies such as the Unified Medical Language System Metathesaurus, SNOMED-CT, and MeSH have been touted as transformational for the way users access online medical and health information, enabling both the automated analysis of natural-language data and the integration of heterogeneous healthrelated resources distributed across the Internet through the use of standardized terminologies that capture concepts and relationships between concepts that are expressed differently across datasets. However, the approaches that have so far characterized ‘semantic bioinformatics’ have not yet fulfilled the promise of the Semantic Web for medical and health information retrieval applications. This paper argues within the perspective of cognitive linguistics and cognitive anthropology that four features of human meaning-making must be taken into account before the potential of semantic technologies can be realized for this domain. First, many semantic technologies operate exclusively at the level of the word. However, texts convey meanings in ways beyond lexical semantics. For example, transitivity patterns (distributions of active or passive voice) and modality patterns (configurations of modal constituents like may, might, could, would, should) convey experiential and epistemic meanings that are not captured by single words. Language users also naturally associate stretches of text with discrete meanings, so that whole sentences can be ascribed senses similar to the senses of words (so-called ‘discourse topics’). Second, natural language processing systems tend to operate according to the principle of ‘one token, one tag’. For instance, occurrences of the word sound must be disambiguated for part of speech: in context, is sound a noun or a verb or an adjective? In syntactic analysis, deterministic annotation methods may be acceptable. But because natural language utterances are typically characterized by polyvalency and ambiguities of all kinds (including intentional ambiguities), such methods leave the meanings of texts highly impoverished. Third, ontologies tend to be disconnected from everyday language use and so struggle in cases where single concepts are captured through complex lexicalizations that involve profile shifts or other embodied representations. More problematically, concept graphs tend to capture ‘expert’ technical models rather than ‘folk’ models of knowledge and so may not match users’ common-sense intuitions about the organization of concepts in prototypical structures rather than Aristotelian categories. Fourth, and finally, most ontologies do not recognize the pervasively figurative character of human language. However, since the time of Galen the widespread use of metaphor in the linguistic usage of both medical professionals and lay persons has been recognized. In particular, metaphor is a well-documented linguistic tool for communicating experiences of pain. Because semantic medical knowledge-bases are designed to help capture variations within technical vocabularies – rather than the kinds of conventionalized figurative semantics that practitioners as well as patients actually utilize in clinical description and diagnosis – they fail to capture this dimension of linguistic usage. The failure of semantic technologies in these respects degrades the efficiency and efficacy not only of medical research, where information retrieval inefficiencies can lead to direct financial costs to organizations, but also of care provision, especially in contexts of patients’ self-management of complex medical conditions.

Keywords: ambiguity, bioinformatics, language, meaning, metaphor, ontology, semantic web, semantics

Procedia PDF Downloads 114
10 Multifield Problems in 3D Structural Analysis of Advanced Composite Plates and Shells

Authors: Salvatore Brischetto, Domenico Cesare

Abstract:

Major improvements in future aircraft and spacecraft could be those dependent on an increasing use of conventional and unconventional multilayered structures embedding composite materials, functionally graded materials, piezoelectric or piezomagnetic materials, and soft foam or honeycomb cores. Layers made of such materials can be combined in different ways to obtain structures that are able to fulfill several structural requirements. The next generation of aircraft and spacecraft will be manufactured as multilayered structures under the action of a combination of two or more physical fields. In multifield problems for multilayered structures, several physical fields (thermal, hygroscopic, electric and magnetic ones) interact each other with different levels of influence and importance. An exact 3D shell model is here proposed for these types of analyses. This model is based on a coupled system including 3D equilibrium equations, 3D Fourier heat conduction equation, 3D Fick diffusion equation and electric and magnetic divergence equations. The set of partial differential equations of second order in z is written using a mixed curvilinear orthogonal reference system valid for spherical and cylindrical shell panels, cylinders and plates. The order of partial differential equations is reduced to the first one thanks to the redoubling of the number of variables. The solution in the thickness z direction is obtained by means of the exponential matrix method and the correct imposition of interlaminar continuity conditions in terms of displacements, transverse stresses, electric and magnetic potentials, temperature, moisture content and transverse normal multifield fluxes. The investigated structures have simply supported sides in order to obtain a closed form solution in the in-plane directions. Moreover, a layerwise approach is proposed which allows a 3D correct description of multilayered anisotropic structures subjected to field loads. Several results will be proposed in tabular and graphical formto evaluate displacements, stresses and strains when mechanical loads, temperature gradients, moisture content gradients, electric potentials and magnetic potentials are applied at the external surfaces of the structures in steady-state conditions. In the case of inclusions of piezoelectric and piezomagnetic layers in the multilayered structures, so called smart structures are obtained. In this case, a free vibration analysis in open and closed circuit configurations and a static analysis for sensor and actuator applications will be proposed. The proposed results will be useful to better understand the physical and structural behaviour of multilayered advanced composite structures in the case of multifield interactions. Moreover, these analytical results could be used as reference solutions for those scientists interested in the development of 3D and 2D numerical shell/plate models based, for example, on the finite element approach or on the differential quadrature methodology. The correct impositions of boundary geometrical and load conditions, interlaminar continuity conditions and the zigzag behaviour description due to transverse anisotropy will be also discussed and verified.

Keywords: composite structures, 3D shell model, stress analysis, multifield loads, exponential matrix method, layer wise approach

Procedia PDF Downloads 53
9 Skin-to-Skin Contact Simulation: Improving Health Outcomes for Medically Fragile Newborns in the Neonatal Intensive Care Unit

Authors: Gabriella Zarlenga, Martha L. Hall

Abstract:

Introduction: Premature infants are at risk for neurodevelopmental deficits and hospital readmissions, which can increase the financial burden on the health care system and families. Kangaroo care (skin-to-skin contact) is a practice that can improve preterm infant health outcomes. Preterm infants can acquire adequate body temperature, heartbeat, and breathing regulation through lying directly on the mother’s abdomen and in between her breasts. Due to some infant’s condition, kangaroo care is not a feasible intervention. The purpose of this proof-of-concept research project is to create a device which simulates skin-to-skin contact for pre-term infants not eligible for kangaroo care, with the aim of promoting baby’s health outcomes, reducing the incidence of serious neonatal and early childhood illnesses, and/or improving cognitive, social and emotional aspects of development. Methods: The study design is a proof-of-concept based on a three-phase approach; (1) observational study and data analysis of the standard of care for 2 groups of pre-term infants, (2) design and concept development of a novel device for pre-term infants not currently eligible for standard kangaroo care, and (3) prototyping, laboratory testing, and evaluation of the novel device in comparison to current assessment parameters of kangaroo care. A single center study will be conducted in an area hospital offering Level III neonatal intensive care. Eligible participants include newborns born premature (28-30 weeks of age) admitted to the NICU. The study design includes 2 groups: a control group receiving standard kangaroo care and an experimental group not eligible for kangaroo care. Based on behavioral analysis of observational video data collected in the NICU, the device will be created to simulate mother’s body using electrical components in a thermoplastic polymer housing covered in silicone. It will be designed with a microprocessor that controls simulated respiration, heartbeat, and body temperature of the 'simulated caregiver' by using a pneumatic lung, vibration sensors (heartbeat), pressure sensors (weight/position), and resistive film to measure temperature. A slight contour of the simulator surface may be integrated to help position the infant correctly. Control and monitoring of the skin-to-skin contact simulator would be performed locally by an integrated touchscreen. The unit would have built-in Wi-Fi connectivity as well as an optional Bluetooth connection in which the respiration and heart rate could be synced with a parent or caregiver. A camera would be integrated, allowing a video stream of the infant in the simulator to be streamed to a monitoring location. Findings: Expected outcomes are stabilization of respiratory and cardiac rates, thermoregulation of those infants not eligible for skin to skin contact with their mothers, and real time mother Bluetooth to the device to mimic the experience in the womb. Results of this study will benefit clinical practice by creating a new standard of care for premature neonates in the NICU that are deprived of skin to skin contact due to various health restrictions.

Keywords: kangaroo care, wearable technology, pre-term infants, medical design

Procedia PDF Downloads 146
8 An E-Maintenance IoT Sensor Node Designed for Fleets of Diverse Heavy-Duty Vehicles

Authors: George Charkoftakis, Panagiotis Liosatos, Nicolas-Alexander Tatlas, Dimitrios Goustouridis, Stelios M. Potirakis

Abstract:

E-maintenance is a relatively new concept, generally referring to maintenance management by monitoring assets over the Internet. One of the key links in the chain of an e-maintenance system is data acquisition and transmission. Specifically for the case of a fleet of heavy-duty vehicles, where the main challenge is the diversity of the vehicles and vehicle-embedded self-diagnostic/reporting technologies, the design of the data acquisition and transmission unit is a demanding task. This clear if one takes into account that a heavy-vehicles fleet assortment may range from vehicles with only a limited number of analog sensors monitored by dashboard light indicators and gauges to vehicles with plethora of sensors monitored by a vehicle computer producing digital reporting. The present work proposes an adaptable internet of things (IoT) sensor node that is capable of addressing this challenge. The proposed sensor node architecture is based on the increasingly popular single-board computer – expansion boards approach. In the proposed solution, the expansion boards undertake the tasks of position identification by means of a global navigation satellite system (GNSS), cellular connectivity by means of 3G/long-term evolution (LTE) modem, connectivity to on-board diagnostics (OBD), and connectivity to analog and digital sensors by means of a novel design of expansion board. Specifically, the later provides eight analog plus three digital sensor channels, as well as one on-board temperature / relative humidity sensor. The specific device offers a number of adaptability features based on appropriate zero-ohm resistor placement and appropriate value selection for limited number of passive components. For example, although in the standard configuration four voltage analog channels with constant voltage sources for the power supply of the corresponding sensors are available, up to two of these voltage channels can be converted to provide power to the connected sensors by means of corresponding constant current source circuits, whereas all parameters of analog sensor power supply and matching circuits are fully configurable offering the advantage of covering a wide variety of industrial sensors. Note that a key feature of the proposed sensor node, ensuring the reliable operation of the connected sensors, is the appropriate supply of external power to the connected sensors and their proper matching to the IoT sensor node. In standard mode, the IoT sensor node communicates to the data center through 3G/LTE, transmitting all digital/digitized sensor data, IoT device identity, and position. Moreover, the proposed IoT sensor node offers WiFi connectivity to mobile devices (smartphones, tablets) equipped with an appropriate application for the manual registration of vehicle- and driver-specific information, and these data are also forwarded to the data center. All control and communication tasks of the IoT sensor node are performed by dedicated firmware. It is programmed with a high-level language (Python) on top of a modern operating system (Linux). Acknowledgment: This research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship, and Innovation, under the call RESEARCH—CREATE—INNOVATE (project code: T1EDK- 01359, IntelligentLogger).

Keywords: IoT sensor nodes, e-maintenance, single-board computers, sensor expansion boards, on-board diagnostics

Procedia PDF Downloads 138
7 Aeroelastic Stability Analysis in Turbomachinery Using Reduced Order Aeroelastic Model Tool

Authors: Chandra Shekhar Prasad, Ludek Pesek Prasad

Abstract:

In the present day fan blade of aero engine, turboprop propellers, gas turbine or steam turbine low-pressure blades are getting bigger, lighter and thus, become more flexible. Therefore, flutter, forced blade response and vibration related failure of the high aspect ratio blade are of main concern for the designers, thus need to be address properly in order to achieve successful component design. At the preliminary design stage large number of design iteration is need to achieve the utter free safe design. Most of the numerical method used for aeroelastic analysis is based on field-based methods such as finite difference method, finite element method, finite volume method or coupled. These numerical schemes are used to solve the coupled fluid Flow-Structural equation based on full Naiver-Stokes (NS) along with structural mechanics’ equations. These type of schemes provides very accurate results if modeled properly, however, they are computationally very expensive and need large computing recourse along with good personal expertise. Therefore, it is not the first choice for aeroelastic analysis during preliminary design phase. A reduced order aeroelastic model (ROAM) with acceptable accuracy and fast execution is more demanded at this stage. Similar ROAM are being used by other researchers for aeroelastic and force response analysis of turbomachinery. In the present paper new medium fidelity ROAM is successfully developed and implemented in numerical tool to simulated the aeroelastic stability phenomena in turbomachinery and well as flexible wings. In the present, a hybrid flow solver based on 3D viscous-inviscid coupled 3D panel method (PM) and 3d discrete vortex particle method (DVM) is developed, viscous parameters are estimated using boundary layer(BL) approach. This method can simulate flow separation and is a good compromise between accuracy and speed compared to CFD. In the second phase of the research work, the flow solver (PM) will be coupled with ROM non-linear beam element method (BEM) based FEM structural solver (with multibody capabilities) to perform the complete aeroelastic simulation of a steam turbine bladed disk, propellers, fan blades, aircraft wing etc. The partitioned based coupling approach is used for fluid-structure interaction (FSI). The numerical results are compared with experimental data for different test cases and for the blade cascade test case, experimental data is obtained from in-house lab experiments at IT CAS. Furthermore, the results from the new aeroelastic model will be compared with classical CFD-CSD based aeroelastic models. The proposed methodology for the aeroelastic stability analysis of gas turbine or steam turbine blades, or propellers or fan blades will provide researchers and engineers a fast, cost-effective and efficient tool for aeroelastic (classical flutter) analysis for different design at preliminary design stage where large numbers of design iteration are required in short time frame.

Keywords: aeroelasticity, beam element method (BEM), discrete vortex particle method (DVM), classical flutter, fluid-structure interaction (FSI), panel method, reduce order aeroelastic model (ROAM), turbomachinery, viscous-inviscid coupling

Procedia PDF Downloads 246
6 Thermal Characterisation of Multi-Coated Lightweight Brake Rotors for Passenger Cars

Authors: Ankit Khurana

Abstract:

The sufficient heat storage capacity or ability to dissipate heat is the most decisive parameter to have an effective and efficient functioning of Friction-based Brake Disc systems. The primary aim of the research was to analyse the effect of multiple coatings on lightweight disk rotors surface which not only alleviates the mass of vehicle & also, augments heat transfer. This research is projected to aid the automobile fraternity with an enunciated view over the thermal aspects in a braking system. The results of the project indicate that with the advent of modern coating technologies a brake system’s thermal curtailments can be removed and together with forced convection, heat transfer processes can see a drastic improvement leading to increased lifetime of the brake rotor. Other advantages of modifying the surface of a lightweight rotor substrate will be to reduce the overall weight of the vehicle, decrease the risk of thermal brake failure (brake fade and fluid vaporization), longer component life, as well as lower noise and vibration characteristics. A mathematical model was constructed in MATLAB which encompassing the various thermal characteristics of the proposed coatings and substrate materials required to approximate the heat flux values in a free and forced convection environment; resembling to a real-time braking phenomenon which could easily be modelled into a full cum scaled version of the alloy brake rotor part in ABAQUS. The finite element of a brake rotor was modelled in a constrained environment such that the nodal temperature between the contact surfaces of the coatings and substrate (Wrought Aluminum alloy) resemble an amalgamated solid brake rotor element. The initial results obtained were for a Plasma Electrolytic Oxidized (PEO) substrate wherein the Aluminum alloy gets a hard ceramic oxide layer grown on its transitional phase. The rotor was modelled and then evaluated in real-time for a constant ‘g’ braking event (based upon the mathematical heat flux input and convective surroundings), which reflected the necessity to deposit a conducting coat (sacrificial) above the PEO layer in order to inhibit thermal degradation of the barrier coating prematurely. Taguchi study was then used to bring out certain critical factors which may influence the maximum operating temperature of a multi-coated brake disc by simulating brake tests: a) an Alpine descent lasting 50 seconds; b) an Autobahn stop lasting 3.53 seconds; c) a Six–high speed repeated stop in accordance to FMVSS 135 lasting 46.25 seconds. Thermal Barrier coating thickness and Vane heat transfer coefficient were the two most influential factors and owing to their design and manufacturing constraints a final optimized model was obtained which survived the 6-high speed stop test as per the FMVSS -135 specifications. The simulation data highlighted the merits for preferring Wrought Aluminum alloy 7068 over Grey Cast Iron and Aluminum Metal Matrix Composite in coherence with the multiple coating depositions.

Keywords: lightweight brakes, surface modification, simulated braking, PEO, aluminum

Procedia PDF Downloads 393
5 Enabling and Ageing-Friendly Neighbourhoods: An Eye-Tracking Study of Multi-Sensory Experience of Senior Citizens in Singapore

Authors: Zdravko Trivic, Kelvin E. Y. Low, Darko Radovic, Raymond Lucas

Abstract:

Our understanding and experience of the built environment are primarily shaped by multi‐sensory, emotional and symbolic modes of exchange with spaces. Associated sensory and cognitive declines that come with ageing substantially affect the overall quality of life of the elderly citizens and the ways they perceive and use urban environment. Reduced mobility and increased risk of falls, problems with spatial orientation and communication, lower confidence and independence levels, decreased willingness to go out and social withdrawal are some of the major consequences of sensory declines that challenge almost all segments of the seniors’ everyday living. However, contemporary urban environments are often either sensory overwhelming or depleting, resulting in physical, mental and emotional stress. Moreover, the design and planning of housing neighbourhoods hardly go beyond the passive 'do-no-harm' and universal design principles, and the limited provision of often non-integrated eldercare and inter-generational facilities. This paper explores and discusses the largely neglected relationships between the 'hard' and 'soft' aspects of housing neighbourhoods and urban experience, focusing on seniors’ perception and multi-sensory experience as vehicles for design and planning of high-density housing neighbourhoods that are inclusive and empathetic yet build senior residents’ physical and mental abilities at different stages of ageing. The paper outlines methods and key findings from research conducted in two high-density housing neighbourhoods in Singapore with aims to capture and evaluate multi-sensorial qualities of two neighbourhoods from the perspective of senior residents. Research methods employed included: on-site sensory recordings of 'objective' quantitative sensory data (air temperature and humidity, sound level and luminance) using multi-function environment meter, spatial mapping of patterns of elderly users’ transient and stationary activity, socio-sensory perception surveys and sensorial journeys with local residents using eye-tracking glasses, and supplemented by walk-along or post-walk interviews. The paper develops a multi-sensory framework to synthetize, cross-reference, and visualise the activity and spatio-sensory rhythms and patterns and distill key issues pertinent to ageing-friendly and health-supportive neighbourhood design. Key findings show senior residents’ concerns with walkability, safety, and wayfinding, overall aesthetic qualities, cleanliness, smell, noise, and crowdedness in their neighbourhoods, as well as the lack of design support for all-day use in the context of Singaporean tropical climate and for inter-generational social interaction. The (ongoing) analysis of eye-tracking data reveals the spatial elements of senior residents’ look at and interact with the most frequently, with the visual range often directed towards the ground. With capacities to meaningfully combine quantitative and qualitative, measured and experienced sensory data, multi-sensory framework shows to be fruitful for distilling key design opportunities based on often ignored aspects of subjective and often taken-for-granted interactions with the familiar outdoor environment. It offers an alternative way of leveraging the potentials of housing neighbourhoods to take a more active role in enabling healthful living at all stages of ageing.

Keywords: ageing-friendly neighbourhoods, eye-tracking, high-density environment, multi-sensory approach, perception

Procedia PDF Downloads 130
4 A Case Study Report on Acoustic Impact Assessment and Mitigation of the Hyprob Research Plant

Authors: D. Bianco, A. Sollazzo, M. Barbarino, G. Elia, A. Smoraldi, N. Favaloro

Abstract:

The activities, described in the present paper, have been conducted in the framework of the HYPROB-New Program, carried out by the Italian Aerospace Research Centre (CIRA) promoted and funded by the Italian Ministry of University and Research (MIUR) in order to improve the National background on rocket engine systems for space applications. The Program has the strategic objective to improve National system and technology capabilities in the field of liquid rocket engines (LRE) for future Space Propulsion Systems applications, with specific regard to LOX/LCH4 technology. The main purpose of the HYPROB program is to design and build a Propulsion Test Facility (HIMP) allowing test activities on Liquid Thrusters. The development of skills in liquid rocket propulsion can only pass through extensive test campaign. Following its mission, CIRA has planned the development of new testing facilities and infrastructures for space propulsion characterized by adequate sizes and instrumentation. The IMP test cell is devoted to testing articles representative of small combustion chambers, fed with oxygen and methane, both in liquid and gaseous phase. This article describes the activities that have been carried out for the evaluation of the acoustic impact, and its consequent mitigation. The impact of the simulated acoustic disturbance has been evaluated, first, using an approximated method based on experimental data by Baumann and Coney, included in “Noise and Vibration Control Engineering” edited by Vér and Beranek. This methodology, used to evaluate the free-field radiation of jet in ideal acoustical medium, analyzes in details the jet noise and assumes sources acting at the same time. It considers as principal radiation sources the jet mixing noise, caused by the turbulent mixing of jet gas and the ambient medium. Empirical models, allowing a direct calculation of the Sound Pressure Level, are commonly used for rocket noise simulation. The model named after K. Eldred is probably one of the most exploited in this area. In this paper, an improvement of the Eldred Standard model has been used for a detailed investigation of the acoustical impact of the Hyprob facility. This new formulation contains an explicit expression for the acoustic pressure of each equivalent noise source, in terms of amplitude and phase, allowing the investigation of the sources correlation effects and their propagation through wave equations. In order to enhance the evaluation of the facility acoustic impact, including an assessment of the mitigation strategies to be set in place, a more advanced simulation campaign has been conducted using both an in-house code for noise propagation and scattering, and a commercial code for industrial noise environmental impact, CadnaA. The noise prediction obtained with the revised Eldred-based model has then been used for formulating an empirical/BEM (Boundary Element Method) hybrid approach allowing the evaluation of the barrier mitigation effect, at the design. This approach has been compared with the analogous empirical/ray-acoustics approach, implemented within CadnaA using a customized definition of sources and directivity factor. The resulting impact evaluation study is reported here, along with the design-level barrier optimization for noise mitigation.

Keywords: acoustic impact, industrial noise, mitigation, rocket noise

Procedia PDF Downloads 129
3 Anajaa-Visual Substitution System: A Navigation Assistive Device for the Visually Impaired

Authors: Juan Pablo Botero Torres, Alba Avila, Luis Felipe Giraldo

Abstract:

Independent navigation and mobility through unknown spaces pose a challenge for the autonomy of visually impaired people (VIP), who have relied on the use of traditional assistive tools like the white cane and trained dogs. However, emerging visually assistive technologies (VAT) have proposed several human-machine interfaces (HMIs) that could improve VIP’s ability for self-guidance. Hereby, we introduce the design and implementation of a visually assistive device, Anajaa – Visual Substitution System (AVSS). This system integrates ultrasonic sensors with custom electronics, and computer vision models (convolutional neural networks), in order to achieve a robust system that acquires information of the surrounding space and transmits it to the user in an intuitive and efficient manner. AVSS consists of two modules: the sensing and the actuation module, which are fitted to a chest mount and belt that communicate via Bluetooth. The sensing module was designed for the acquisition and processing of proximity signals provided by an array of ultrasonic sensors. The distribution of these within the chest mount allows an accurate representation of the surrounding space, discretized in three different levels of proximity, ranging from 0 to 6 meters. Additionally, this module is fitted with an RGB-D camera used to detect potentially threatening obstacles, like staircases, using a convolutional neural network specifically trained for this purpose. Posteriorly, the depth data is used to estimate the distance between the stairs and the user. The information gathered from this module is then sent to the actuation module that creates an HMI, by the means of a 3x2 array of vibration motors that make up the tactile display and allow the system to deliver haptic feedback. The actuation module uses vibrational messages (tactones); changing both in amplitude and frequency to deliver different awareness levels according to the proximity of the obstacle. This enables the system to deliver an intuitive interface. Both modules were tested under lab conditions, and the HMI was additionally tested with a focal group of VIP. The lab testing was conducted in order to establish the processing speed of the computer vision algorithms. This experimentation determined that the model can process 0.59 frames per second (FPS); this is considered as an adequate processing speed taking into account that the walking speed of VIP is 1.439 m/s. In order to test the HMI, we conducted a focal group composed of two females and two males between the ages of 35-65 years. The subject selection was aided by the Colombian Cooperative of Work and Services for the Sightless (COOTRASIN). We analyzed the learning process of the haptic messages throughout five experimentation sessions using two metrics: message discrimination and localization success. These correspond to the ability of the subjects to recognize different tactones and locate them within the tactile display. Both were calculated as the mean across all subjects. Results show that the focal group achieved message discrimination of 70% and a localization success of 80%, demonstrating how the proposed HMI leads to the appropriation and understanding of the feedback messages, enabling the user’s awareness of its surrounding space.

Keywords: computer vision on embedded systems, electronic trave aids, human-machine interface, haptic feedback, visual assistive technologies, vision substitution systems

Procedia PDF Downloads 63
2 Designing and Simulation of the Rotor and Hub of the Unmanned Helicopter

Authors: Zbigniew Czyz, Ksenia Siadkowska, Krzysztof Skiba, Karol Scislowski

Abstract:

Today’s progress in the rotorcraft is mostly associated with an optimization of aircraft performance achieved by active and passive modifications of main rotor assemblies and a tail propeller. The key task is to improve their performance, improve the hover quality factor for rotors but not change in specific fuel consumption. One of the tasks to improve the helicopter is an active optimization of the main rotor providing for flight stages, i.e., an ascend, flight, a descend. An active interference with the airflow around the rotor blade section can significantly change characteristics of the aerodynamic airfoil. The efficiency of actuator systems modifying aerodynamic coefficients in the current solutions is relatively high and significantly affects the increase in strength. The solution to actively change aerodynamic characteristics assumes a periodic change of geometric features of blades depending on flight stages. Changing geometric parameters of blade warping enables an optimization of main rotor performance depending on helicopter flight stages. Structurally, an adaptation of shape memory alloys does not significantly affect rotor blade fatigue strength, which contributes to reduce costs associated with an adaptation of the system to the existing blades, and gains from a better performance can easily amortize such a modification and improve profitability of such a structure. In order to obtain quantitative and qualitative data to solve this research problem, a number of numerical analyses have been necessary. The main problem is a selection of design parameters of the main rotor and a preliminary optimization of its performance to improve the hover quality factor for rotors. This design concept assumes a three-bladed main rotor with a chord of 0.07 m and radius R = 1 m. The value of rotor speed is a calculated parameter of an optimization function. To specify the initial distribution of geometric warping, a special software has been created that uses a numerical method of a blade element which respects dynamic design features such as fluctuations of a blade in its joints. A number of performance analyses as a function of rotor speed, forward speed, and altitude have been performed. The calculations were carried out for the full model assembly. This approach makes it possible to observe the behavior of components and their mutual interaction resulting from the forces. The key element of each rotor is the shaft, hub and pins holding the joints and blade yokes. These components are exposed to the highest loads. As a result of the analysis, the safety factor was determined at the level of k > 1.5, which gives grounds to obtain certification for the strength of the structure. The construction of the joint rotor has numerous moving elements in its structure. Despite the high safety factor, the places with the highest stresses, where the signs of wear and tear may appear, have been indicated. The numerical analysis carried out showed that the most loaded element is the pin connecting the modular bearing of the blade yoke with the element of the horizontal oscillation joint. The stresses in this element result in a safety factor of k=1.7. The other analysed rotor components have a safety factor of more than 2 and in the case of the shaft, this factor is more than 3. However, it must be remembered that the structure is as strong as the weakest cell is. Designed rotor for unmanned aerial vehicles adapted to work with blades with intelligent materials in its structure meets the requirements for certification testing. Acknowledgement: This work has been financed by the Polish National Centre for Research and Development under the LIDER program, Grant Agreement No. LIDER/45/0177/L-9/17/NCBR/2018.

Keywords: main rotor, rotorcraft aerodynamics, shape memory alloy, materials, unmanned helicopter

Procedia PDF Downloads 134
1 Sandstone Petrology of the Kolhan Basin, Eastern India: Implications for the Tectonic Evolution of a Half-Graben

Authors: Rohini Das, Subhasish Das, Smruti Rekha Sahoo, Shagupta Yesmin

Abstract:

The Paleoproterozoic Kolhan Group (Purana) ensemble constitutes the youngest lithostratigraphic 'outlier' in the Singhbhum Archaean craton. The Kolhan unconformably overlies both the Singhbhum granite and the Iron Ore Group (IOG). Representing a typical sandstone-shale ( +/- carbonates) sequence, the Kolhan is characterized by the development of thin and discontinuous patches of basal conglomerates draped by sandstone beds. The IOG-fault limits the western 'distal' margin of the Kolhan basin showing evidence of passive subsidence subsequent to the initial rifting stage. The basin evolved as a half-graben under the influence of an extensional stress regime. The assumption of a tectonic setting for the NE-SW trending Kolhan basin possibly relates to the basin opening to the E-W extensional stress system that prevailed during the development of the Newer Dolerite dyke. The Paleoproterozoic age of the Kolhan basin is based on the consideration of the conformable stress pattern responsible both for the basin opening and the development of the conjugate fracture system along which the Newer Dolerite dykes intruded the Singhbhum Archaean craton. The Kolhan sandstones show progressive change towards greater textural and mineralogical maturity in its upbuilding. The trend of variations in different mineralogical and textural attributes, however, exhibits inflections at different lithological levels. Petrological studies collectively indicate that the sandstones were dominantly derived from a weathered granitic crust under a humid climatic condition. Provenance-derived variations in sandstone compositions are therefore a key in unraveling regional tectonic histories. The basin axis controlled the progradation direction which was likely driven by climatically induced sediment influx, a eustatic fall, or both. In the case of the incongruent shift, increased sediment supply permitted the rivers to cross the basinal deep. Temporal association of the Kolhan with tectonic structures in the belt indicates that syn-tectonic thrust uplift, not isostatic uplift or climate, caused the influx of quartz. The sedimentation pattern in the Kolhan reflects a change from braided fluvial-ephemeral pattern to a fan-delta-lacustrine type. The channel geometries and the climate exerted a major control on the processes of sediment transfer. Repeated fault controlled uplift of the source followed by subsidence and forced regression, generated multiple sediment cyclicity that led to the fluvial-fan delta sedimentation pattern. Intermittent uplift of the faulted blocks exposed fresh bedrock to mechanical weathering that generated a large amount of detritus and resulted to forced regressions, repeatedly disrupting the cycles which may reflect a stratigraphic response of connected rift basins at the early stage of extension. The marked variations in the thickness of the fan delta succession and the stacking pattern in different measured profiles reflect the overriding tectonic controls on fan delta evolution. The accumulated fault displacement created higher accommodation and thicker delta sequences. Intermittent uplift of fault blocks exposed fresh bedrock to mechanical weathering, generated a large amount of detritus, and resulted in forced closure of the land-locked basin, repeatedly disrupting the fining upward pattern. The control of source rock lithology or climate was of secondary importance to tectonic effects. Such a retrograding fan delta could be a stratigraphic response of connected rift basins at the early stage of extension.

Keywords: Kolhan basin, petrology, sandstone, tectonics

Procedia PDF Downloads 482