Search results for: micro hydro
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2085

Search results for: micro hydro

435 Raw Japanese Quail Egg Produces Analgesic, Anti-Inflammatory and Gastro-Protective Effects in Rats

Authors: Sani Ismaila, Shafiu Yau, Abubakar Salisu, Buhari Salisu, Sharifat Balogun, Mustapha Abubakar, Biobaku Khalid, Agaie Bello

Abstract:

Over the years, Japanese quail egg has been in use in the management of diseases. The objective of this study was to evaluate the analgesic, anti-inflammatory and gastroprotective effects of raw Quail egg (yolk + albumin) in rats. Pain was assessed in rats by recording the latent period and writing reflex, anti-inflammatory effect was determined using both motility and compression test, while the gastro-protective effects were assessed by observing the histology of the stomach after diclofenac-induced gastric ulcers and subsequent treatment with the quail egg, Rats were randomly assigned into 4 groups; Groups I: were the control non-treated (NT), Group II were treated with Tramadol 50 mg/kg/Os (TMD) or Indomethacin (IND) 5mg/kg/Os (positive control for the writhing reflex determination), while group III and IV were treated with 3 and 6g/kg of raw quail egg respectively). Groups treated with quail egg in both doses showed a significant increase in the latent period (p <0 .05) when compared to the control NT, but lower than the group treated with tramadol at 20mins interval (p<0.05). Writing reflexes decrease in groups II, III, and IV compared to the NT group (p < 0.05). While motility increases significantly (p < 0.05) in groups II, compared to I (p<0.05). Control non-treated rats showed a quicker and extensive response to compression using the Vanier calliper on the inflamed paw compared to groups II-IV (p < 0.05). Histological studies of the stomach revealed sloughing of the epithelia, cellular infiltration with micro abscesses in the non-treated, while groups treated concurrently with quail egg showed proliferation of the glandular epithelia and goblet cells, and those treated 30 minutes before diclofenac administration showed proliferation of glands and thickening of the squamous epithelia. This study showed that quail egg has analgesic, anti-inflammatory and gastro-protective potentials and can be used as adjuvant treatment whenever COX-2 enzymes inhibitors are indicated.

Keywords: analgesia, anti-inflammatory, gastroprotective effect, japanese quail egg

Procedia PDF Downloads 367
434 Impact of Different Ripening Accelerators on the Microbial Load and Proximate Composition of Plantain (Musa paradisiaca) and Banana (Musa sapientum), during the Ripening Process, and the Nutrition Implication for Food Security

Authors: Wisdom Robert Duruji, Oluwasegun Christopher Akinleye

Abstract:

This study reports on the impact of different ripening accelerators on the microbial load and proximate composition of plantain (Musa paradisiaca) and Banana (Musa sapientum) during the ripening process, and the nutrition implication for food security. The study comprised of four treatments, namely: Calcium carbide, Irvingia gabonensis fruits, Newbouldia laevis leaves and a control, where no ripening accelerator was applied to the fingers of plantain and banana. The unripe and ripened plantain and banana were subjected to microbial analysis by isolating and enumerating their micro flora using pour plate method; and also, their proximate composition was determined using standard methods. The result indicated that the bacteria count of plantain increased from 3.25 ± 0.33 for unripe to 5.31 ± 0.30 log cfu/g for (treated) ripened, and that of banana increased from 3.69 ± 0.11 for unripe to 5.26 ± 0.21 log cfu/g for ripened. Also, the fungal count of plantain increased from 3.20 ± 0.16 for unripe to 4.88 ± 0.22 log sfu/g for ripened; and that of banana increased from 3.61 ± 0.19 for unripe to 5.43 ± 0.26 for ripened. Ripened plantain fingers without any ripening accelerator (control) had significantly (p < 0.05) higher values of crude protein 3.56 ± 0.06%, crude fat 0.42 ± 0.04%, total ash 2.74 ± 0.15 and carbohydrate 31.10 ± 0.20; but with significantly lower value of moisture 62.14 ± 0.07% when compared with treated plantain. The proximate composition trend of treated and banana fingers control is similar to that of treated and plantain control, except that higher moisture content of 75.11 ± 0.07% and lesser protein, crude fat, total ash and carbohydrate were obtained from treated and ripened banana control when the treatments were compared with that of plantain. The study concluded that plantain is more nutritious (mealy) than a banana; also, the ripening accelerators increased the microbial load and reduced the nutritional status of plantain and banana.

Keywords: food nutrition, calcium carbide, rvingia gabonensis, newbouldia laevis, plantain, banana

Procedia PDF Downloads 297
433 Numerical Simulation of Convective and Transport Processes in the Nocturnal Atmospheric Surface Layer

Authors: K. R. Sreenivas, Shaurya Kaushal

Abstract:

After sunset, under calm & clear-sky nocturnal conditions, the air layer near the surface containing aerosols cools through radiative processes to the upper atmosphere. Due to this cooling, surface air-layer temperature can fall 2-6 degrees C lower than the ground-surface temperature. This unstable convection layer, on the top, is capped by a stable inversion-boundary layer. Radiative divergence, along with the convection within the surface layer, governs the vertical transport of heat and moisture. Micro-physics in this layer have implications for the occurrence and growth of the fog layer. This particular configuration, featuring a convective mixed layer beneath a stably stratified inversion layer, exemplifies a classic case of penetrative convection. In this study, we conduct numerical simulations of the penetrative convection phenomenon within the nocturnal atmospheric surface layer and elucidate its relevance to the dynamics of fog layers. We employ field and laboratory measurements of aerosol number density to model the strength of the radiative cooling. Our analysis encompasses horizontally averaged, vertical profiles of temperature, density, and heat flux. The energetic incursion of the air from the mixed layer into the stable inversion layer across the interface results in entrainment and the growth of the mixed layer, modeling of which is the key focus of our investigation. In our research, we ascertain the appropriate length scale to employ in the Richardson number correlation, which allows us to estimate the entrainment rate and model the growth of the mixed layer. Our analysis of the mixed layer and the entrainment zone reveals a close alignment with previously reported laboratory experiments on penetrative convection. Additionally, we demonstrate how aerosol number density influences the growth or decay of the mixed layer. Furthermore, our study suggests that the presence of fog near the ground surface can induce extensive vertical mixing, a phenomenon observed in field experiments.

Keywords: inversion layer, penetrative convection, radiative cooling, fog occurrence

Procedia PDF Downloads 56
432 Nanomaterials-Assisted Drilling Fluids for Application in Oil Fields - Challenges and Prospects

Authors: Husam Mohammed Saleh Alziyadi

Abstract:

The drilling fluid has a significant impact on drilling efficiency. Drilling fluids have several functions which make them most important within the drilling process, such as lubricating and cooling the drill bit, removing cuttings from down of hole, preventing formation damage, suspending drill bit cuttings, , and also removing permeable formation as a result, the flow of fluid into the formation process is delayed. In the oil and gas sector, unconventional shale reserves have been a central player in meeting world energy demands. Oil-based drilling fluids (OBM) are generally favored for drilling shale plays due to negligible chemical interactions. Nevertheless, the industry has been inspired by strict environmental regulations to design water-based drilling fluids (WBM) capable of regulating shale-water interactions to boost their efficiency. However, traditional additives are too large to plug the micro-fractures and nanopores of the shale. Recently, nanotechnology in the oil and gas industries has shown a lot of promise, especially with drilling fluids based on nanoparticles. Nanotechnology has already made a huge contribution to technical developments in the energy sector. In the drilling industry, nanotechnology can make revolutionary changes. Nanotechnology creates nanomaterials with many attractive properties that can play an important role in improving the consistency of mud cake, reducing friction, preventing differential pipe sticking, preserving the stability of the borehole, protecting reservoirs, and improving the recovery of oil and gas. The selection of suitable nanomaterials should be based on the shale formation characteristics intended for drilling. The size, concentration, and stability of the NPs are three more important considerations. The effects of the environment are highly sensitive to these materials, such as changes in ionic strength, temperature, or pH, all of which occur under downhole conditions. This review paper focused on the previous research and recent development of environmentally friendly drilling fluids according to the regulatory environment and cost challenges.

Keywords: nanotechnology, WBM, Drilling Fluid, nanofluids

Procedia PDF Downloads 106
431 Comparative Study of Analgesic Efficacy of Ultrasound Guided Femoral Nerve Block Versus Intravenous Fentanyl Injection in Fracture Femur Patients at Emergency Department

Authors: Asmaa Hamdy, Israa Nassar, Tarek Aly

Abstract:

Introduction: Femoral fractures are the most common presentation in the Emergency Department (ED), and they can present as isolated injuries or as part of a polytrauma situation. To provide optimum pain management care to these patients, practitioners must be well prepared and current with utilizing modern evidence-based knowledge and practices. Management of pain associated with fracture femur in the emergency department has a critical role in the satisfaction of patients and preventing further complications. This study aimed to evaluate the analgesic efficacy of ultrasound-guided femoral nerve block compared with intravenous fentanyl in fractures of the femur in patients presented to the Emergency Department. Patients and Methods: Fifty patients with femur fractures were divided into two groups: Group A: In this group (twenty-five patients) were given intravenous fentanyl 2 micro-grams/kg and re-assessed for pain by Visual Analogue Score (VAS). Group B: In this group (twenty-five patients) underwent ultrasonography-guided femoral nerve block and were re-assessed for pain by VAS. Results: VAS score on the movement of the fractured limb between group A and group B at a 10-minute post-intervention period shows P= 0.043, and hence the difference is significant. VAS score on the movement of the fractured limb between group A and group B during a 10-minute post-intervention period showed a significant difference. Seventeen patients in group A had major PID with a percentage of 63% VS 10 patients in group B with a percentage of 37%. conclusion: both femoral nerve block and intravenous fentanyl are effective in relieving pain in patients with femur fractures. But femoral nerve block provides better and more intense analgesia and major pain intensity difference in less time. Moreover, the use of FNB had fewer side effects and more Hemodynamics stability compared to opioids.

Keywords: femur fracture, nerve block, fentanyl, ultrasound guided

Procedia PDF Downloads 79
430 Decomposition of Solidification Carbides during Cyclic Thermal Treatments in a Co-Based Alloy Deposit Applied to Stainless Steel

Authors: Sellidj Abdelaziz, Lebaili Soltane

Abstract:

A cobalt-based alloy type Co-Cr-Ni-WC was deposited by plasma transferred arc projection (PTA) on a stainless steel valve. The alloy is characterized at the equilibrium by a solid solution Co (γ) mainly dendritic, and eutectic carbides M₇C₃ and ηM₆C. At the deposit/substrate interface, this microstructure is modified by the fast cooling mode of the alloy when applied in the liquid state on the relatively cold steel substrate. The structure formed in this case is heterogeneous and metastable phases can occur and evolve over temperature service. Coating properties and reliability are directly related to microstructures formed during deposition. We were interested more particularly in this microstructure formed during the solidification of the deposit in the region of the interface joining the soldered couple and its evolution during cyclic heat treatments at temperatures similar to those of the thermal environment of the valve. The characterization was carried out by SEM-EDS microprobe CAMECA, XRD, and micro hardness profiles. The deposit obtained has a linear and regular appearance that is free of cracks and with little porosity. The morphology of the microstructure represents solidification stages that are relatively fast with a temperature gradient high at the beginning of the interface by forming a plane front solid solution Co (γ). It gradually changes with the decreasing temperature gradient by getting farther from the junction towards the outer limit of the deposit. The matrix takes the forms: cellular, mixed (cells and dendrites) and dendritic. Dendritic growth is done according to primary ramifications in the direction of the heat removal which takes place in the direction perpendicular to the interface, towards the external surface of the deposit, following secondary and tertiary undeveloped arms. The eutectic carbides M₇C₃ and ηM₆C formed are very thin and are located in the intercellular and interdendritic spaces of the solid solution Co (γ).

Keywords: Co-Ni-Cr-W-C alloy, solid deposit, microstructure, carbides, cyclic heat treatment

Procedia PDF Downloads 100
429 Impact of Sociocultural Factors on Management and Utilization of Solid Waste in Ibadan Metropolis, Nigeria

Authors: Olufunmilayo Folaranmi

Abstract:

This research was carried out to examine the impact of socio-cultural factors on the management and utilization of solid waste in Ibadan Metropolis. A descriptive survey research design was adopted for the study while a systematic and stratified random sampling technique was used to select 300 respondents which were categorized into high, middle and low-density areas. Four hypothesis were tested using chi-square test on variables of unavailability of waste disposal facilities and waste management, negligence of contractors to liaise with community members, lack of adequate environmental education and waste management and utilization, low level of motivation of sanitation workers with solid wastes management, lack of community full participation with solid waste management and utilization. Results showed that significant effect of waste disposal facilities on solid waste management and utilization (X2 +16.6, P < .05). Also, there is a significant relationship between negligence of the contractors to liaise with community elites with improper disposal (X2 = 87.5, P < .05). The motivation of sanitation workers is significantly related to solid waste management (X2 = 70.4, P < .05). Adequate environmental education and awareness influenced solid waste management. There was also a significant relationship between lack of community participation with waste management disposal and improper waste disposal. Based on the findings from the study it was recommended that the quality of life in urban centers should be improved, social welfare of the populace enhanced and environment should be adequately attended to. Poverty alleviation programmes should be intensified and made to live beyond the life of a particular administration, micro-credit facilities should be available to community members to promote their welfare. Lastly, sustained environmental education programmes for citizens at all levels of education, formal and informal through the use of agencies like Ethical and Attitudinal Reorientation Commission (EARCOM) and the National Orientation Agency (NOA).

Keywords: management, social welfare, socio-cultural factors, solid waste

Procedia PDF Downloads 211
428 Improving Efficiencies of Planting Configurations on Draft Environment of Town Square: The Case Study of Taichung City Hall in Taichung, Taiwan

Authors: Yu-Wen Huang, Yi-Cheng Chiang

Abstract:

With urban development, lots of buildings are built around the city. The buildings always affect the urban wind environment. The accelerative situation of wind caused of buildings often makes pedestrians uncomfortable, even causes the accidents and dangers. Factors influencing pedestrian level wind including atmospheric boundary layer, wind direction, wind velocity, planting, building volume, geometric shape of the buildings and adjacent interference effects, etc. Planting has many functions including scraping and slowing urban heat island effect, creating a good visual landscape, increasing urban green area and improve pedestrian level wind. On the other hand, urban square is an important space element supporting the entrance to buildings, city landmarks, and activity collections, etc. The appropriateness of urban square environment usually dominates its success. This research focuses on the effect of tree-planting on the wind environment of urban square. This research studied the square belt of Taichung City Hall. Taichung City Hall is a cuboid building with a large mass opening. The square belt connects the front square, the central opening and the back square. There is often wind draft on the square belt. This phenomenon decreases the activities on the squares. This research applies tree-planting to improve the wind environment and evaluate the effects of two types of planting configuration. The Computational Fluid Dynamics (CFD) simulation analysis and extensive field measurements are applied to explore the improve efficiency of planting configuration on wind environment. This research compares efficiencies of different kinds of planting configuration, including the clustering array configuration and the dispersion, and evaluates the efficiencies by the SET*.

Keywords: micro-climate, wind environment, planting configuration, comfortableness, computational fluid dynamics (CFD)

Procedia PDF Downloads 283
427 Lithuanian Sign Language Literature: Metaphors at the Phonological Level

Authors: Anželika Teresė

Abstract:

In order to solve issues in sign language linguistics, address matters pertaining to maintaining high quality of sign language (SL) translation, contribute to dispelling misconceptions about SL and deaf people, and raise awareness and understanding of the deaf community heritage, this presentation discusses literature in Lithuanian Sign Language (LSL) and inherent metaphors that are created by using the phonological parameter –handshape, location, movement, palm orientation and nonmanual features. The study covered in this presentation is twofold, involving both the micro-level analysis of metaphors in terms of phonological parameters as a sub-lexical feature and the macro-level analysis of the poetic context. Cognitive theories underlie research of metaphors in sign language literature in a range of SL. The study follows this practice. The presentation covers the qualitative analysis of 34 pieces of LSL literature. The analysis employs ELAN software widely used in SL research. The target is to examine how specific types of each phonological parameter are used for the creation of metaphors in LSL literature and what metaphors are created. The results of the study show that LSL literature employs a range of metaphors created by using classifier signs and by modifying the established signs. The study also reveals that LSL literature tends to create reference metaphors indicating status and power. As the study shows, LSL poets metaphorically encode status by encoding another meaning in the same sign, which results in creating double metaphors. The metaphor of identity has been determined. Notably, the poetic context has revealed that the latter metaphor can also be identified as a metaphor for life. The study goes on to note that deaf poets create metaphors related to the importance of various phenomena significance of the lyrical subject. Notably, the study has allowed detecting locations, nonmanual features and etc., never mentioned in previous SL research as used for the creation of metaphors.

Keywords: Lithuanian sign language, sign language literature, sign language metaphor, metaphor at the phonological level, cognitive linguistics

Procedia PDF Downloads 119
426 We Are Thriving: Increasing the Number of Women in Engineering

Authors: Kathryn Redmond, Mojdeh Asadollahi Pajouh, Grace Panther, Rick Evans, Stacey Kulesza, Jia Liang

Abstract:

An on-going focus in engineering education research is on increasing the number of women in engineering. While the number of women participating in engineering project teams has increased over the past five years, the number of women enrolled in engineering colleges remains stagnant. Previous studies have explored why the number of women enrolled in engineering colleges remains small. In doing so, researchers focused primarily on negative experiences women encountered. Instead of looking at negative experiences, which can further deter women from entering the field, the aim of this study is to explore the personal and institutional factors that allow women to succeed and thrive in undergraduate engineering programs. There are two research questions addressed in this paper. The first is: what are the personal traits and characteristics that allow women to thrive in engineering? The other is: what are the institutional policies and culture, as well as micro-level behaviors on project teams, that influence the environment for women to thrive in engineering? Two women studying engineering at an R1 university were interviewed. Each woman was interviewed three times for a total of six interviews. The phenomenographic interviews focused on the lived experiences of the participants to better understand thriving in engineering. The first interview focused on the women’s personal life and background, the second on their learning journey and project team experiences, and the third focused on videos the women took through a method called Photovoice. Interviews were transcribed, and an inductive thematic analysis was conducted. Four themes were identified. Multiple coders were utilized to ensure trustworthiness and increase interrater reliability. Results indicate that thriving women have supportive families, experienced gender biases, and enjoy hands-on engineering and creating a final product. These traits and experiences may help inspire younger women to pursue engineering degrees and can help inform institutions as they make policy changes to support women. Additional women will be recruited from four different universities to further develop a theoretical framework to help inform institutions in how they can support women to thrive in engineering.

Keywords: diversity, inclusion, project teams, women in engineering

Procedia PDF Downloads 89
425 Combined Effect of Roughness and Suction on Heat Transfer in a Laminar Channel Flow

Authors: Marzieh Khezerloo, Lyazid Djenidi

Abstract:

Owing to wide range of the micro-device applications, the problems of mixing at small scales is of significant interest. Also, because most of the processes produce heat, it is needed to develop and implement strategies for heat removal in these devices. There are many studies which focus on the effect of roughness or suction on heat transfer performance, separately, although it would be useful to take advantage of these two methods to improve heat transfer performance. Unfortunately, there is a gap in this area. The present numerical study is carried to investigate the combined effects of roughness and wall suction on heat transfer performance of a laminar channel flow; suction is applied on the top and back faces of the roughness element, respectively. The study is carried out for different Reynolds numbers, different suction rates, and various locations of suction area on the roughness. The flow is assumed two dimensional, incompressible, laminar, and steady state. The governing Navier-Stokes equations are solved using ANSYS-Fluent 18.2 software. The present results are tested against previous theoretical results. The results show that by adding suction, the local Nusselt number is enhanced in the channel. In addition, it is shown that by applying suction on the bottom section of the roughness back face, one can reduce the thickness of thermal boundary layer, which leads to an increase in local Nusselt number. This indicates that suction is an effective means for improving the heat transfer rate (suction by controls the thickness of thermal boundary layer). It is also shown that the size and intensity of vortical motion behind the roughness element, decreased with an increasing suction rate, which leads to higher local Nusselt number. So, it can be concluded that by using suction, strategically located on the roughness element, one can control both the recirculation region and the heat transfer rate. Further results will be presented at the conference for coefficient of drag and the effect of adding more roughness elements.

Keywords: heat transfer, laminar flow, numerical simulation, roughness, suction

Procedia PDF Downloads 100
424 Microencapsulated Boswellia serrata and Probiotic Bacteria Acted as Symbiotic in Metabolic Syndrome Rat Model

Authors: Moetazza M. Alshafei, Ahmed M. Mabrouk, Emtenan M. Hanafi, Manal M. Ramadan, Reda M. S. Korany, Seham S. Kassem, Dina Mostafa Mohammed

Abstract:

Metabolic syndrome (MeS) is a major health problem with a high incidence of obese individuals worldwide. Increased related morbidity of diabetes, hypertension and fatty liver disease, and complicated cardiovascular disease are inevitable. Boswellia serrata gum (Bos) is a promising traditional medicinal plant; it has several pharmacological properties, including anti-inflammatory, antioxidant, and antilipase activities. Probiotics (Bac) supplements have good benefits on health and MeS, whether it is supplemented in combination with prebiotics or alone. Microencapsulation helps to mask unpalatable taste and odor and deliver active ingredients to targeted organs. Methodology MeS rat model was produced by feeding rats with a high fat, high CHO diet (HFD). Bos was extracted, and both Bos and the probiotic were microencapsulated with a spray drier. Female rats were divided into 5 groups (N8). HFD control, control normal receiving basic diet, HFD treated, from the start of the experiment, either with encapsulated Bos, Bac and Bos or Bac only, all treatments were received for eight weeks (after approval from NRC animal ethical committee). Serum was collected to analyze lipid profile, blood sugar, liver and kidney functions, antioxidants, leptin, and progesterone. Rat's organs and body fat were weighed and collected for histopathology. Statistical analysis was done by use of one way Anova test in the SPSS program. Results showed control of elevated body weight, lipid profile, and glucose levels as well as decrease of body fat index and improvement of histopathology of liver and heart, especially in combination. Conclusion: We concluded that both microencapsulated Bos and probiotics have a controlling effect on MeS parameters.

Keywords: metabolic syndrome, Boswellia serata, probiotic, micro-encapsulation, histopathology, liver steatosis

Procedia PDF Downloads 77
423 Investigation of the Growth Kinetics of Phases in Ni–Sn System

Authors: Varun A Baheti, Sanjay Kashyap, Kamanio Chattopadhyay, Praveen Kumar, Aloke Paul

Abstract:

Ni–Sn system finds applications in the microelectronics industry, especially with respect to flip–chip or direct chip, attach technology. Here the region of interest is under bump metallization (UBM), and solder bump (Sn) interface due to the formation of brittle intermetallic phases there. Understanding the growth of these phases at UBM/Sn interface is important, as in many cases it controls the electro–mechanical properties of the product. Cu and Ni are the commonly used UBM materials. Cu is used for good bonding because of fast reaction with solder and Ni often acts as a diffusion barrier layer due to its inherently slower reaction kinetics with Sn–based solders. Investigation on the growth kinetics of phases in Ni–Sn system is reported in this study. Just for simplicity, Sn being major solder constituent is chosen. Ni–Sn electroplated diffusion couples are prepared by electroplating pure Sn on Ni substrate. Bulk diffusion couples prepared by the conventional method are also studied along with Ni–Sn electroplated diffusion couples. Diffusion couples are annealed for 25–1000 h at 50–215°C to study the phase evolutions and growth kinetics of various phases. The interdiffusion zone was analysed using field emission gun equipped scanning electron microscope (FE–SEM) for imaging. Indexing of selected area diffraction (SAD) patterns obtained from transmission electron microscope (TEM) and composition measurements done in electron probe micro−analyser (FE–EPMA) confirms the presence of various product phases grown across the interdiffusion zone. Time-dependent experiments indicate diffusion controlled growth of the product phase. The estimated activation energy in the temperature range 125–215°C for parabolic growth constants (and hence integrated interdiffusion coefficients) of the Ni₃Sn₄ phase shed light on the growth mechanism of the phase; whether its grain boundary controlled or lattice controlled diffusion. The location of the Kirkendall marker plane indicates that the Ni₃Sn₄ phase grows mainly by diffusion of Sn in the binary Ni–Sn system.

Keywords: diffusion, equilibrium phase, metastable phase, the Ni-Sn system

Procedia PDF Downloads 289
422 Synthesis and Characterization of Capric-Stearic Acid/ Graphene Oxide-TiO₂ Microcapsules for Solar Energy Storage and Photocatalytic Efficiency

Authors: Ghada Ben Hamad, Zohir Younsi, Hassane Naji, Noureddine Lebaz, Naoual Belouaggadia

Abstract:

This study deals with a bifunctional micro-encapsulated phase change (MCP) material, capric-stearic acid/graphene oxide-TiO2, which has been successfully developed by in situ hydrolysis and polycondensation of tetrabutyl titanate and modification of graphene oxide (GO) on the TiO2 doped shell. The use of graphene and doped TiO2 is a promising approach to provide photocatalytic activity under visible light and improve the microcapsules physicochemical properties. The morphology and chemical structure of the resulting microcapsule samples were determined by using Fourier transform infrared (FT-IR) spectroscopy, scanning electronic microscope (SEM), and X-ray diffractometer (XRD) methods. The ultraviolet, visible spectrophotometer (UV–vis), the differential scanning calorimeter (DSC) and the thermogravimetric analyzer (TGA) were used to investigate the absorption of visible and ultraviolet (UV), the thermal properties, and thermal stabilities of the microcapsules. Note that, the visible light photocatalytic activity was assessed for the toluene and benzene gaseous removal in a suitable test room. The microcapsules exhibit an interesting spherical morphology and an average diameter of 15 to 25 μm. The addition of graphene can enhance the rigidity of the shell and improve the microcapsules thermal reliability. At the same time, the thermal analysis tests showed that the synthesized microcapsules had a high solar thermal energy-storage and better thermal stability. In addition, the capric-stearic acid microcapsules exhibited high solar photocatalytic activity with respect to atmospheric pollutants under natural sunlight. The fatty acid samples obtained with the GO/TiO2 shell showed great potential for applications of solar energy storage, solar photocatalytic degradation of air pollutants and buildings energy conservation.

Keywords: thermal energy storage, microencapsulation, titanium dioxide, photocatalysis, graphene oxide

Procedia PDF Downloads 116
421 Effects of Sintering Temperature on Microstructure and Mechanical Properties of Nanostructured Ni-17Cr Alloy

Authors: B. J. Babalola, M. B. Shongwe

Abstract:

Spark Plasma Sintering technique is a novel processing method that produces limited grain growth and highly dense variety of materials; alloys, superalloys, and carbides just to mention a few. However, initial particle size and spark plasma sintering parameters are factors which influence the grain growth and mechanical properties of sintered materials. Ni-Cr alloys are regarded as the most promising alloys for aerospace turbine blades, owing to the fact that they meet the basic requirements of desirable mechanical strength at high temperatures and good resistance to oxidation. The conventional method of producing this alloy often results in excessive grain growth and porosity levels that are detrimental to its mechanical properties. The effect of sintering temperature was evaluated on the microstructure and mechanical properties of the nanostructured Ni-17Cr alloy. Nickel and chromium powder were milled using high energy ball milling independently for 30 hours, milling speed of 400 revs/min and ball to powder ratio (BPR) of 10:1. The milled powders were mixed in the composition of Nickel having 83 wt % and chromium, 17 wt %. This was sintered at varied temperatures from 800°C, 900°C, 1000°C, 1100°C and 1200°C. The structural characteristics such as porosity, grain size, fracture surface and hardness were analyzed by scan electron microscopy and X-ray diffraction, Archimedes densitometry, micro-hardness tester. The corresponding results indicated an increase in the densification and hardness property of the alloy as the temperature increases. The residual porosity of the alloy reduces with respect to the sintering temperature and in contrast, the grain size was enhanced. The study of the mechanical properties, including hardness, densification shows that optimum properties were obtained for the sintering temperature of 1100°C. The advantages of high sinterability of Ni-17Cr alloy using milled powders and microstructural details were discussed.

Keywords: densification, grain growth, milling, nanostructured materials, sintering temperature

Procedia PDF Downloads 390
420 Transformation of Aluminum Unstable Oxyhydroxides in Ultrafine α-Al2O3 in Presence of Various Seeds

Authors: T. Kuchukhidze, N. Jalagonia, Z. Phachulia, R. Chedia

Abstract:

Ceramic obtained on the base of aluminum oxide has wide application range, because it has unique properties, for example, wear-resistance, dielectric characteristics, exploitation ability at high temperatures and in corrosive atmosphere. Low temperature synthesis of α-Al2O3 is energo-economical process and it is actual for developing technologies of corundum ceramics fabrication. In the present work possibilities of low temperature transformation of oxyhydroxides in α-Al2O3, during a presence of small amount of rare–earth elements compounds (also Th, Re), have been discussed. Aluminium unstable oxyhydroxides have been obtained by hydrolysis of aluminium isopropoxide, nitrates, sulphate, chloride in alkaline environment at 80-90ºC tempertures. β-Al(OH)3 has been received from aluminium powder by ultrasonic development. Drying of oxyhydroxide sol has been conducted with presence of various types seeds, which amount reaches 0,1-0,2% (mas). Neodymium, holmium, thorium, lanthanum, cerium, gadolinium, disprosium nitrates and rhenium carbonyls have been used as seeds and they have been added to the sol specimens in amount of 0.1-0.2% (mas) calculated on metals. Annealing of obtained gels is carried out at 70 – 1100ºC for 2 hrs. The same specimen transforms in α-Al2O3 at 1100ºC. At this temperature in case of presence of lanthanum and gadolinium transformation takes place by 70-85%. In case of presence of thorium stabilization of γ-and θ-phases takes place. It is established, that thorium causes inhibition of α-phase generation at 1100ºC, at the time in all other doped specimens α-phase is generated at lower temperatures (1000-1050ºC). During the work the following devices have been used: X-ray difractometer DRON-3M (Cu-Kα, Ni filter, 2º/min), High temperature vacuum furnace OXY-GON, electronic scanning microscopes Nikon ECLIPSE LV 150, NMM-800TRF, planetary mill Pulverisette 7 premium line, SHIMADZU Dynamic Ultra Micro Hardness Tester, DUH-211S, Analysette 12 Dyna sizer.

Keywords: α-Alumina, combustion, phase transformation, seeding

Procedia PDF Downloads 375
419 Studies on Structural and Electrical Properties of Lanthanum Doped Sr₂CoMoO₆₋δ System

Authors: Pravin Kumar, Rajendra K. Singh, Prabhakar Singh

Abstract:

A widespread research work on Mo-based double perovskite systems has been reported as a potential application for electrode materials of solid oxide fuel cells. Mo-based double perovskites studied in form of B-site ordered double perovskite materials, with general formula A₂B′B″O₆ structured by alkaline earth element (A = Sr, Ca, Ba) and heterovalent transition metals (B′ = Fe, Co, Ni, Cr, etc. and B″ = Mo, W, etc.), are raising a significant interest as potential mixed ionic-electronic conductors in the temperature range of 500-800 °C. Such systems reveal higher electrical conductivity, particularly those assigned in form of Sr₂CoMoO₆₋δ (M = Mg, Mn, Fe, Co, Ni, Zn etc.) which were studied in different environments (air/H₂/H₂-Ar/CH₄) at an intermediate temperature. Among them, the Sr₂CoMoO₆₋δ system is a potential candidate as an anode material for solid oxide fuel cells (SOFCs) due to its better electrical conductivity. Therefore, Sr₂CoMoO₆₋δ (SCM) system with La-doped on Sr site has been studied to discover the structural and electrical properties. The double perovskite system Sr₂CoMoO₆₋δ (SCM) and doped system Sr₂-ₓLaₓCoMoO₆₋δ (SLCM, x=0.04) were synthesized by the citrate-nitrate combustion synthesis route. Thermal studies were carried out by thermo-gravimetric analysis. Phase justification was confirmed by powder X-ray diffraction (XRD) as a tetragonal structure with space group I4/m. A minor phase of SrMoO₄ (s.g. I41/a) was identified as a secondary phase using JCPDS card no. 85-0586. Micro-structural investigations revealed the formation of uniform grains. The average grain size of undoped (SCM) and doped (SLCM) compositions was calculated by a linear intercept method and found to be ⁓3.8 μm and 2.7 μm, respectively. The electrical conductivity of SLCM is found higher than SCM in the air within the temperature range of 200-600 °C. SLCM system was also measured in reducing atmosphere (pure H₂) in the temperature range 300-600 °C. SLCM has been showed the higher conductivity in the reducing atmosphere (H₂) than in air and therefore it could be a promising anode material for SOFCs.

Keywords: double perovskite, electrical conductivity, SEM, XRD

Procedia PDF Downloads 114
418 Tracing the Courtyard Typology from the Past: Highlighting a Need for Conservation in Case of Historic Settlement in Historic Town of Gwalior

Authors: Shivani Dolas, A. Richa Mishra

Abstract:

The existence of Courtyards in India can be traced back to ‘Indus valley civilization’ and various layers of history bearing implications like socio-cultural, traditional, religious, climatic, etc., moreover serving as a breathing space in case of historical core areas. Over time, with the overlay of various historic layers within the historic urban cores and the present high density populace, the cores are getting congested day by day. In this case, courtyards may emerge out as an efficient medium to provide quality of life through livable spaces. Presently, with the growing population of the historic town of Gwalior, town in Madhya Pradesh holds remarkable essence of courtyards with its multiple concepts over time. Its scale and function varies from an imposing grand appearance in palatial form, up to functional practices as residential. Its privilege can also be drawn in urban forms, in sharing single space by multiple dwellings and in temples which can be sketched specifically in the region. Moreover, the effectiveness of courtyards has proven balance and control of micro-climate in such composite climate region. The research paper aims to underline the concept of courtyards in case of a mixed use neighborhood, Naya bazar, in Lashkar area of Gwalior, which developed during 19th century, highlighting the need of its preservation. The paper also elaborates its various implications on user-space relationship as in the present context, and growing congestion in the area, user and space relationship is seen lost. The noticeable change in the behavioral context in buildings and users can be noticed with the downfall of courtyards, isolating users with land. Also, a concern has been expressed on negligence of courtyard planning in future development, suggesting recommendations on preserving the courtyard typology as heritage.

Keywords: courtyards, Gwalior, historic settlement, heritage

Procedia PDF Downloads 135
417 Sustainable Mitigation of Urban Stormwater Runoff: The Applicability of Green Infrastructure Approach in Finnish Climate

Authors: Rima Almalla

Abstract:

The purpose of the research project in Geography is to evaluate the applicability of urban green infrastructure approach in Finnish climate. The key focus will be on the operation and efficiency of green infrastructure on urban stormwater management. Green infrastructure approach refers to the employment of sufficient green covers as a modern and smart environmental solution to improve the quality of urban environments. Green infrastructure provides a wide variety of micro-scale ecosystem services, such as stormwater runoff management, regulation of extreme air temperatures, reduction of energy consumption, plus a variety of social benefits and human health and wellbeing. However, the cold climate of Finland with seasonal ground frost, snow cover and relatively short growing season bring about questions of whether green infrastructure works as efficiently as expected. To tackle this question, green infrastructure solutions will be studied and analyzed with manifold methods: stakeholder perspectives regarding existing and planned GI solutions will be collected by web based questionnaires, semi structured interviews and group discussions, and analyzed in both qualitative and quantitative methods. Targeted empirical field campaigns will be conducted on selected sites. A systematic literature review with global perspective will support the analyses. The findings will be collected, compiled and analyzed using geographic information systems (GIS). The findings of the research will improve our understanding of the functioning of green infrastructure in the Finnish environment in urban stormwater management, as a landscape element for citizens’ wellbeing, and in climate change mitigation and adaptation. The acquired information will be shared with stakeholders in interactive co-design workshops. As green covers have great demand and potential globally, the conclusions will have relevance in other cool climate regions and may support Finnish business in green infrastructure sector.

Keywords: climate change adaptation, climate change, green infrastructure, stormwater

Procedia PDF Downloads 154
416 The Influence of the Institutional Environment in Increasing Wealth: The Case of Women Business Operators in a Rural Setting

Authors: S. Archsana, Vajira Balasuriya

Abstract:

In Trincomalee of Sri Lanka, a post-conflict area, resettlement projects and policy initiatives are taking place to improve the wealth of the rural communities through promoting economic activities by way of encouraging the rural women to opt to commence and operate Micro and Small Scale (MSS) businesses. This study attempts to identify the manner in which the institutional environment could facilitate these MSS businesses owned and operated by women in the rural environment. The respondents of this study are the beneficiaries of the Divi Neguma Development Training Program (DNDTP); a project designed to aid women owned MSS businesses, in Trincomalee district. 96 women business operators, who had obtained financing facilities from the DNDTP, are taken as the sample based on fixed interval random sampling method. The study reveals that primary challenges encountered by 82% of the women business operators are lack of initial capital followed by 71% initial market finding and 35% access to technology. The low level of education and language barriers are the constraints in accessing support agencies/service providers. Institutional support; specifically management and marketing services, have a significant relationship with wealth augmentation. Institutional support at the setting-up stage of businesses are thin whereas terms and conditions of the finance facilities are perceived as ‘too challenging’. Although diversification enhances wealth of the rural women business operators, assistance from the institutional framework to prepare financial reports that are required for business expansion is skinny. The study further reveals that institutional support is very much weak in terms of providing access to new technology and identifying new market networks. A mechanism that could facilitate the institutional framework to support the rural women business operators to access new technology and untapped market segments, and assistance in preparation of legal and financial documentation is recommended.

Keywords: business facilitation, institutional support, rural women business operators, wealth augmentation

Procedia PDF Downloads 418
415 A Low-Cost of Foot Plantar Shoes for Gait Analysis

Authors: Zulkifli Ahmad, Mohd Razlan Azizan, Nasrul Hadi Johari

Abstract:

This paper presents a study on development and conducting of a wearable sensor system for gait analysis measurement. For validation, the method of plantar surface measurement by force plate was prepared. In general gait analysis, force plate generally represents a studies about barefoot in whole steps and do not allow analysis of repeating movement step in normal walking and running. The measurements that were usually perform do not represent the whole daily plantar pressures in the shoe insole and only obtain the ground reaction force. The force plate measurement is usually limited a few step and it is done indoor and obtaining coupling information from both feet during walking is not easily obtained. Nowadays, in order to measure pressure for a large number of steps and obtain pressure in each insole part, it could be done by placing sensors within an insole. With this method, it will provide a method for determine the plantar pressures while standing, walking or running of a shoe wearing subject. Inserting pressure sensors in the insole will provide specific information and therefore the point of the sensor placement will result in obtaining the critical part under the insole. In the wearable shoe sensor project, the device consists left and right shoe insole with ten FSR. Arduino Mega was used as a micro-controller that read the analog input from FSR. The analog inputs were transmitted via bluetooth data transmission that gains the force data in real time on smartphone. Blueterm software which is an android application was used as an interface to read the FSR reading on the shoe wearing subject. The subject consist of two healthy men with different age and weight doing test while standing, walking (1.5 m/s), jogging (5 m/s) and running (9 m/s) on treadmill. The data obtain will be saved on the android device and for making an analysis and comparison graph.

Keywords: gait analysis, plantar pressure, force plate, earable sensor

Procedia PDF Downloads 427
414 Developing a Self-Healing Concrete Filler Using Poly(Methyl Methacrylate) Based Two-Part Adhesive

Authors: Shima Taheri, Simon Clark

Abstract:

Concrete is an essential building material used in the majority of structures. Degradation of concrete over time increases the life-cycle cost of an asset with an estimated annual cost of billions of dollars to national economies. Most of the concrete failure occurs due to cracks, which propagate through a structure and cause weakening leading to failure. Stopping crack propagation is thus the key to protecting concrete structures from failure and is the best way to prevent inconveniences and catastrophes. Furthermore, the majority of cracks occur deep within the concrete in inaccessible areas and are invisible to normal inspection. Few materials intrinsically possess self-healing ability, but one that does is concrete. However, self-healing in concrete is limited to small dormant cracks in a moist environment and is difficult to control. In this project, we developed a method for self-healing of nascent fractures in concrete components through the automatic release of self-curing healing agents encapsulated in breakable nano- and micro-structures. The Poly(methyl methacrylate) (PMMA) based two-part adhesive is encapsulated in core-shell structures with brittle/weak inert shell, synthesized via miniemulsion/solvent evaporation polymerization. Stress fields associated with propagating cracks can break these capsules releasing the healing agents at the point where they are needed. The shell thickness is playing an important role in preserving the content until the final setting of concrete. The capsules can also be surface functionalized with carboxyl groups to overcome the homogenous mixing issues. Currently, this formulated self-healing system can replace up to 1% of cement in a concrete formulation. Increasing this amount to 5-7% in the concrete formulation without compromising compression strength and shrinkage properties, is still under investigation. This self-healing system will not only increase the durability of structures by stopping crack propagation but also allow the use of less cement in concrete construction, thereby adding to the global effort for CO2 emission reduction.

Keywords: self-healing concrete, concrete crack, concrete deterioration, durability

Procedia PDF Downloads 101
413 Failure Analysis of Pipe System at a Hydroelectric Power Plant

Authors: Ali Göksenli, Barlas Eryürek

Abstract:

In this study, failure analysis of pipe system at a micro hydroelectric power plant is investigated. Failure occurred at the pipe system in the powerhouse during shut down operation of the water flow by a valve. This locking had caused a sudden shock wave, also called “Water-hammer effect”, resulting in noise and inside pressure increase. After visual investigation of the effect of the shock wave on the system, a circumference crack was observed at the pipe flange weld region. To establish the reason for crack formation, calculations of pressure and stress values at pipe, flange and welding seams were carried out and concluded that safety factor was high (2.2), indicating that no faulty design existed. By further analysis, pipe system and hydroelectric power plant was examined. After observations it is determined that the plant did not include a ventilation nozzle (air trap), that prevents the system of sudden pressure increase inside the pipes which is caused by water-hammer effect. Analyses were carried out to identify the influence of water-hammer effect on inside pressure increase and it was concluded that, according Jowkowsky’s equation, shut down time is effective on inside pressure increase. The valve closing time was uncertain but by a shut down time of even one minute, inside pressure would increase by 7.6 bar (working pressure was 34.6 bar). Detailed investigations were also carried out on the assembly of the pipe-flange system by considering technical drawings. It was concluded that the pipe-flange system was not installed according to the instructions. Two of five weld seams were not applied and one weld was carried out faulty. This incorrect and inadequate weld seams resulted in; insufficient connection of the pipe to the flange constituting a strong notch effect at weld seam regions, increase in stress values and the decrease of strength and safety factor

Keywords: failure analysis, hydroelectric plant, crack, shock wave, welding seam

Procedia PDF Downloads 328
412 Experimental Investigation of Nucleate Pool Boiling Heat Transfer Characteristics on Copper Surface with Laser-Textured Stepped Microstructures

Authors: Luvindran Sugumaran, Mohd Nashrul Mohd Zubir, Kazi Md Salim Newaz, Tuan Zaharinie Tuan Zahari, Suazlan Mt Aznam, Aiman Mohd Halil

Abstract:

Due to the rapid advancement of integrated circuits and the increasing trend towards miniaturizing electronic devices, the amount of heat produced by electronic devices has consistently exceeded the maximum limit for heat dissipation. Currently, the two-phase cooling technique based on phase change pool boiling heat transfer has received a lot of attention because of its potential to fully utilize the latent heat of the fluid and produce a highly effective heat dissipation capacity while keeping the equipment's operating temperature within an acceptable range. There are numerous strategies available for the alteration of heating surfaces, but to find the best, simplest, and most dependable one remains a challenge. Lately, surface texturing via laser ablation has been used in a variety of investigations, demonstrating its significant potential for enhancing the pool boiling heat transfer performance. In this research, the nucleate pool boiling heat transfer performance of laser-textured copper surfaces of different patterns was investigated. The bare copper surface serves as a reference to compare the performance of laser-structured surfaces. It was observed that the heat transfer coefficients were increased with the increase of surface area ratio and the ratio of the peak-to-valley height of the microstructure. Laser machined grain structure produced extra nucleation sites, which ultimately caused the improved pool boiling performance. Due to an increase in nucleation site density and surface area, the enhanced nucleate boiling served as the primary heat transfer mechanism. The pool boiling performance of the laser-textured copper surfaces is superior to the bare copper surface in all aspects.

Keywords: heat transfer coefficient, laser texturing, micro structured surface, pool boiling

Procedia PDF Downloads 72
411 Multi-Stage Optimization of Local Environmental Quality by Comprehensive Computer Simulated Person as Sensor for Air Conditioning Control

Authors: Sung-Jun Yoo, Kazuhide Ito

Abstract:

In this study, a comprehensive computer simulated person (CSP) that integrates computational human model (virtual manikin) and respiratory tract model (virtual airway), was applied for estimation of indoor environmental quality. Moreover, an inclusive prediction method was established by integrating computational fluid dynamics (CFD) analysis with advanced CSP which is combined with physiologically-based pharmacokinetic (PBPK) model, unsteady thermoregulation model for analysis targeting micro-climate around human body and respiratory area with high accuracy. This comprehensive method can estimate not only the contaminant inhalation but also constant interaction in the contaminant transfer between indoor spaces, i.e., a target area for indoor air quality (IAQ) assessment, and respiratory zone for health risk assessment. This study focused on the usage of the CSP as an air/thermal quality sensor in indoors, which means the application of comprehensive model for assessment of IAQ and thermal environmental quality. Demonstrative analysis was performed in order to examine the applicability of the comprehensive model to the heating, ventilation, air conditioning (HVAC) control scheme. CSP was located at the center of the simple model room which has dimension of 3m×3m×3m. Formaldehyde which is generated from floor material was assumed as a target contaminant, and flow field, sensible/latent heat and contaminant transfer analysis in indoor space were conducted by using CFD simulation coupled with CSP. In this analysis, thermal comfort was evaluated by thermoregulatory analysis, and respiratory exposure risks represented by adsorption flux/concentration at airway wall surface were estimated by PBPK-CFD hybrid analysis. These Analysis results concerning IAQ and thermal comfort will be fed back to the HVAC control and could be used to find a suitable ventilation rate and energy requirement for air conditioning system.

Keywords: CFD simulation, computer simulated person, HVAC control, indoor environmental quality

Procedia PDF Downloads 350
410 Mobile Technology as a Catalyst for Creative Teaching: A Developmental Based Research Study in a Large Public School in Mozambique

Authors: L. O'Sullivan, C. Murphy

Abstract:

This study examined the impact, if any, of mobile technology on the achievement of United Nations Sustainable Development Goal 4: Quality Education for All. It focused specifically on teachers and their practice, in a school with large class sizes and limited teaching resources. Teachers in third grade in a large public school in Mozambique were provided with an iPad connected to a projector, powered by a mobile solar-panel. Teachers also participated in ten days of professional development workshops over thirteen months. Teacher discussions, micro-teaching sessions and classes in the school were video-recorded, and data was triangulated using surveys and additional documents including class plans, digital artifacts created by teachers, workshop notes and researcher field notes. The catalyst for teachers’ creativity development was to use the photographic capabilities of the iPad to capture the local context and make lessons relevant to the lived experience of the students. In the transition stage, teachers worked with lesson plans and support from the professional development workshops to make small incremental changes to their practice, which scaffolded their growing competence in the creative use of the technology as a tool for teaching and developing new teaching resources. Over the full period of the study, these small changes in practice resulted in a cultural shift in how teachers approached all lessons, even those in which they were not using the technology. They developed into working as a community of practice. The digital lessons created were re-used and further developed by other teachers, providing a relevant and valuable bank of content in a context lacking in books and other teaching resources. This study demonstrated that mobile technology proved to be a successful catalyst for impacting creative teaching practice in this context, and supports the Quality Education for All Sustainable Development Goal.

Keywords: mobile technology, creative teaching, sub-Saharan Africa, quality education for all

Procedia PDF Downloads 100
409 Modification of Hexagonal Boron Nitride Induced by Focused Laser Beam

Authors: I. Wlasny, Z. Klusek, A. Wysmolek

Abstract:

Hexagonal boron nitride is a representative of a widely popular class of two-dimensional Van Der Waals materials. It finds its uses, among others, in construction of complexly layered heterostructures. Hexagonal boron nitride attracts great interest because of its properties characteristic for wide-gap semiconductors as well as an ultra-flat surface.Van Der Waals heterostructures composed of two-dimensional layered materials, such as transition metal dichalcogenides or graphene give hope for miniaturization of various electronic and optoelectronic elements. In our presentation, we will show the results of our investigations of the not previously reported modification of the hexagonal boron nitride layers with focused laser beam. The electrostatic force microscopy (EFM) images reveal that the irradiation leads to changes of the local electric fields for a wide range of laser wavelengths (from 442 to 785 nm). These changes are also accompanied by alterations of crystallographic structure of the material, as reflected by Raman spectra. They exhibit high stability and remain visible after at least five months. This behavior can be explained in terms of photoionization of the defect centers in h-BN which influence non-uniform electrostatic field screening by the photo-excited charge carriers. Analyzed changes influence local defect structure, and thus the interatomic distances within the lattice. These effects can be amplified by the piezoelectric character of hexagonal boron nitride, similar to that found in nitrides (e.g., GaN, AlN). Our results shed new light on the optical properties of the hexagonal boron nitride, in particular, those associated with electron-phonon coupling. Our study also opens new possibilities for h-BN applications in layered heterostructures where electrostatic fields can be used in tailoring of the local properties of the structures for use in micro- and nanoelectronics or field-controlled memory storage. This work is supported by National Science Centre project granted on the basis of the decision number DEC-2015/16/S/ST3/00451.

Keywords: atomic force microscopy, hexagonal boron nitride, optical properties, raman spectroscopy

Procedia PDF Downloads 154
408 Socio-Ecological Factors Characterising Migrants and Refugee Youth’s Sexual and Reproductive Health and Rights

Authors: Michaels Aibangbee, Sowbhagya Micheal, Pranee Liamputtong, Elias Mpofu, Tinashe Dune

Abstract:

Background: The challenges migrants and refugee youth (MRY) experience in maintaining their sexual and reproductive health and rights (SRHR) continues to be a global public health issue. Consequently, MRY is more likely to encounter adverse SRH experiences due to limited access to and knowledge of SRH services. Using a socio-ecological framework, this study examined the MRY’s SRHR micro-level experiences to macro-levels analyses of SRH-related social systems and constructions. Methods: Eighteen focus groups were conducted using participatory action research (PAR) methodology to understand the phenomena. The focus groups included MRY participants (ages 16-26) living in Greater Western Sydney and facilitated by youth project liaisons (YPL). The data was afterward synthesised and analysed using the thematic-synthesis method. Results: In total, 86 MRY (male n= 25, female n= 61) MRY (across 20 different cultural backgrounds) participated in the focus groups. The findings identified socio-ecological factors characterising MRY SRHR, highlighting facilitators such as social media and significant barriers such as lack of access to services and socio-cultural dissonance, and the under-implementation of SRHR support and services by MRY. Key themes from the data included traditional and institutional stigma, lack of SRH education, high reliance on social media for SRH information, anonymity, and privacy concerns. Conclusion: The data shows a limited extent to which MRY SRHR is considered and the intergenerational understanding and stigma affecting the rights of MRY. Therefore, these findings suggest a need for policies and practices to empower MRY’s agency through a collaborative SRHR strategy and policy design to maintain relevance in multicultural contexts.

Keywords: migrant and refugee youth, sexual health, reproductive health, sexual and reproductive health and rights, culture, agency

Procedia PDF Downloads 49
407 Exploring Women’S Leadership in China’S Sport National Governing Bodies

Authors: Han Zheng

Abstract:

This research is being conducted to explore women's leadership in China's National Governing Bodies ( in order to identify the barriers to women's leadership and provide feasible solutions. Extensive research has been undertaken internationally, which has identified and acknowledged the underrepresentation of women in leadership positions across multiple industries and global contexts. According to these studies, leadership specifically within the sports industry was both historically and is still currently male-dominated. Within China, the underrepresentation of women in leadership positions is also evident, which women only occupy 16% of the leadership in business enterprises and 5.6% in scientific and technological research institutions, yet there is limited research that has looked to examine why this is the case regarding women's leadership in China, especially within in sports industry. Therefore, this research gap drives the purpose, which aims to explore the current situation of women's leadership in sports National Governing Bodies (NGBs) in China. By using both questionnaires and interviews, data from NGBs in China will be collected. This research will achieve the following three goals: 1, determine the representation level of women's leadership in the target organizations. 2, identify barriers to women's leadership and their causes. 3, provide feasible solutions. Based on the multi-level framework, this study develops a "barrier matrix" framework: according to the analysis of the previous literature, it concludes that there are eight main barriers that hinder the development of women's leadership. The research combines qualitative and quantitative analysis, using questionnaires and interviews. Key findings according to the analysis of the primary data collected: 1. The average proportion of female occupational leadership in China's sports NGBs is less than 17.5%. 2. 50.8% of China's sports NGBs have no equal employment opportunity policy. 3. According to the preliminary qualitative analysis of the interviews, it is found that the core barriers affecting women's leadership development are mainly in the following areas: male-dominated culture and gender stereotyping (macro-level), biased organizational policies and procedures (meso-level), work-family conflicts and self-limiting behaviors (micro-level).

Keywords: women leadership, sport management, gender equality, sport leadership, sport NGBs

Procedia PDF Downloads 162
406 Experimental Investigation of Nucleate Pool Boiling Heat Transfer on Laser-Structured Copper Surfaces of Different Patterns

Authors: Luvindran Sugumaran, Mohd Nashrul Mohd Zubir, Kazi Md Salim Newaz, Tuan Zaharinie Tuan Zahari, Suazlan Mt Aznam, Aiman Mohd Halil

Abstract:

With reference to Energy Roadmap 2050, the minimization of greenhouse gas emissions and the enhancement of energy efficiency are the two key factors that could facilitate a radical change in the world's energy infrastructure. However, the energy demands of electronic devices skyrocketed with the advent of the digital age. Currently, the two-phase cooling technique based on phase change pool boiling heat transfer has received a lot of attention because of its potential to fully utilize the latent heat of the fluid and produce a highly effective heat dissipation capacity while keeping the equipment's operating temperature within an acceptable range. There are numerous strategies available for the alteration of heating surfaces, but finding the best, simplest, and most dependable one remains a challenge. Lately, surface texturing via laser ablation has been used in a variety of investigations, demonstrating its significant potential for enhancing the pool boiling heat transfer performance. In this research, the nucleate pool boiling heat transfer performance of laser-structured copper surfaces of different patterns was investigated. The bare copper surface serves as a reference to compare the performance of laser-structured surfaces. It was observed that the heat transfer coefficients were increased with the increase of surface area ratio and the ratio of the peak-to-valley height of the microstructure. Laser machined grain structure produced extra nucleation sites, which ultimately caused the improved pool boiling performance. Due to an increase in nucleation site density and surface area, the enhanced nucleate boiling served as the primary heat transfer mechanism. The pool boiling performance of the laser-structured copper surfaces is superior to the bare copper surface in all aspects.

Keywords: heat transfer coefficient, laser structuring, micro structured surface, pool boiling

Procedia PDF Downloads 64