Search results for: metallurgical image processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5940

Search results for: metallurgical image processing

4290 Forensic Analysis of Signal Messenger on Android

Authors: Ward Bakker, Shadi Alhakimi

Abstract:

The amount of people moving towards more privacy focused instant messaging applications has grown significantly. Signal is one of these instant messaging applications, which makes Signal interesting for digital investigators. In this research, we evaluate the artifacts that are generated by the Signal messenger for Android. This evaluation was done by using the features that Signal provides to create artifacts, whereafter, we made an image of the internal storage and the process memory. This image was analysed manually. The manual analysis revealed the content that Signal stores in different locations during its operation. From our research, we were able to identify the artifacts and interpret how they were used. We also examined the source code of Signal. Using our obtain knowledge from the source code, we developed a tool that decrypts some of the artifacts using the key stored in the Android Keystore. In general, we found that most artifacts are encrypted and encoded, even after decrypting some of the artifacts. During data visualization, some artifacts were found, such as that Signal does not use relationships between the data. In this research, two interesting groups of artifacts were identified, those related to the database and those stored in the process memory dump. In the database, we found plaintext private- and group chats, and in the memory dump, we were able to retrieve the plaintext access code to the application. Nevertheless, we conclude that Signal contains a wealth of artifacts that could be very valuable to a digital forensic investigation.

Keywords: forensic, signal, Android, digital

Procedia PDF Downloads 82
4289 System Identification of Timber Masonry Walls Using Shaking Table Test

Authors: Timir Baran Roy, Luis Guerreiro, Ashutosh Bagchi

Abstract:

Dynamic study is important in order to design, repair and rehabilitation of structures. It has played an important role in the behavior characterization of structures; such as bridges, dams, high-rise buildings etc. There had been a substantial development in this area over the last few decades, especially in the field of dynamic identification techniques of structural systems. Frequency Domain Decomposition (FDD) and Time Domain Decomposition are most commonly used methods to identify modal parameters; such as natural frequency, modal damping, and mode shape. The focus of the present research is to study the dynamic characteristics of typical timber masonry walls commonly used in Portugal. For that purpose, a multi-storey structural prototypes of such walls have been tested on a seismic shake table at the National Laboratory for Civil Engineering, Portugal (LNEC). Signal processing has been performed of the output response, which is collected from the shaking table experiment of the prototype using accelerometers. In the present work signal processing of the output response, based on the input response has been done in two ways: FDD and Stochastic Subspace Identification (SSI). In order to estimate the values of the modal parameters, algorithms for FDD are formulated, and parametric functions for the SSI are computed. Finally, estimated values from both the methods are compared to measure the accuracy of both the techniques.

Keywords: frequency domain decomposition (fdd), modal parameters, signal processing, stochastic subspace identification (ssi), time domain decomposition

Procedia PDF Downloads 264
4288 3D Medical Printing the Key Component in Future of Medical Applications

Authors: Zahra Asgharpour, Eric Renteria, Sebastian De Boodt

Abstract:

There is a growing trend towards personalization of medical care, as evidenced by the emphasis on outcomes based medicine, the latest developments in CT and MR imaging and personalized treatment in a variety of surgical disciplines. 3D Printing has been introduced and applied in the medical field since 2000. The first applications were in the field of dental implants and custom prosthetics. According to recent publications, 3D printing in the medical field has been used in a wide range of applications which can be organized into several categories including implants, prosthetics, anatomical models and tissue bioprinting. Some of these categories are still in their infancy stage of the concept of proof while others are in application phase such as the design and manufacturing of customized implants and prosthesis. The approach of 3D printing in this category has been successfully used in the health care sector to make both standard and complex implants within a reasonable amount of time. In this study, some of the clinical applications of 3D printing in design and manufacturing of a patient-specific hip implant would be explained. In cases where patients have complex bone geometries or are undergoing a complex revision on hip replacement, the traditional surgical methods are not efficient, and hence these patients require patient-specific approaches. There are major advantages in using this new technology for medical applications, however, in order to get this technology widely accepted in medical device industry, there is a need for gaining more acceptance from the medical device regulatory offices. This is a challenge that is moving onward and will help the technology find its way at the end as an accepted manufacturing method for medical device industry in an international scale. The discussion will conclude with some examples describing the future directions of 3D Medical Printing.

Keywords: CT/MRI, image processing, 3D printing, medical devices, patient specific implants

Procedia PDF Downloads 298
4287 Studying the Spatial Aspects of Visual Attention Processing in Global Precedence Paradigm

Authors: Shreya Borthakur, Aastha Vartak

Abstract:

This behavioral experiment aimed to investigate the global precedence phenomenon in a South Asian sample and its correlation with mobile screen time. The global precedence effect refers to the tendency to process overall structure before attending to specific details. Participants completed attention tasks involving global and local stimuli with varying consistencies. The results showed a tendency towards local precedence, but no significant differences in reaction times were found between consistency levels or attention conditions. However, the correlation analysis revealed that participants with higher screen time exhibited a stronger negative correlation with local attention, suggesting that excessive screen usage may impact perceptual organization. Further research is needed to explore this relationship and understand the influence of screen time on cognitive processing.

Keywords: global precedence, visual attention, perceptual organization, screen time, cognition

Procedia PDF Downloads 68
4286 The Study of Solar Activity during Sun Eclipse and Its Relation to Earthquake

Authors: Hanieh Sadat Jannesari. Rahelehossadat Abtahi, Kourosh Bamzadeh, Alireza Nadimi

Abstract:

The earthquake is one of the most devastating natural hazards, in which hundreds of thousands have lost their lives as a result of it. So far, experts have tried to use precursors to identify the earthquake before it occurs in order to alert and save people, a part of which relates to solar activity and earthquakes. The purpose of this article is to investigate solar activity during the solar eclipse as a precursor to pre-earthquake awareness. Information from this article is derived from the Influences and USGS Daily Data Center. During solar activity, electric interactions between the solar wind and the celestial bodies are formed, and then gravitational lenses are formed. If, during this event, there is also an eclipse, the dispersed waves in space (in accordance with the theory of general relativity of Einstein) in contact with plasma-gravitational lenses in space will move in a straight line toward the earth. In addition to forming the focal point, these gravitational lenses reflect the source image either at their focal length or farther away. The image reflected in the earth by ionized particles in the form of energy transmission lines can cause material collapse and earthquakes. In this study, the correlation between solar winds and the celestial bodies during the solar eclipse is about 76% of the location of large earthquakes.

Keywords: earthquake, plasma-gravitational lens, solar eclipse, solar spots

Procedia PDF Downloads 26
4285 Detecting the Palaeochannels Based on Optical Data and High-Resolution Radar Data for Periyarriver Basin

Authors: S. Jayalakshmi, Gayathri S., Subiksa V., Nithyasri P., Agasthiya

Abstract:

Paleochannels are the buried part of an active river system which was separated from the active river channel by the process of cutoff or abandonment during the dynamic evolution of the active river. Over time, they are filled by young unconsolidated or semi-consolidated sediments. Additionally, it is impacted by geo morphological influences, lineament alterations, and other factors. The primary goal of this study is to identify the paleochannels in Periyar river basin for the year 2023. Those channels has a high probability in the presence of natural resources, including gold, platinum,tin,an duranium. Numerous techniques are used to map the paleochannel. Using the optical data, Satellite images were collected from various sources, which comprises multispectral satellite images from which indices such as Normalized Difference Vegetation Index (NDVI),Normalized Difference Water Index (NDWI), Soil Adjusted Vegetative Index (SAVI) and thematic layers such as Lithology, Stream Network, Lineament were prepared. Weights are assigned to each layer based on its importance, and overlay analysis has done, which concluded that the northwest region of the area has shown some paleochannel patterns. The results were cross-verified using the results obtained using microwave data. Using Sentinel data, Synthetic Aperture Radar (SAR) Image was extracted from European Space Agency (ESA) portal, pre-processed it using SNAP 6.0. In addition to that, Polarimetric decomposition technique has incorporated to detect the paleochannels based on its scattering property. Further, Principal component analysis has done for enhanced output imagery. Results obtained from optical and microwave radar data were compared and the location of paleochannels were detected. It resulted six paleochannels in the study area out of which three paleochannels were validated with the existing data published by Department of Geology and Environmental Science, Kerala. The other three paleochannels were newly detected with the help of SAR image.

Keywords: paleochannels, optical data, SAR image, SNAP

Procedia PDF Downloads 92
4284 The Influence of Machine Tool Composite Stiffness to the Surface Waviness When Processing Posture Constantly Switching

Authors: Song Zhiyong, Zhao Bo, Du Li, Wang Wei

Abstract:

Aircraft structures generally have complex surface. Because of constantly switching postures of motion axis, five-axis CNC machine’s composite stiffness changes during CNC machining. It gives rise to different amplitude of vibration of processing system, which further leads to the different effects on surface waviness. In order to provide a solution for this problem, we take the “S” shape test specimen’s CNC machining for the object, through calculate the five axis CNC machine’s composite stiffness and establish vibration model, we analysis of the influence mechanism between vibration amplitude and surface waviness. Through carry out the surface quality measurement experiments, verify the validity and accuracy of the theoretical analysis. This paper’s research results provide a theoretical basis for surface waviness control.

Keywords: five axis CNC machine, “S” shape test specimen, composite stiffness, surface waviness

Procedia PDF Downloads 390
4283 Effects of Safety Intervention Program towards Behaviors among Rubber Wood Processing Workers Using Theory of Planned Behavior

Authors: Junjira Mahaboon, Anongnard Boonpak, Nattakarn Worrasan, Busma Kama, Mujalin Saikliang, Siripor Dankachatarn

Abstract:

Rubber wood processing is one of the most important industries in southern Thailand. The process has several safety hazards for example unsafe wood cutting machine guarding, wood dust, noise, and heavy lifting. However, workers’ occupational health and safety measures to promote their behaviors are still limited. This quasi-experimental research was to determine factors affecting workers’ safety behaviors using theory of planned behavior after implementing job safety intervention program. The purposes were to (1) determine factors affecting workers’ behaviors and (2) to evaluate effectiveness of the intervention program. The sample of study was 66 workers from a rubber wood processing factory. Factors in the Theory of Planned Behavior model (TPB) were measured before and after the intervention. The factors of TPB included attitude towards behavior, subjective norm, perceived behavioral control, intention, and behavior. Firstly, Job Safety Analysis (JSA) was conducted and Safety Standard Operation Procedures (SSOP) were established. The questionnaire was also used to collect workers’ characteristics and TPB factors. Then, job safety intervention program to promote workers’ behavior according to SSOP were implemented for a four month period. The program included SSOP training, personal protective equipment use, and safety promotional campaign. After that, the TPB factors were again collected. Paired sample t-test and independent t-test were used to analyze the data. The result revealed that attitude towards behavior and intention increased significantly after the intervention at p<0.05. These factors also significantly determined the workers’ safety behavior according to SSOP at p<0.05. However, subjective norm, and perceived behavioral control were not significantly changed nor related to safety behaviors. In conclusion, attitude towards behavior and workers’ intention should be promoted to encourage workers’ safety behaviors. SSOP intervention program e.g. short meeting, safety training, and promotional campaign should be continuously implemented in a routine basis to improve workers’ behavior.

Keywords: job safety analysis, rubber wood processing workers, safety standard operation procedure, theory of planned behavior

Procedia PDF Downloads 193
4282 Reasons for the Selection of Information-Processing Framework and the Philosophy of Mind as a General Account for an Error Analysis and Explanation on Mathematics

Authors: Michael Lousis

Abstract:

This research study is concerned with learner’s errors on Arithmetic and Algebra. The data resulted from a broader international comparative research program called Kassel Project. However, its conceptualisation differed from and contrasted with that of the main program, which was mostly based on socio-demographic data. The way in which the research study was conducted, was not dependent on the researcher’s discretion, but was absolutely dictated by the nature of the problem under investigation. This is because the phenomenon of learners’ mathematical errors is due neither to the intentions of learners nor to institutional processes, rules and norms, nor to the educators’ intentions and goals; but rather to the way certain information is presented to learners and how their cognitive apparatus processes this information. Several approaches for the study of learners’ errors have been developed from the beginning of the 20th century, encompassing different belief systems. These approaches were based on the behaviourist theory, on the Piagetian- constructivist research framework, the perspective that followed the philosophy of science and the information-processing paradigm. The researcher of the present study was forced to disclose the learners’ course of thinking that led them in specific observable actions with the result of showing particular errors in specific problems, rather than analysing scripts with the students’ thoughts presented in a written form. This, in turn, entailed that the choice of methods would have to be appropriate and conducive to seeing and realising the learners’ errors from the perspective of the participants in the investigation. This particular fact determined important decisions to be made concerning the selection of an appropriate framework for analysing the mathematical errors and giving explanations. Thus the rejection of the belief systems concerning behaviourism, the Piagetian-constructivist, and philosophy of science perspectives took place, and the information-processing paradigm in conjunction with the philosophy of mind were adopted as a general account for the elaboration of data. This paper explains why these decisions were appropriate and beneficial for conducting the present study and for the establishment of the ensued thesis. Additionally, the reasons for the adoption of the information-processing paradigm in conjunction with the philosophy of mind give sound and legitimate bases for the development of future studies concerning mathematical error analysis are explained.

Keywords: advantages-disadvantages of theoretical prospects, behavioral prospect, critical evaluation of theoretical prospects, error analysis, information-processing paradigm, opting for the appropriate approach, philosophy of science prospect, Piagetian-constructivist research frameworks, review of research in mathematical errors

Procedia PDF Downloads 190
4281 Reconstruction of Visual Stimuli Using Stable Diffusion with Text Conditioning

Authors: ShyamKrishna Kirithivasan, Shreyas Battula, Aditi Soori, Richa Ramesh, Ramamoorthy Srinath

Abstract:

The human brain, among the most complex and mysterious aspects of the body, harbors vast potential for extensive exploration. Unraveling these enigmas, especially within neural perception and cognition, delves into the realm of neural decoding. Harnessing advancements in generative AI, particularly in Visual Computing, seeks to elucidate how the brain comprehends visual stimuli observed by humans. The paper endeavors to reconstruct human-perceived visual stimuli using Functional Magnetic Resonance Imaging (fMRI). This fMRI data is then processed through pre-trained deep-learning models to recreate the stimuli. Introducing a new architecture named LatentNeuroNet, the aim is to achieve the utmost semantic fidelity in stimuli reconstruction. The approach employs a Latent Diffusion Model (LDM) - Stable Diffusion v1.5, emphasizing semantic accuracy and generating superior quality outputs. This addresses the limitations of prior methods, such as GANs, known for poor semantic performance and inherent instability. Text conditioning within the LDM's denoising process is handled by extracting text from the brain's ventral visual cortex region. This extracted text undergoes processing through a Bootstrapping Language-Image Pre-training (BLIP) encoder before it is injected into the denoising process. In conclusion, a successful architecture is developed that reconstructs the visual stimuli perceived and finally, this research provides us with enough evidence to identify the most influential regions of the brain responsible for cognition and perception.

Keywords: BLIP, fMRI, latent diffusion model, neural perception.

Procedia PDF Downloads 68
4280 Comparison of Yb and Tm-Fiber Laser Cutting Processes of Fiber Reinforced Plastics

Authors: Oktay Celenk, Ugur Karanfil, Iskender Demir, Samir Lamrini, Jorg Neumann, Arif Demir

Abstract:

Due to its favourable material characteristics, fiber reinforced plastics are amongst the main topics of all actual lightweight construction megatrends. Especially in transportation trends ranging from aeronautics over the automotive industry to naval transportation (yachts, cruise liners) the expected economic and environmental impact is huge. In naval transportation components like yacht bodies, antenna masts, decorative structures like deck lamps, light houses and pool areas represent cheap and robust solutions. Commercially available laser tools like carbon dioxide gas lasers (CO₂), frequency tripled solid state UV lasers, and Neodymium-YAG (Nd:YAG) lasers can be used. These tools have emission wavelengths of 10 µm, 0.355 µm, and 1.064 µm, respectively. The scientific goal is first of all the generation of a parameter matrix for laser processing of each used material for a Tm-fiber laser system (wavelength 2 µm). These parameters are the heat affected zone, process gas pressure, work piece feed velocity, intensity, irradiation time etc. The results are compared with results obtained with well-known material processing lasers, such as a Yb-fiber lasers (wavelength 1 µm). Compared to the CO₂-laser, the Tm-laser offers essential advantages for future laser processes like cutting, welding, ablating for repair and drilling in composite part manufacturing (components of cruise liners, marine pipelines). Some of these are the possibility of beam delivery in a standard fused silica fiber which enables hand guided processing, eye safety which results from the wavelength, excellent beam quality and brilliance due to the fiber nature. There is one more feature that is economically absolutely important for boat, automotive and military projects manufacturing that the wavelength of 2 µm is highly absorbed by the plastic matrix and thus enables selective removal of it for repair procedures.

Keywords: Thulium (Tm) fiber laser, laser processing of fiber-reinforced plastics (FRP), composite, heat affected zone

Procedia PDF Downloads 193
4279 Inviscid Steady Flow Simulation Around a Wing Configuration Using MB_CNS

Authors: Muhammad Umar Kiani, Muhammad Shahbaz, Hassan Akbar

Abstract:

Simulation of a high speed inviscid steady ideal air flow around a 2D/axial-symmetry body was carried out by the use of mb_cns code. mb_cns is a program for the time-integration of the Navier-Stokes equations for two-dimensional compressible flows on a multiple-block structured mesh. The flow geometry may be either planar or axisymmetric and multiply-connected domains can be modeled by patching together several blocks. The main simulation code is accompanied by a set of pre and post-processing programs. The pre-processing programs scriptit and mb_prep start with a short script describing the geometry, initial flow state and boundary conditions and produce a discretized version of the initial flow state. The main flow simulation program (or solver as it is sometimes called) is mb_cns. It takes the files prepared by scriptit and mb_prep, integrates the discrete form of the gas flow equations in time and writes the evolved flow data to a set of output files. This output data may consist of the flow state (over the whole domain) at a number of instants in time. After integration in time, the post-processing programs mb_post and mb_cont can be used to reformat the flow state data and produce GIF or postscript plots of flow quantities such as pressure, temperature and Mach number. The current problem is an example of supersonic inviscid flow. The flow domain for the current problem (strake configuration wing) is discretized by a structured grid and a finite-volume approach is used to discretize the conservation equations. The flow field is recorded as cell-average values at cell centers and explicit time stepping is used to update conserved quantities. MUSCL-type interpolation and one of three flux calculation methods (Riemann solver, AUSMDV flux splitting and the Equilibrium Flux Method, EFM) are used to calculate inviscid fluxes across cell faces.

Keywords: steady flow simulation, processing programs, simulation code, inviscid flux

Procedia PDF Downloads 429
4278 Amplifying Sine Unit-Convolutional Neural Network: An Efficient Deep Architecture for Image Classification and Feature Visualizations

Authors: Jamshaid Ul Rahman, Faiza Makhdoom, Dianchen Lu

Abstract:

Activation functions play a decisive role in determining the capacity of Deep Neural Networks (DNNs) as they enable neural networks to capture inherent nonlinearities present in data fed to them. The prior research on activation functions primarily focused on the utility of monotonic or non-oscillatory functions, until Growing Cosine Unit (GCU) broke the taboo for a number of applications. In this paper, a Convolutional Neural Network (CNN) model named as ASU-CNN is proposed which utilizes recently designed activation function ASU across its layers. The effect of this non-monotonic and oscillatory function is inspected through feature map visualizations from different convolutional layers. The optimization of proposed network is offered by Adam with a fine-tuned adjustment of learning rate. The network achieved promising results on both training and testing data for the classification of CIFAR-10. The experimental results affirm the computational feasibility and efficacy of the proposed model for performing tasks related to the field of computer vision.

Keywords: amplifying sine unit, activation function, convolutional neural networks, oscillatory activation, image classification, CIFAR-10

Procedia PDF Downloads 111
4277 A Relative Entropy Regularization Approach for Fuzzy C-Means Clustering Problem

Authors: Ouafa Amira, Jiangshe Zhang

Abstract:

Clustering is an unsupervised machine learning technique; its aim is to extract the data structures, in which similar data objects are grouped in the same cluster, whereas dissimilar objects are grouped in different clusters. Clustering methods are widely utilized in different fields, such as: image processing, computer vision , and pattern recognition, etc. Fuzzy c-means clustering (fcm) is one of the most well known fuzzy clustering methods. It is based on solving an optimization problem, in which a minimization of a given cost function has been studied. This minimization aims to decrease the dissimilarity inside clusters, where the dissimilarity here is measured by the distances between data objects and cluster centers. The degree of belonging of a data point in a cluster is measured by a membership function which is included in the interval [0, 1]. In fcm clustering, the membership degree is constrained with the condition that the sum of a data object’s memberships in all clusters must be equal to one. This constraint can cause several problems, specially when our data objects are included in a noisy space. Regularization approach took a part in fuzzy c-means clustering technique. This process introduces an additional information in order to solve an ill-posed optimization problem. In this study, we focus on regularization by relative entropy approach, where in our optimization problem we aim to minimize the dissimilarity inside clusters. Finding an appropriate membership degree to each data object is our objective, because an appropriate membership degree leads to an accurate clustering result. Our clustering results in synthetic data sets, gaussian based data sets, and real world data sets show that our proposed model achieves a good accuracy.

Keywords: clustering, fuzzy c-means, regularization, relative entropy

Procedia PDF Downloads 259
4276 Importance of Ethics in Cloud Security

Authors: Pallavi Malhotra

Abstract:

This paper examines the importance of ethics in cloud computing. In the modern society, cloud computing is offering individuals and businesses an unlimited space for storing and processing data or information. Most of the data and information stored in the cloud by various users such as banks, doctors, architects, engineers, lawyers, consulting firms, and financial institutions among others require a high level of confidentiality and safeguard. Cloud computing offers centralized storage and processing of data, and this has immensely contributed to the growth of businesses and improved sharing of information over the internet. However, the accessibility and management of data and servers by a third party raise concerns regarding the privacy of clients’ information and the possible manipulations of the data by third parties. This document suggests the approaches various stakeholders should take to address various ethical issues involving cloud-computing services. Ethical education and training is key to all stakeholders involved in the handling of data and information stored or being processed in the cloud.

Keywords: IT ethics, cloud computing technology, cloud privacy and security, ethical education

Procedia PDF Downloads 325
4275 Modeling and Simulation of Fluid Catalytic Cracking Process

Authors: Sungho Kim, Dae Shik Kim, Jong Min Lee

Abstract:

Fluid catalytic cracking (FCC) process is one of the most important process in modern refinery industry. This paper focuses on the fluid catalytic cracking (FCC) process. As the FCC process is difficult to model well, due to its non linearities and various interactions between its process variables, rigorous process modeling of whole FCC plant is demanded for control and plant-wide optimization of the plant. In this study, a process design for the FCC plant includes riser reactor, main fractionator, and gas processing unit was developed. A reactor model was described based on four-lumped kinetic scheme. Main fractionator, gas processing unit and other process units are designed to simulate real plant data, using a process flow sheet simulator, Aspen PLUS. The custom reactor model was integrated with the process flow sheet simulator to develop an integrated process model.

Keywords: fluid catalytic cracking, simulation, plant data, process design

Procedia PDF Downloads 529
4274 Accuracy of a 3D-Printed Polymer Model for Producing Casting Mold

Authors: Ariangelo Hauer Dias Filho, Gustavo Antoniácomi de Carvalho, Benjamim de Melo Carvalho

Abstract:

The work´s purpose was to evaluate the possibility of manufacturing casting tools utilizing Fused Filament Fabrication, a 3D printing technique, without any post-processing on the printed part. Taguchi Orthogonal array was used to evaluate the influence of extrusion temperature, bed temperature, layer height, and infill on the dimensional accuracy of a 3D-Printed Polymer Model. A Zeiss T-SCAN CS 3D Scanner was used for dimensional evaluation of the printed parts within the limit of ±0,2 mm. The mold capabilities were tested with the printed model to check how it would interact with the green sand. With little adjustments in the 3D model, it was possible to produce rapid tools without the need for post-processing for iron casting. The results are important for reducing time and cost in the development of such tools.

Keywords: additive manufacturing, Taguchi method, rapid tooling, fused filament fabrication, casting mold

Procedia PDF Downloads 142
4273 Optimization of Waste Plastic to Fuel Oil Plants' Deployment Using Mixed Integer Programming

Authors: David Muyise

Abstract:

Mixed Integer Programming (MIP) is an approach that involves the optimization of a range of decision variables in order to minimize or maximize a particular objective function. The main objective of this study was to apply the MIP approach to optimize the deployment of waste plastic to fuel oil processing plants in Uganda. The processing plants are meant to reduce plastic pollution by pyrolyzing the waste plastic into a cleaner fuel that can be used to power diesel/paraffin engines, so as (1) to reduce the negative environmental impacts associated with plastic pollution and also (2) to curb down the energy gap by utilizing the fuel oil. A programming model was established and tested in two case study applications that are, small-scale applications in rural towns and large-scale deployment across major cities in the country. In order to design the supply chain, optimal decisions on the types of waste plastic to be processed, size, location and number of plants, and downstream fuel applications were concurrently made based on the payback period, investor requirements for capital cost and production cost of fuel and electricity. The model comprises qualitative data gathered from waste plastic pickers at landfills and potential investors, and quantitative data obtained from primary research. It was found out from the study that a distributed system is suitable for small rural towns, whereas a decentralized system is only suitable for big cities. Small towns of Kalagi, Mukono, Ishaka, and Jinja were found to be the ideal locations for the deployment of distributed processing systems, whereas Kampala, Mbarara, and Gulu cities were found to be the ideal locations initially utilize the decentralized pyrolysis technology system. We conclude that the model findings will be most important to investors, engineers, plant developers, and municipalities interested in waste plastic to fuel processing in Uganda and elsewhere in developing economy.

Keywords: mixed integer programming, fuel oil plants, optimisation of waste plastics, plastic pollution, pyrolyzing

Procedia PDF Downloads 129
4272 Avoiding Gas Hydrate Problems in Qatar Oil and Gas Industry: Environmentally Friendly Solvents for Gas Hydrate Inhibition

Authors: Nabila Mohamed, Santiago Aparicio, Bahman Tohidi, Mert Atilhan

Abstract:

Qatar's one of the biggest problem in processing its natural resource, which is natural gas, is the often occurring blockage in the pipelines caused due to uncontrolled gas hydrate formation in the pipelines. Several millions of dollars are being spent at the process site to dehydrate the blockage safely by using chemical inhibitors. We aim to establish national database, which addresses the physical conditions that promotes Qatari natural gas to form gas hydrates in the pipelines. Moreover, we aim to design and test novel hydrate inhibitors that are suitable for Qatari natural gas and its processing facilities. From these perspectives we are aiming to provide more effective and sustainable reservoir utilization and processing of Qatari natural gas. In this work, we present the initial findings of a QNRF funded project, which deals with the natural gas hydrate formation characteristics of Qatari type gas in both experimental (PVTx) and computational (molecular simulations) methods. We present the data from the two fully automated apparatus: a gas hydrate autoclave and a rocking cell. Hydrate equilibrium curves including growth/dissociation conditions for multi-component systems for several gas mixtures that represent Qatari type natural gas with and without the presence of well known kinetic and thermodynamic hydrate inhibitors. Ionic liquids were designed and used for testing their inhibition performance and their DFT and molecular modeling simulation results were also obtained and compared with the experimental results. Results showed significant performance of ionic liquids with up to 0.5 % in volume with up to 2 to 4 0C inhibition at high pressures.

Keywords: gas hydrates, natural gas, ionic liquids, inhibition, thermodynamic inhibitors, kinetic inhibitors

Procedia PDF Downloads 1320
4271 Linguistic Analysis of Borderline Personality Disorder: Using Language to Predict Maladaptive Thoughts and Behaviours

Authors: Charlotte Entwistle, Ryan Boyd

Abstract:

Recent developments in information retrieval techniques and natural language processing have allowed for greater exploration of psychological and social processes. Linguistic analysis methods for understanding behaviour have provided useful insights within the field of mental health. One area within mental health that has received little attention though, is borderline personality disorder (BPD). BPD is a common mental health disorder characterised by instability of interpersonal relationships, self-image and affect. It also manifests through maladaptive behaviours, such as impulsivity and self-harm. Examination of language patterns associated with BPD could allow for a greater understanding of the disorder and its links to maladaptive thoughts and behaviours. Language analysis methods could also be used in a predictive way, such as by identifying indicators of BPD or predicting maladaptive thoughts, emotions and behaviours. Additionally, associations that are uncovered between language and maladaptive thoughts and behaviours could then be applied at a more general level. This study explores linguistic characteristics of BPD, and their links to maladaptive thoughts and behaviours, through the analysis of social media data. Data were collected from a large corpus of posts from the publicly available social media platform Reddit, namely, from the ‘r/BPD’ subreddit whereby people identify as having BPD. Data were collected using the Python Reddit API Wrapper and included all users which had posted within the BPD subreddit. All posts were manually inspected to ensure that they were not posted by someone who clearly did not have BPD, such as people posting about a loved one with BPD. These users were then tracked across all other subreddits of which they had posted in and data from these subreddits were also collected. Additionally, data were collected from a random control group of Reddit users. Disorder-relevant behaviours, such as self-harming or aggression-related behaviours, outlined within Reddit posts were coded to by expert raters. All posts and comments were aggregated by user and split by subreddit. Language data were then analysed using the Linguistic Inquiry and Word Count (LIWC) 2015 software. LIWC is a text analysis program that identifies and categorises words based on linguistic and paralinguistic dimensions, psychological constructs and personal concern categories. Statistical analyses of linguistic features could then be conducted. Findings revealed distinct linguistic features associated with BPD, based on Reddit posts, which differentiated these users from a control group. Language patterns were also found to be associated with the occurrence of maladaptive thoughts and behaviours. Thus, this study demonstrates that there are indeed linguistic markers of BPD present on social media. It also implies that language could be predictive of maladaptive thoughts and behaviours associated with BPD. These findings are of importance as they suggest potential for clinical interventions to be provided based on the language of people with BPD to try to reduce the likelihood of maladaptive thoughts and behaviours occurring. For example, by social media tracking or engaging people with BPD in expressive writing therapy. Overall, this study has provided a greater understanding of the disorder and how it manifests through language and behaviour.

Keywords: behaviour analysis, borderline personality disorder, natural language processing, social media data

Procedia PDF Downloads 349
4270 Influence of Optical Fluence Distribution on Photoacoustic Imaging

Authors: Mohamed K. Metwally, Sherif H. El-Gohary, Kyung Min Byun, Seung Moo Han, Soo Yeol Lee, Min Hyoung Cho, Gon Khang, Jinsung Cho, Tae-Seong Kim

Abstract:

Photoacoustic imaging (PAI) is a non-invasive and non-ionizing imaging modality that combines the absorption contrast of light with ultrasound resolution. Laser is used to deposit optical energy into a target (i.e., optical fluence). Consequently, the target temperature rises, and then thermal expansion occurs that leads to generating a PA signal. In general, most image reconstruction algorithms for PAI assume uniform fluence within an imaging object. However, it is known that optical fluence distribution within the object is non-uniform. This could affect the reconstruction of PA images. In this study, we have investigated the influence of optical fluence distribution on PA back-propagation imaging using finite element method. The uniform fluence was simulated as a triangular waveform within the object of interest. The non-uniform fluence distribution was estimated by solving light propagation within a tissue model via Monte Carlo method. The results show that the PA signal in the case of non-uniform fluence is wider than the uniform case by 23%. The frequency spectrum of the PA signal due to the non-uniform fluence has missed some high frequency components in comparison to the uniform case. Consequently, the reconstructed image with the non-uniform fluence exhibits a strong smoothing effect.

Keywords: finite element method, fluence distribution, Monte Carlo method, photoacoustic imaging

Procedia PDF Downloads 378
4269 FracXpert: Ensemble Machine Learning Approach for Localization and Classification of Bone Fractures in Cricket Athletes

Authors: Madushani Rodrigo, Banuka Athuraliya

Abstract:

In today's world of medical diagnosis and prediction, machine learning stands out as a strong tool, transforming old ways of caring for health. This study analyzes the use of machine learning in the specialized domain of sports medicine, with a focus on the timely and accurate detection of bone fractures in cricket athletes. Failure to identify bone fractures in real time can result in malunion or non-union conditions. To ensure proper treatment and enhance the bone healing process, accurately identifying fracture locations and types is necessary. When interpreting X-ray images, it relies on the expertise and experience of medical professionals in the identification process. Sometimes, radiographic images are of low quality, leading to potential issues. Therefore, it is necessary to have a proper approach to accurately localize and classify fractures in real time. The research has revealed that the optimal approach needs to address the stated problem and employ appropriate radiographic image processing techniques and object detection algorithms. These algorithms should effectively localize and accurately classify all types of fractures with high precision and in a timely manner. In order to overcome the challenges of misidentifying fractures, a distinct model for fracture localization and classification has been implemented. The research also incorporates radiographic image enhancement and preprocessing techniques to overcome the limitations posed by low-quality images. A classification ensemble model has been implemented using ResNet18 and VGG16. In parallel, a fracture segmentation model has been implemented using the enhanced U-Net architecture. Combining the results of these two implemented models, the FracXpert system can accurately localize exact fracture locations along with fracture types from the available 12 different types of fracture patterns, which include avulsion, comminuted, compressed, dislocation, greenstick, hairline, impacted, intraarticular, longitudinal, oblique, pathological, and spiral. This system will generate a confidence score level indicating the degree of confidence in the predicted result. Using ResNet18 and VGG16 architectures, the implemented fracture segmentation model, based on the U-Net architecture, achieved a high accuracy level of 99.94%, demonstrating its precision in identifying fracture locations. Simultaneously, the classification ensemble model achieved an accuracy of 81.0%, showcasing its ability to categorize various fracture patterns, which is instrumental in the fracture treatment process. In conclusion, FracXpert has become a promising ML application in sports medicine, demonstrating its potential to revolutionize fracture detection processes. By leveraging the power of ML algorithms, this study contributes to the advancement of diagnostic capabilities in cricket athlete healthcare, ensuring timely and accurate identification of bone fractures for the best treatment outcomes.

Keywords: multiclass classification, object detection, ResNet18, U-Net, VGG16

Procedia PDF Downloads 120
4268 Dematerialized Beings in Katherine Dunn's Geek Love: A Corporeal and Ethical Study under Posthumanities

Authors: Anum Javed

Abstract:

This study identifies the dynamical image of human body that continues its metamorphosis in the virtual field of reality. It calls attention to the ways where humans start co-evolving with other life forms; technology in particular and are striving to establish a realm outside the physical framework of matter. The problem exceeds the area of technological ethics by explicably and explanatorily entering the space of literary texts and criticism. Textual analysis of Geek Love (1989) by Katherine Dunn is adjoined with posthumanist perspectives of Pramod K. Nayar to beget psycho-somatic changes in man’s nature of being. It uncovers the meaning people give to their experiences in this budding social and cultural phenomena of material representation tied up with personal practices and technological innovations. It also observes an ethical, physical and psychological reassessment of man within the context of technological evolutions. The study indicates the elements that have rendered morphological freedom and new materialism in man’s consciousness. Moreover this work is inquisitive of what it means to be a human in this time of accelerating change where surgeries, implants, extensions, cloning and robotics have shaped a new sense of being. It attempts to go beyond individual’s body image and explores how objectifying media and culture have influenced people’s judgement of others on new material grounds. It further argues a decentring of the glorified image of man as an independent entity because of his energetic partnership with intelligent machines and external agents. The history of the future progress of technology is also mentioned. The methodology adopted is posthumanist techno-ethical textual analysis. This work necessitates a negotiating relationship between man and technology in order to achieve harmonic and balanced interconnected existence. The study concludes by recommending a call for an ethical set of codes to be cultivated for the techno-human habituation. Posthumanism ushers a strong need of adopting new ethics within the terminology of neo-materialist humanism.

Keywords: corporeality, dematerialism, human ethos, posthumanism

Procedia PDF Downloads 147
4267 High-Accuracy Satellite Image Analysis and Rapid DSM Extraction for Urban Environment Evaluations (Tripoli-Libya)

Authors: Abdunaser Abduelmula, Maria Luisa M. Bastos, José A. Gonçalves

Abstract:

The modeling of the earth's surface and evaluation of urban environment, with 3D models, is an important research topic. New stereo capabilities of high-resolution optical satellites images, such as the tri-stereo mode of Pleiades, combined with new image matching algorithms, are now available and can be applied in urban area analysis. In addition, photogrammetry software packages gained new, more efficient matching algorithms, such as SGM, as well as improved filters to deal with shadow areas, can achieve denser and more precise results. This paper describes a comparison between 3D data extracted from tri-stereo and dual stereo satellite images, combined with pixel based matching and Wallis filter. The aim was to improve the accuracy of 3D models especially in urban areas, in order to assess if satellite images are appropriate for a rapid evaluation of urban environments. The results showed that 3D models achieved by Pleiades tri-stereo outperformed, both in terms of accuracy and detail, the result obtained from a Geo-eye pair. The assessment was made with reference digital surface models derived from high-resolution aerial photography. This could mean that tri-stereo images can be successfully used for the proposed urban change analyses.

Keywords: 3D models, environment, matching, pleiades

Procedia PDF Downloads 330
4266 Internet Memes: A Mirror of Culture and Society

Authors: Alexandra-Monica Toma

Abstract:

As the internet became a ruling force of society, computer-mediated communication has enriched its methods to convey meaning by combining linguistic means to visual means of expressivity. One of the elements of cyberspace is what we call a meme, a succinct, visually engaging tool used to communicate ideas or emotions, usually in a funny or ironic manner. Coined by Richard Dawkings in the late 1970s to refer to cultural genes, this term now denominates a special type of vernacular language used to share content on the internet. This research aims to analyse the basic mechanism that stands at the basis of meme creation as a blend of innovation and imitation and will approach some of the most widely used image macros remixed to generate new content while also pointing out success strategies. Moreover, this paper discusses whether memes can transcend the light-hearted and playful mood they mirror and become biting and sharp cultural comments. The study also uses the concept of multimodality and stresses how the text interacts with image, discussing three types of relations between the two: symmetry, amplification, and contradiction. We will furthermore show that memes are cultural artifacts and virtual tropes highly dependent on context and societal issues by using a corpus of memes created related to the COVID-19 pandemic.

Keywords: context, computer-mediated communication, memes, multimodality

Procedia PDF Downloads 184
4265 Topic-to-Essay Generation with Event Element Constraints

Authors: Yufen Qin

Abstract:

Topic-to-Essay generation is a challenging task in Natural language processing, which aims to generate novel, diverse, and topic-related text based on user input. Previous research has overlooked the generation of articles under the constraints of event elements, resulting in issues such as incomplete event elements and logical inconsistencies in the generated results. To fill this gap, this paper proposes an event-constrained approach for a topic-to-essay generation that enforces the completeness of event elements during the generation process. Additionally, a language model is employed to verify the logical consistency of the generated results. Experimental results demonstrate that the proposed model achieves a better BLEU-2 score and performs better than the baseline in terms of subjective evaluation on a real dataset, indicating its capability to generate higher-quality topic-related text.

Keywords: event element, language model, natural language processing, topic-to-essay generation.

Procedia PDF Downloads 236
4264 Optimizing Pediatric Pneumonia Diagnosis with Lightweight MobileNetV2 and VAE-GAN Techniques in Chest X-Ray Analysis

Authors: Shriya Shukla, Lachin Fernando

Abstract:

Pneumonia, a leading cause of mortality in young children globally, presents significant diagnostic challenges, particularly in resource-limited settings. This study presents an approach to diagnosing pediatric pneumonia using Chest X-Ray (CXR) images, employing a lightweight MobileNetV2 model enhanced with synthetic data augmentation. Addressing the challenge of dataset scarcity and imbalance, the study used a Variational Autoencoder-Generative Adversarial Network (VAE-GAN) to generate synthetic CXR images, improving the representation of normal cases in the pediatric dataset. This approach not only addresses the issues of data imbalance and scarcity prevalent in medical imaging but also provides a more accessible and reliable diagnostic tool for early pneumonia detection. The augmented data improved the model’s accuracy and generalization, achieving an overall accuracy of 95% in pneumonia detection. These findings highlight the efficacy of the MobileNetV2 model, offering a computationally efficient yet robust solution well-suited for resource-constrained environments such as mobile health applications. This study demonstrates the potential of synthetic data augmentation in enhancing medical image analysis for critical conditions like pediatric pneumonia.

Keywords: pneumonia, MobileNetV2, image classification, GAN, VAE, deep learning

Procedia PDF Downloads 125
4263 The Effects of Physical Activity and Serotonin on Depression, Anxiety, Body Image and Mental Health

Authors: Sh. Khoshemehry, M. E. Bahram, M. J. Pourvaghar

Abstract:

Sport has found a special place as an effective phenomenon in all societies of the contemporary world. The relationship between physical activity and exercise with different sciences has provided new fields for human study. The range of issues related to exercise and physical education is such that it requires specialized sciences and special studies. In this article, the psychological and social sections of exercise have been investigated for children and adults. It can be used for anyone in different age groups. Exercise and regular physical movements have a great impact on the mental and social health of the individual in addition to body health. It affects the individual's adaptability in society and his/her personality. Exercise affects the treatment of diseases such as depression, anxiety, stress, body image, and memory. Exercise is a safe haven for young people to achieve the optimum human development in its shelter. The effects of sensorimotor skills on mental actions and mental development are such a way that many psychologists and sports science experts believe these activities should be included in training programs in the first place. Familiarity of students and scholars with different programs and methods of sensorimotor activities not only causes their mental actions; but also increases mental health and vitality, enhances self-confidence and, therefore, mental health.

Keywords: anxiety, mental health, physical activity, serotonin

Procedia PDF Downloads 207
4262 The Processing of Implicit Stereotypes in Everyday Scene Perception

Authors: Magali Mari, Fabrice Clement

Abstract:

The present study investigated the influence of implicit stereotypes on adults’ visual information processing, using an eye-tracking device. Implicit stereotyping is an automatic and implicit process; it happens relatively quickly, outside of awareness. In the presence of a member of a social group, a set of expectations about the characteristics of this social group appears automatically in people’s minds. The study aimed to shed light on the cognitive processes involved in stereotyping and to further investigate the use of eye movements to measure implicit stereotypes. With an eye-tracking device, the eye movements of participants were analyzed, while they viewed everyday scenes depicting women and men in congruent or incongruent gender role activities (e.g., a woman ironing or a man ironing). The settings of these scenes had to be analyzed to infer the character’s role. Also, participants completed an implicit association test that combined the concept of gender with attributes of occupation (home/work), while measuring reaction times to assess participants’ implicit stereotypes about gender. The results showed that implicit stereotypes do influence people’s visual attention; within a fraction of a second, the number of returns, between stereotypical and counter-stereotypical scenes, differed significantly, meaning that participants interpreted the scene itself as a whole before identifying the character. They predicted that, in such a situation, the character was supposed to be a woman or a man. Also, the study showed that eye movements could be used as a fast and reliable supplement for traditional implicit association tests to measure implicit stereotypes. Altogether, this research provides further understanding of implicit stereotypes processing as well as a natural method to study implicit stereotypes.

Keywords: eye-tracking, implicit stereotypes, social cognition, visual attention

Procedia PDF Downloads 159
4261 Integrated Model for Enhancing Data Security Processing Time in Cloud Computing

Authors: Amani A. Saad, Ahmed A. El-Farag, El-Sayed A. Helali

Abstract:

Cloud computing is an important and promising field in the recent decade. Cloud computing allows sharing resources, services and information among the people of the whole world. Although the advantages of using clouds are great, but there are many risks in a cloud. The data security is the most important and critical problem of cloud computing. In this research a new security model for cloud computing is proposed for ensuring secure communication system, hiding information from other users and saving the user's times. In this proposed model Blowfish encryption algorithm is used for exchanging information or data, and SHA-2 cryptographic hash algorithm is used for data integrity. For user authentication process a simple user-name and password is used, the password uses SHA-2 for one way encryption. The proposed system shows an improvement of the processing time of uploading and downloading files on the cloud in secure form.

Keywords: cloud computing, data security, SAAS, PAAS, IAAS, Blowfish

Procedia PDF Downloads 359