Search results for: learning physical
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12769

Search results for: learning physical

11149 Australian Teachers and School Leaders’ Use of Differentiated Learning Experiences as Responsive Teaching for Students with ADHD

Authors: Kathy Gibbs

Abstract:

There is a paucity of research in Australia about educators’ use of differentiated instruction (DI) to support the learning of students with ADHD. This study reports on small-scale, qualitative research using interviews with teachers and school leaders to identify how they use DI as an effective teaching instruction for students with ADHD. Findings showed that teachers and school leaders have a good understanding of ADHD; teachers use DI as an effective teaching practice to enhance learning for this student group and ensure the classroom environment is safe and secure. However, they do not adjust assessments for students with ADHD. School leaders are not clear on how teachers differentiate assessments or adapt to the classroom environment. These results highlight the need for further research at the teacher and teacher-educator level teachers to ensure teaching practices are effective in reducing unwanted behaviours that prevent students with ADHD from achieving their full academic potential.

Keywords: teachers, differentiated instruction, ADHD, student learning, educators knowledge

Procedia PDF Downloads 55
11148 TDApplied: An R Package for Machine Learning and Inference with Persistence Diagrams

Authors: Shael Brown, Reza Farivar

Abstract:

Persistence diagrams capture valuable topological features of datasets that other methods cannot uncover. Still, their adoption in data pipelines has been limited due to the lack of publicly available tools in R (and python) for analyzing groups of them with machine learning and statistical inference. In an easy-to-use and scalable R package called TDApplied, we implement several applied analysis methods tailored to groups of persistence diagrams. The two main contributions of our package are comprehensiveness (most functions do not have implementations elsewhere) and speed (shown through benchmarking against other R packages). We demonstrate applications of the tools on simulated data to illustrate how easily practical analyses of any dataset can be enhanced with topological information.

Keywords: machine learning, persistence diagrams, R, statistical inference

Procedia PDF Downloads 87
11147 A Constructivist and Strategic Approach to School Learning: A Study in a Tunisian Primary School

Authors: Slah Eddine Ben Fadhel

Abstract:

Despite the development of new pedagogic methods, current teaching practices put more emphasis on the learning products than on the processes learners deploy. In school syllabi, for instance, very little time is devoted to both the explanation and analysis of strategies aimed at resolving problems by means of targeting students’ metacognitive procedures. Within a cognitive framework, teaching/learning contexts are conceived of in terms of cognitive, metacognitive and affective activities intended for the treatment of information. During these activities, learners come to develop an array of knowledge and strategies which can be subsumed within an active and constructive process. Through the investigation of strategies and metacognition concepts, the purpose is to reflect upon the modalities at the heart of the learning process and to demonstrate, similarly, the inherent significance of a cognitive approach to learning. The scope of this paper is predicated on a study where the population is a group of 76 primary school pupils who experienced difficulty with learning French. The population was divided into two groups: the first group was submitted during three months to a strategy-based training to learn French. All through this phase, the teachers centred class activities round making learners aware of the strategies the latter deployed and geared them towards appraising the steps these learners had themselves taken by means of a variety of tools, most prominent among which is the logbook. The second group was submitted to the usual learning context with no recourse whatsoever to any strategy-oriented tasks. The results of both groups point out the improvement of linguistic competences in the French language in the case of those pupils who were trained by means of strategic procedures. Furthermore, this improvement was noted in relation with the native language (Arabic), a fact that tends to highlight the importance of the interdisciplinary investigation of (meta-)cognitive strategies. These results show that strategic learning promotes in pupils the development of a better awareness of their own processes, which contributes to improving their general linguistic competences.

Keywords: constructive approach, cognitive strategies, metacognition, learning

Procedia PDF Downloads 212
11146 Mental Disorders and Physical Illness in Geriatric Population

Authors: Vinay Kumar, M. Kishor, Sathyanarayana Rao Ts

Abstract:

Background: Growth of elderly people in the general population in recent years is termed as ‘greying of the world’ where there is a shift from high mortality & fertility to low mortality and fertility, resulting in an increased proportion of older people as seen in India. Improved health care promises longevity but socio-economic factors like poverty, joint families and poor services pose a psychological threat. Epidemiological data regarding the prevalence of mental disorders in geriatric population with physical illness is required for proper health planning. Methods: Sixty consecutive elderly patients aged 60 years or above of both sexes, reporting with physical illness to general outpatient registration counter of JSS Medical College and Hospital, Mysore, India, were considered for the Study. With informed consent, they were screened with General Health Questionnaire (GHQ-12) and were further evaluated for diagnosing mental disorders according to WHO International Classification of Diseases (ICD-10) criteria. Results: Mental disorders were detected in 48.3%, predominantly depressive disorders, nicotine dependence, generalized anxiety disorder, alcohol dependence and least was dementia. Most common physical illness was cardiovascular disease followed by metabolic, respiratory and other diseases. Depressive disorders, substance dependence and dementia were more associated with cardiovascular disease compared to metabolic disease and respiratory diseases were more associated with nicotine dependence. Conclusions: Depression and Substance use disorders among elderly population is of concern, which needs to be further studied with larger population. Psychiatric morbidity will adversely have an impact on physical illness which needs proper assessment and management. This will enhance our understanding and prioritize our planning for future.

Keywords: Geriatric, mental disorders, physical illness, psychiatry

Procedia PDF Downloads 287
11145 Students’ Perceptions of the Use of Social Media in Higher Education in Saudi Arabia

Authors: Omar Alshehri, Vic Lally

Abstract:

This paper examined the attitudes of using social media tools to support learning at a university in Saudi Arabia. Moreover, it investigated the students’ current usage of these tools and examined the barriers they could face during the use of social media tools in the education process. Participants in this study were 42 university students. A web-based survey was used to collect data for this study. The results indicate that all of the students were familiar with social media and had used at least one type of social media for learning. It was found out that all students had very positive attitudes towards the use of social media and welcomed using these tools as a supplementary to the curriculum. However, the results indicated that the major barriers to using these tools in learning were distraction, opposing Islamic religious teachings, privacy issues, and cyberbullying. The study recommended that this study could be replicated at other Saudi universities to investigate factors and barriers that might affect Saudi students’ attitudes toward using social media to support learning.

Keywords: barriers to social media use, benefits of social media use, higher education, Saudi Arabia, social media

Procedia PDF Downloads 169
11144 Advances in Machine Learning and Deep Learning Techniques for Image Classification and Clustering

Authors: R. Nandhini, Gaurab Mudbhari

Abstract:

Ranging from the field of health care to self-driving cars, machine learning and deep learning algorithms have revolutionized the field with the proper utilization of images and visual-oriented data. Segmentation, regression, classification, clustering, dimensionality reduction, etc., are some of the Machine Learning tasks that helped Machine Learning and Deep Learning models to become state-of-the-art models for the field where images are key datasets. Among these tasks, classification and clustering are essential but difficult because of the intricate and high-dimensional characteristics of image data. This finding examines and assesses advanced techniques in supervised classification and unsupervised clustering for image datasets, emphasizing the relative efficiency of Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), Deep Embedded Clustering (DEC), and self-supervised learning approaches. Due to the distinctive structural attributes present in images, conventional methods often fail to effectively capture spatial patterns, resulting in the development of models that utilize more advanced architectures and attention mechanisms. In image classification, we investigated both CNNs and ViTs. One of the most promising models, which is very much known for its ability to detect spatial hierarchies, is CNN, and it serves as a core model in our study. On the other hand, ViT is another model that also serves as a core model, reflecting a modern classification method that uses a self-attention mechanism which makes them more robust as this self-attention mechanism allows them to lean global dependencies in images without relying on convolutional layers. This paper evaluates the performance of these two architectures based on accuracy, precision, recall, and F1-score across different image datasets, analyzing their appropriateness for various categories of images. In the domain of clustering, we assess DEC, Variational Autoencoders (VAEs), and conventional clustering techniques like k-means, which are used on embeddings derived from CNN models. DEC, a prominent model in the field of clustering, has gained the attention of many ML engineers because of its ability to combine feature learning and clustering into a single framework and its main goal is to improve clustering quality through better feature representation. VAEs, on the other hand, are pretty well known for using latent embeddings for grouping similar images without requiring for prior label by utilizing the probabilistic clustering method.

Keywords: machine learning, deep learning, image classification, image clustering

Procedia PDF Downloads 17
11143 Towards Inclusive Learning Society: Learning for Work in the Swedish Context

Authors: Irina Rönnqvist

Abstract:

The world is constantly changing; therefore previous views or cultural patterns and programs formed by the “old world” cannot be suitable for solving actual problems. Indeed, reformation of an education system is unlikely to be effective without understanding of the processes that emerge in the field of employment. There is a problem in overcoming of the negative trends that determine imbalance of needs of the qualified work force and preparation of professionals by an education system. At the contemporary stage of economics the processes occurring in the field of labor and employment reproduce the picture of economic development of the country that cannot be imagined without the factor of labor mobility (e.g. migration). On the one hand, adult education has a significant impact on multifaceted development of economy. On the other hand, Sweden has one of the world's most generous asylum reception systems and the most liberal labor migration policy among the OECD countries. This effect affects the increased productivity. The focus of this essay is on problems of education and employment concerning social inclusion of migrants in working life in Sweden.

Keywords: migration, adaptation, formal learning, informal learning, Sweden

Procedia PDF Downloads 327
11142 Uncertainty Estimation in Neural Networks through Transfer Learning

Authors: Ashish James, Anusha James

Abstract:

The impressive predictive performance of deep learning techniques on a wide range of tasks has led to its widespread use. Estimating the confidence of these predictions is paramount for improving the safety and reliability of such systems. However, the uncertainty estimates provided by neural networks (NNs) tend to be overconfident and unreasonable. Ensemble of NNs typically produce good predictions but uncertainty estimates tend to be inconsistent. Inspired by these, this paper presents a framework that can quantitatively estimate the uncertainties by leveraging the advances in transfer learning through slight modification to the existing training pipelines. This promising algorithm is developed with an intention of deployment in real world problems which already boast a good predictive performance by reusing those pretrained models. The idea is to capture the behavior of the trained NNs for the base task by augmenting it with the uncertainty estimates from a supplementary network. A series of experiments with known and unknown distributions show that the proposed approach produces well calibrated uncertainty estimates with high quality predictions.

Keywords: uncertainty estimation, neural networks, transfer learning, regression

Procedia PDF Downloads 137
11141 The Effects of Acute Physical Activity on Measures of Inhibition in Pre-School Children

Authors: Antonia Stergiou

Abstract:

Background: Due to the developmental trajectory of executive function in preschool age, the majority of existing studies investigating the association between acute physical activity and cognitive control have focused on adolescents and adult population. Aim- The aim of this study was to investigate the possible effects of physical activity on the inhibitory control of pre-school children. Methods: This is a prospectively designed study that was conducted in a primary school in Bristol in June 2015. The total number of subjects was n=61 and 20 trials of a modified Eriksen Flanker Task were completed before and after a 30-minutes session of moderate exercise (including both 5 minutes of warm up and cool down). For each test a pre- and post-test assessment took place that included both congruent and incongruent trials. The congruent trials were considered as the control condition and the incongruent trials as those that measure inhibitory control (experimental condition). At the end of the assessment, the participants were instructed to choose the face that described their current feelings between three options (happy, neutral, sad). Results: There was a trend for increased accuracy following moderate exercise, but there was statistical significance (p > .05). However, there was statistically significant improvement in the reaction time following the same type of exercise (p = .005). Face board assessment revealed positive emotions after 30 minutes of moderate exercise. Conclusions: The current study supports findings from previous studies related to the benefits of physical activity on the children’s inhibitory control and provides evidence of those benefits in even younger ages. Further research should take place considering each child individually. Implementation of those findings could result in an improved curriculum in schools with additional time spent on physical education courses.

Keywords: cognitive control, inhibition, physical activity, pre-school children

Procedia PDF Downloads 257
11140 Efficient Rehearsal Free Zero Forgetting Continual Learning Using Adaptive Weight Modulation

Authors: Yonatan Sverdlov, Shimon Ullman

Abstract:

Artificial neural networks encounter a notable challenge known as continual learning, which involves acquiring knowledge of multiple tasks over an extended period. This challenge arises due to the tendency of previously learned weights to be adjusted to suit the objectives of new tasks, resulting in a phenomenon called catastrophic forgetting. Most approaches to this problem seek a balance between maximizing performance on the new tasks and minimizing the forgetting of previous tasks. In contrast, our approach attempts to maximize the performance of the new task, while ensuring zero forgetting. This is accomplished through the introduction of task-specific modulation parameters for each task, and only these parameters are learned for the new task, after a set of initial tasks have been learned. Through comprehensive experimental evaluations, our model demonstrates superior performance in acquiring and retaining novel tasks that pose difficulties for other multi-task models. This emphasizes the efficacy of our approach in preventing catastrophic forgetting while accommodating the acquisition of new tasks.

Keywords: continual learning, life-long learning, neural analogies, adaptive modulation

Procedia PDF Downloads 73
11139 Teachers' Disability Disclosure: A Multiple Perspective

Authors: N. Tal-Alon, O. Shapira-Lishchinsky

Abstract:

Disability disclosure is one of the most complicated dilemmas that people with invisible disabilities face. There are only a few research studies that have focused on the difficulties and dilemmas of teachers who have different disabilities. In addition, there are currently no research studies focusing specifically on the different aspects of disability disclosure, which are unique to teachers. This research has, therefore, broadened the knowledge base and understanding of the dilemma of disability disclosure among teachers with invisible physical disabilities. In addition, it has shed light on the ways this issue is perceived by different groups: the perspective of school principals, the perspective of colleagues, and the perspective of teachers with physical disabilities themselves. The study sample included 12 teachers with invisible physical disabilities, 10 school principals who employ at least one teacher with an invisible physical disability, and 10 professional colleagues of at least one teacher with an invisible physical disability. This particular research study was conducted using a qualitative approach through the Narralizer computer program based on a series of in-depth interviews. The data analysis was carried out by grouping major points of interest into specific categories and sub-categories. The findings of this research suggest that teachers with disabilities struggle with the dilemma of whether or not to reveal their disability to the school staff and to their students. It was found that there were considerable differences between the issues that faculty members considered regarding this dilemma and the ones that teachers with disabilities considered. While the principals and professional colleagues focused solely on their own interests, the teachers with a disability emphasized more on the ways that they might have a positive influence on their students, as well as their own individual interests. In addition, school principals on a whole tended to view negatively the option of disclosing the disability to the students and were often critical towards teachers who concealed their disability from the school staff. The importance of this research is in its potential to influence policy decisions that can be implemented by the Ministry of Education regarding the support system for teachers with invisible physical disabilities.

Keywords: education, employment, invisible disabilities, teachers

Procedia PDF Downloads 102
11138 Enhancing Robustness in Federated Learning through Decentralized Oracle Consensus and Adaptive Evaluation

Authors: Peiming Li

Abstract:

This paper presents an innovative blockchain-based approach to enhance the reliability and efficiency of federated learning systems. By integrating a decentralized oracle consensus mechanism into the federated learning framework, we address key challenges of data and model integrity. Our approach utilizes a network of redundant oracles, functioning as independent validators within an epoch-based training system in the federated learning model. In federated learning, data is decentralized, residing on various participants' devices. This scenario often leads to concerns about data integrity and model quality. Our solution employs blockchain technology to establish a transparent and tamper-proof environment, ensuring secure data sharing and aggregation. The decentralized oracles, a concept borrowed from blockchain systems, act as unbiased validators. They assess the contributions of each participant using a Hidden Markov Model (HMM), which is crucial for evaluating the consistency of participant inputs and safeguarding against model poisoning and malicious activities. Our methodology's distinct feature is its epoch-based training. An epoch here refers to a specific training phase where data is updated and assessed for quality and relevance. The redundant oracles work in concert to validate data updates during these epochs, enhancing the system's resilience to security threats and data corruption. The effectiveness of this system was tested using the Mnist dataset, a standard in machine learning for benchmarking. Results demonstrate that our blockchain-oriented federated learning approach significantly boosts system resilience, addressing the common challenges of federated environments. This paper aims to make these advanced concepts accessible, even to those with a limited background in blockchain or federated learning. We provide a foundational understanding of how blockchain technology can revolutionize data integrity in decentralized systems and explain the role of oracles in maintaining model accuracy and reliability.

Keywords: federated learning system, block chain, decentralized oracles, hidden markov model

Procedia PDF Downloads 65
11137 Architectural Design Studio (ADS) as an Operational Synthesis in Architectural Education

Authors: Francisco A. Ribeiro Da Costa

Abstract:

Who is responsible for teaching architecture; consider various ways to participate in learning, manipulating various pedagogical tools to streamline the creative process. The Architectural Design Studio (ADS) should become a holistic, systemic process responding to the complexity of our world. This essay corresponds to a deep reflection developed by the author on the teaching of architecture. The outcomes achieved are the corollary of experimentation; discussion and application of pedagogical methods that allowed consolidate the creativity applied by students. The purpose is to show the conjectures that have been considered effective in creating an intellectual environment that nurtures the subject of Architectural Design Studio (ADS), as an operational synthesis in the final stage of the degree. These assumptions, which are part of the proposed model, displaying theories and teaching methodologies that try to respect the learning process based on student learning styles Kolb, ensuring their latent specificities and formulating the structure of the ASD discipline. In addition, the assessing methods are proposed, which consider the architectural Design Studio as an operational synthesis in the teaching of architecture.

Keywords: teaching-learning, architectural design studio, architecture, education

Procedia PDF Downloads 391
11136 The Relationship between Creative Imagination and Curriculum

Authors: Faride Hashemiannejad, Shima Oloomi

Abstract:

Imagination is one of the important elements of creative thinking which as a skill needs attention by the educational system. Although most students learn reading, writing, and arithmetic skills well, they lack high level thinking skills like creative thinking. Therefore, in the information age and in the beginning of entry to knowledge-based society, the educational system needs to think over its goals and mission, and concentrate on creativity-based curriculum. From among curriculum elements-goals, content, method and evaluation “method” is a major domain whose reform can pave the way for fostering imagination and creativity. The purpose of this study was examining the relationship between creativity development and curriculum. Research questions were: (1) is there a relationship between the cognitive-emotional structure of the classroom and creativity development? (2) Is there a relationship between the environmental-social structure of the classroom and creativity development? (3) Is there a relationship between the thinking structure of the classroom and creativity development? (4) Is there a relationship between the physical structure of the classroom and creativity development? (5) Is there a relationship between the instructional structure of the classroom and creativity development? Method: This research is a applied research and the research method is Correlational research. Participants: The total number of participants in this study included 894 students from High school through 11th grade from seven schools of seven zones in Mashad city. Sampling Plan: Sampling was selected based on Random Multi State. Measurement: The dependent measure in this study was: (a) the Test of Creative Thinking, (b) The researcher-made questionnaire includes five fragments, cognitive, emotional structure, environmental social structure, thinking structure, physical structure, and instructional structure. The Results Show: There was significant relationship between the cognitive-emotional structure of the classroom and student’s creativity development (sig=0.139). There was significant relationship between the environmental-social structure of the classroom and student’s creativity development (sig=0.006). There was significant relationship between the thinking structure of the classroom and student’s creativity development (sig=0.004). There was not significant relationship between the physical structure of the classroom and student’s creativity development (sig=0.215). There was significant relationship between the instructional structure of the classroom and student’s creativity development (sig=0.003). These findings denote if students feel secure, calm and confident, they can experience creative learning. Also the quality of coping with students’ questions, imaginations and risks can influence on their creativity development.

Keywords: imagination, creativity, curriculum, bioinformatics, biomedicine

Procedia PDF Downloads 480
11135 Teaching Research Methods at the Graduate Level Utilizing Flipped Classroom Approach; An Action Research Study

Authors: Munirah Alaboudi

Abstract:

This paper discusses a research project carried out with 12 first-year graduate students enrolled in research methods course prior to undertaking a graduate thesis during the academic year 2019. The research was designed for the objective of creating research methods course structure that embraces an individualized and activity-based approach to learning in a highly engaging group environment. This approach targeted innovating the traditional research methods lecture-based, theoretical format where students reported less engagement and limited learning. This study utilized action research methodology in developing a different approach to research methods course instruction where student performance indicators and feedback were periodically collected to assess the new teaching method. Student learning was achieved through utilizing the flipped classroom approach where students learned the material at home and classroom activities were designed to implement and experiment with the newly acquired information, with the guidance of the course instructor. Student learning in class was practiced through a series of activities based on different research methods. With the goal of encouraging student engagement, a wide range of activities was utilized including workshops, role play, mind-mapping, presentations, peer evaluations. Data was collected through an open-ended qualitative questionnaire to establish whether students were engaged in the material they were learning, and to what degree were they engaged, and to test their mastery level of the concepts discussed. Analysis of the data presented positive results as around 91% of the students reported feeling more engaged with the active learning experience and learning research by “actually doing research, not just reading about it”. The students expressed feeling invested in the process of their learning as they saw their research “gradually come to life” through peer learning and practice during workshops. Based on the results of this study, the research methods course structure was successfully remodeled and continues to be delivered.

Keywords: research methods, higher education instruction, flipped classroom, graduate education

Procedia PDF Downloads 103
11134 Machine Learning in Agriculture: A Brief Review

Authors: Aishi Kundu, Elhan Raza

Abstract:

"Necessity is the mother of invention" - Rapid increase in the global human population has directed the agricultural domain toward machine learning. The basic need of human beings is considered to be food which can be satisfied through farming. Farming is one of the major revenue generators for the Indian economy. Agriculture is not only considered a source of employment but also fulfils humans’ basic needs. So, agriculture is considered to be the source of employment and a pillar of the economy in developing countries like India. This paper provides a brief review of the progress made in implementing Machine Learning in the agricultural sector. Accurate predictions are necessary at the right time to boost production and to aid the timely and systematic distribution of agricultural commodities to make their availability in the market faster and more effective. This paper includes a thorough analysis of various machine learning algorithms applied in different aspects of agriculture (crop management, soil management, water management, yield tracking, livestock management, etc.).Due to climate changes, crop production is affected. Machine learning can analyse the changing patterns and come up with a suitable approach to minimize loss and maximize yield. Machine Learning algorithms/ models (regression, support vector machines, bayesian models, artificial neural networks, decision trees, etc.) are used in smart agriculture to analyze and predict specific outcomes which can be vital in increasing the productivity of the Agricultural Food Industry. It is to demonstrate vividly agricultural works under machine learning to sensor data. Machine Learning is the ongoing technology benefitting farmers to improve gains in agriculture and minimize losses. This paper discusses how the irrigation and farming management systems evolve in real-time efficiently. Artificial Intelligence (AI) enabled programs to emerge with rich apprehension for the support of farmers with an immense examination of data.

Keywords: machine Learning, artificial intelligence, crop management, precision farming, smart farming, pre-harvesting, harvesting, post-harvesting

Procedia PDF Downloads 107
11133 Reconstructability Analysis for Landslide Prediction

Authors: David Percy

Abstract:

Landslides are a geologic phenomenon that affects a large number of inhabited places and are constantly being monitored and studied for the prediction of future occurrences. Reconstructability analysis (RA) is a methodology for extracting informative models from large volumes of data that work exclusively with discrete data. While RA has been used in medical applications and social science extensively, we are introducing it to the spatial sciences through applications like landslide prediction. Since RA works exclusively with discrete data, such as soil classification or bedrock type, working with continuous data, such as porosity, requires that these data are binned for inclusion in the model. RA constructs models of the data which pick out the most informative elements, independent variables (IVs), from each layer that predict the dependent variable (DV), landslide occurrence. Each layer included in the model retains its classification data as a primary encoding of the data. Unlike other machine learning algorithms that force the data into one-hot encoding type of schemes, RA works directly with the data as it is encoded, with the exception of continuous data, which must be binned. The usual physical and derived layers are included in the model, and testing our results against other published methodologies, such as neural networks, yields accuracy that is similar but with the advantage of a completely transparent model. The results of an RA session with a data set are a report on every combination of variables and their probability of landslide events occurring. In this way, every combination of informative state combinations can be examined.

Keywords: reconstructability analysis, machine learning, landslides, raster analysis

Procedia PDF Downloads 69
11132 Quality Tools for Shaping Quality of Learning and Teaching in Education and Training

Authors: Renga Rao Krishnamoorthy, Raihan Tahir

Abstract:

The quality of classroom learning and teaching delivery has been and will continue to be debated at various levels worldwide. The regional cooperation programme to improve the quality and labour market orientation of the Technical and Vocational Education and Training (RECOTVET), ‘Deutsche Gesellschaft für Internationale Zusammenarbeit’ (GIZ), in line with the sustainable development goals (SDG), has taken the initiative in the development of quality TVET in the ASEAN region by developing the Quality Toolbox for Better TVET Delivery (Quality Toolbox). This initiative aims to provide quick and practical materials to trainers, instructors, and personnel involved in education and training at an institute to shape the quality of classroom learning and teaching. The Quality Toolbox for Better TVET Delivery was developed in three stages: literature review and development, validation, and finalization. Thematic areas in the Quality Toolbox were derived from collective input of concerns and challenges raised from experts’ workshops through moderated sessions involving representatives of TVET institutes from 9 ASEAN Member States (AMS). The sessions were facilitated by professional moderators and international experts. TVET practitioners representing AMS further analysed and discussed the structure of the Quality Toolbox and content of thematic areas and outlined a set of specific requirements and recommendations. The application exercise of the Quality Toolbox was carried out by TVET institutes among ASM. Experience sharing sessions from participating ASEAN countries were conducted virtually. The findings revealed that TVET institutes use two types of approaches in shaping the quality of learning and teaching, which is ascribed to inductive or deductive, shaping of quality in learning and teaching is a non-linear process and finally, Q-tools can be adopted and adapted to shape the quality of learning and teaching at TVET institutes in the following: improvement of the institutional quality, improvement of teaching quality and improvement on the organisation of learning and teaching for students and trainers. The Quality Toolbox has good potential to be used at education and training institutes to shape quality in learning and teaching.

Keywords: AMS, GIZ, RECOTVET, quality tools

Procedia PDF Downloads 129
11131 Large-Scale Electroencephalogram Biometrics through Contrastive Learning

Authors: Mostafa ‘Neo’ Mohsenvand, Mohammad Rasool Izadi, Pattie Maes

Abstract:

EEG-based biometrics (user identification) has been explored on small datasets of no more than 157 subjects. Here we show that the accuracy of modern supervised methods falls rapidly as the number of users increases to a few thousand. Moreover, supervised methods require a large amount of labeled data for training which limits their applications in real-world scenarios where acquiring data for training should not take more than a few minutes. We show that using contrastive learning for pre-training, it is possible to maintain high accuracy on a dataset of 2130 subjects while only using a fraction of labels. We compare 5 different self-supervised tasks for pre-training of the encoder where our proposed method achieves the accuracy of 96.4%, improving the baseline supervised models by 22.75% and the competing self-supervised model by 3.93%. We also study the effects of the length of the signal and the number of channels on the accuracy of the user-identification models. Our results reveal that signals from temporal and frontal channels contain more identifying features compared to other channels.

Keywords: brainprint, contrastive learning, electroencephalo-gram, self-supervised learning, user identification

Procedia PDF Downloads 157
11130 Evaluating the Topsoil and Subsoil Physical Quality Using Relative Bulk Density in Urmia Plain

Authors: Hossein Asgarzadeh, Ayoub Osmani, Farrokh Asadzadeh, Mohammad Reza Mosaddeghi

Abstract:

This study was conducted to evaluate the topsoil and subsoil physical quality using relative bulk density (RBD) in Urmia plain in Iran. Undisturbed samples were collected from two layers (topsoil and subsoil) of thirty agricultural soils. Categories of 0.72 ≥ RBD (low degree of compactness), 0.82 > RBD > 0.72 (moderate/optimum degree of compactness), and RBD ≥ 0.82 (high degree of compactness) were used to evaluate soil physical quality (SPQ). Two topsoils had a low degree of compactness, fourteen topsoils had an optimum degree of compactness, and the rest (i.e., fourteen topsoils) had a high degree of compactness. Only one subsoil had an optimum degree of compactness, and twenty-eight subsoils (i.e., 93%) had a high degree of compactness, indicating poor SPQ of the subsoil layer in the studied region. It seems that conventional tillage in the past decades destroyed the pore system in the majority of studied subsoils. The high degree of compactness would reduce soil aeration and increase soil penetration resistance which could restrict root and plant growth. Conversely, a low degree of soil compactness is expected to reduce the root-soil contact.

Keywords: compactness, relative bulk density, soil physical quality

Procedia PDF Downloads 125
11129 Sustainable Design Criteria for Beach Resorts to Enhance Physical Activity That Helps Improve Health and Well-being for Adults in Saudi Arabia

Authors: Noorh Albadi, Salha Khayyat

Abstract:

People's moods and well-being are affected by their environment. The built environment impacts one's level of activity and health. In order to enhance users' physical health, sustainable design strategies have been developed for the physical environment to improve users' health. This study aimed to determine whether adult resorts in Saudi Arabia meet standards that ensure physical wellness to identify the needed requirements. It will be significant to the Ministry of Tourism, Sports, developers, and designers. Physical activity affects human health physically and mentally. In Saudi Arabia, the percentage of people who practiced sports in the Kingdom in 2019 was 20.04% - males and females older than 15. On the other hand, there is a lack of physical activity in Saudi Arabia; 90% of the Kingdom's population spends more than two hours sitting down without moving, which puts them at risk of contracting a non-communicable disease. The lack of physical activity and movement led to an increase in the rate of obesity among Saudis by 59% in 2020 and consequently could cause chronic diseases or death. The literature generally endorses that leading an active lifestyle improves physical health and affects mental health. Therefore, the United Nations has set 17 sustainable development goals (SDGs) to ensure healthy lives and promote well-being for all ages. One of SDG3's targets is reducing mortality, which can be achieved by raising physical activity. In order to support sustainable design, many rating systems and strategies have been developed, such as WELL building, Leadership in Energy and Environmental Design, (LEED), Active design strategies, and RIPA plan of work. The survey was used to gather qualitative and quantitative information. It was designed based on the Active Design and WELL building theories targeting beach resorts visitors, professional and beginner athletes, and non-athletics to ask them about the beach resorts they visited in the Kingdom and whether they met the criteria of sports resorts and healthy and active design theories, in addition to gathering information about the preferences of physical activities in the Saudi society in terms of the type of activities that young people prefer, where they prefer to engage in and under any thermal and light conditions. The final section asks about the design of residential units in beach sports resorts, the data collected from 127 participants. Findings revealed that participants prefer outdoor activities in moderate weather and sunlight or the evening with moderate and sufficient lighting and that no beach sports resorts in the country are constructed to support sustainable design criteria for physical activity. Participants agreed that several measures that lessen tension at beach resorts and enhance movement and activity are needed by Saudi society. The study recommends designing resorts that meet the sustainable design criteria regarding physical activity in Saudi Arabia to increase physical activity to achieve psychological and physical benefits and avoid psychological and physical diseases related to physical inactivity.

Keywords: sustainable design, SDGs, active design strategies, well building, beach resort design

Procedia PDF Downloads 122
11128 E-Portfolios as a Means of Perceiving Students’ Listening and Speaking Progress

Authors: Heba Salem

Abstract:

This paper aims to share the researcher’s experience of using e-Portfolios as an assessment tool to follow up on students’ learning experiences and performance throughout the semester. It also aims at highlighting the importance of students’ self-reflection in the process of language learning. The paper begins by introducing the advanced media course, with its focus on listening and speaking skills, and introduces the students’ profiles. Then it explains the students’ role in the e-portfolio process as they are given the option to choose a listening text they studied throughout the semester and to choose a recorded oral production of their collection of artifacts throughout the semester. Students showcase and reflect on their progress in both listening comprehension and speaking. According to the research, re-listening to work given to them and to their production is a means of reflecting on both their progress and achievement. And choosing the work students want to showcase is a means to promote independent learning as well as self-expression. Students are encouraged to go back to the class learning outcomes in the process of choosing the work. In their reflections, students express how they met the specific learning outcome. While giving their presentations, students expressed how useful the experience of returning and going over what they covered to select one and going over their production as well. They also expressed how beneficial it was to listen to themselves and literally see their progress in both listening comprehension and speaking. Students also reported that they grasped more details from the texts than they did when first having it as an assignment, which coincided with one of the class learning outcomes. They also expressed the fact that they had more confidence speaking as well as they were able to use a variety of vocabulary and idiomatic expressions that students have accumulated. For illustration, this paper includes practical samples of students’ tasks and instructions as well as samples of their reflections. The results of students’ reflections coincide with what the research confirms about the effectiveness of the e-portfolios as a means of assessment. The employment of e-Portfolios has two-folded benefits; students are able to measure the achievement of the targeted learning outcomes, and teachers receive constructive feedback on their teaching methods.

Keywords: e-portfolios, assessment, self assessment, listening and speaking progress, foreign language, reflection, learning out comes, sharing experience

Procedia PDF Downloads 98
11127 Extending the Flipped Classroom Approach: Using Technology in Module Delivery to Students of English Language and Literature at the British University in Egypt

Authors: Azza Taha Zaki

Abstract:

Technology-enhanced teaching has been in the limelight since the 90s when educators started investigating and experimenting with using computers in the classroom as a means of building 21st. century skills and motivating students. The concept of technology-enhanced strategies in education is kaleidoscopic! It has meant different things to different educators. For the purpose of this paper, however, it will be used to refer to the diverse technology-based strategies used to support and enrich the flipped learning process, in the classroom and outside. The paper will investigate how technology is put in the service of teaching and learning to improve the students’ learning experience as manifested in students’ attendance and engagement, achievement rates and finally, students’ projects at the end of the semester. The results will be supported by a student survey about relevant specific aspects of their learning experience in the modules in the study.

Keywords: attendance, British University, Egypt, flipped, student achievement, student-centred, student engagement, students’ projects

Procedia PDF Downloads 119
11126 An eHealth Intervention Using Accelerometer- Smart Phone-App Technology to Promote Physical Activity and Health among Employees in a Military Setting

Authors: Emilia Pietiläinen, Heikki Kyröläinen, Tommi Vasankari, Matti Santtila, Tiina Luukkaala, Kai Parkkola

Abstract:

Working in the military sets special demands on physical fitness, however, reduced physical activity levels among employees in the Finnish Defence Forces (FDF), a trend also being seen among the working-age population in Finland, is leading to reduced physical fitness levels and increased risk of cardiovascular and metabolic diseases, something which also increases human resource costs. Therefore, the aim of the present study was to develop an eHealth intervention using accelerometer- smartphone app feedback technique, telephone counseling and physical activity recordings to increase physical activity of the personnel and thereby improve their health. Specific aims were to reduce stress, improve quality of sleep and mental and physical performance, ability to work and reduce sick leave absences. Employees from six military brigades around Finland were invited to participate in the study, and finally, 260 voluntary participants were included (66 women, 194 men). The participants were randomized into intervention (156) and control groups (104). The eHealth intervention group used accelerometers measuring daily physical activity and duration and quality of sleep for six months. The accelerometers transmitted the data to smartphone apps while giving feedback about daily physical activity and sleep. The intervention group participants were also encouraged to exercise for two hours a week during working hours, a benefit that was already offered to employees following existing FDF guidelines. To separate the exercise done during working hours from the accelerometer data, the intervention group marked this exercise into an exercise diary. The intervention group also participated in telephone counseling about their physical activity. On the other hand, the control group participants continued with their normal exercise routine without the accelerometer and feedback. They could utilize the benefit of being able to exercise during working hours, but they were not separately encouraged for it, nor was the exercise diary used. The participants were measured at baseline, after the entire intervention period, and six months after the end of the entire intervention. The measurements included accelerometer recordings, biochemical laboratory tests, body composition measurements, physical fitness tests, and a wide questionnaire focusing on sociodemographic factors, physical activity and health. In terms of results, the primary indicators of effectiveness are increased physical activity and fitness, improved health status, and reduced sick leave absences. The evaluation of the present scientific reach is based on the data collected during the baseline measurements. Maintenance of the studied outcomes is assessed by comparing the results of the control group measured at the baseline and a year follow-up. Results of the study are not yet available but will be presented at the conference. The present findings will help to develop an easy and cost-effective model to support the health and working capability of employees in the military and other workplaces.

Keywords: accelerometer, health, mobile applications, physical activity, physical performance

Procedia PDF Downloads 197
11125 Effectiveness of Self-Learning Module on the Academic Performance of Students in Statistics and Probability

Authors: Aneia Rajiel Busmente, Renato Gunio Jr., Jazin Mautante, Denise Joy Mendoza, Raymond Benedict Tagorio, Gabriel Uy, Natalie Quinn Valenzuela, Ma. Elayza Villa, Francine Yezha Vizcarra, Sofia Madelle Yapan, Eugene Kurt Yboa

Abstract:

COVID-19’s rapid spread caused a dramatic change in the nation, especially the educational system. The Department of Education was forced to adopt a practical learning platform without neglecting health, a printed modular distance learning. The Philippines' K–12 curriculum includes Statistics and Probability as one of the key courses as it offers students the knowledge to evaluate and comprehend data. Due to student’s difficulty and lack of understanding of the concepts of Statistics and Probability in Normal Distribution. The Self-Learning Module in Statistics and Probability about the Normal Distribution created by the Department of Education has several problems, including many activities, unclear illustrations, and insufficient examples of concepts which enables learners to have a difficulty accomplishing the module. The purpose of this study is to determine the effectiveness of self-learning module on the academic performance of students in the subject Statistics and Probability, it will also explore students’ perception towards the quality of created Self-Learning Module in Statistics and Probability. Despite the availability of Self-Learning Modules in Statistics and Probability in the Philippines, there are still few literatures that discuss its effectiveness in improving the performance of Senior High School students in Statistics and Probability. In this study, a Self-Learning Module on Normal Distribution is evaluated using a quasi-experimental design. STEM students in Grade 11 from National University's Nazareth School will be the study's participants, chosen by purposive sampling. Google Forms will be utilized to find at least 100 STEM students in Grade 11. The research instrument consists of 20-item pre- and post-test to assess participants' knowledge and performance regarding Normal Distribution, and a Likert scale survey to evaluate how the students perceived the self-learning module. Pre-test, post-test, and Likert scale surveys will be utilized to gather data, with Jeffreys' Amazing Statistics Program (JASP) software being used for analysis.

Keywords: self-learning module, academic performance, statistics and probability, normal distribution

Procedia PDF Downloads 115
11124 Deep Learning Based 6D Pose Estimation for Bin-Picking Using 3D Point Clouds

Authors: Hesheng Wang, Haoyu Wang, Chungang Zhuang

Abstract:

Estimating the 6D pose of objects is a core step for robot bin-picking tasks. The problem is that various objects are usually randomly stacked with heavy occlusion in real applications. In this work, we propose a method to regress 6D poses by predicting three points for each object in the 3D point cloud through deep learning. To solve the ambiguity of symmetric pose, we propose a labeling method to help the network converge better. Based on the predicted pose, an iterative method is employed for pose optimization. In real-world experiments, our method outperforms the classical approach in both precision and recall.

Keywords: pose estimation, deep learning, point cloud, bin-picking, 3D computer vision

Procedia PDF Downloads 161
11123 AI for Efficient Geothermal Exploration and Utilization

Authors: Velimir Monty Vesselinov, Trais Kliplhuis, Hope Jasperson

Abstract:

Artificial intelligence (AI) is a powerful tool in the geothermal energy sector, aiding in both exploration and utilization. Identifying promising geothermal sites can be challenging due to limited surface indicators and the need for expensive drilling to confirm subsurface resources. Geothermal reservoirs can be located deep underground and exhibit complex geological structures, making traditional exploration methods time-consuming and imprecise. AI algorithms can analyze vast datasets of geological, geophysical, and remote sensing data, including satellite imagery, seismic surveys, geochemistry, geology, etc. Machine learning algorithms can identify subtle patterns and relationships within this data, potentially revealing hidden geothermal potential in areas previously overlooked. To address these challenges, a SIML (Science-Informed Machine Learning) technology has been developed. SIML methods are different from traditional ML techniques. In both cases, the ML models are trained to predict the spatial distribution of an output (e.g., pressure, temperature, heat flux) based on a series of inputs (e.g., permeability, porosity, etc.). The traditional ML (a) relies on deep and wide neural networks (NNs) based on simple algebraic mappings to represent complex processes. In contrast, the SIML neurons incorporate complex mappings (including constitutive relationships and physics/chemistry models). This results in ML models that have a physical meaning and satisfy physics laws and constraints. The prototype of the developed software, called GeoTGO, is accessible through the cloud. Our software prototype demonstrates how different data sources can be made available for processing, executed demonstrative SIML analyses, and presents the results in a table and graphic form.

Keywords: science-informed machine learning, artificial inteligence, exploration, utilization, hidden geothermal

Procedia PDF Downloads 56
11122 Online Graduate Students’ Perspective on Engagement in Active Learning in the United States

Authors: Ehi E. Aimiuwu

Abstract:

As of 2017, many researchers in educational journals are still wondering if students are effectively and efficiently engaged in active learning in the online learning environment. The goal of this qualitative single case study and narrative research is to explore if students are actively engaged in their online learning. Seven online students in the United States from LinkedIn and residencies were interviewed for this study. Eleven online learning techniques from research were used as a framework.  Data collection tools were used for the study that included a digital audiotape, observation sheet, interview protocol, transcription, and NVivo 12 Plus qualitative software.  Data analysis process, member checking, and key themes were used to reach saturation. About 85.7% of students preferred individual grading. About 71.4% of students valued professor’s interacting 2-3 times weekly, participating through posts and responses, having good internet access, and using email.  Also, about 57.1% said students log in 2-3 times weekly to daily, professor’s social presence helps, regular punctuality in work submission, and prefer assessments style of research, essay, and case study.  About 42.9% appreciated syllabus usefulness and professor’s expertise.

Keywords: class facilitation, course management, online teaching, online education, student engagement

Procedia PDF Downloads 130
11121 Health Trajectory Clustering Using Deep Belief Networks

Authors: Farshid Hajati, Federico Girosi, Shima Ghassempour

Abstract:

We present a Deep Belief Network (DBN) method for clustering health trajectories. Deep Belief Network (DBN) is a deep architecture that consists of a stack of Restricted Boltzmann Machines (RBM). In a deep architecture, each layer learns more complex features than the past layers. The proposed method depends on DBN in clustering without using back propagation learning algorithm. The proposed DBN has a better a performance compared to the deep neural network due the initialization of the connecting weights. We use Contrastive Divergence (CD) method for training the RBMs which increases the performance of the network. The performance of the proposed method is evaluated extensively on the Health and Retirement Study (HRS) database. The University of Michigan Health and Retirement Study (HRS) is a nationally representative longitudinal study that has surveyed more than 27,000 elderly and near-elderly Americans since its inception in 1992. Participants are interviewed every two years and they collect data on physical and mental health, insurance coverage, financial status, family support systems, labor market status, and retirement planning. The dataset is publicly available and we use the RAND HRS version L, which is easy to use and cleaned up version of the data. The size of sample data set is 268 and the length of the trajectories is equal to 10. The trajectories do not stop when the patient dies and represent 10 different interviews of live patients. Compared to the state-of-the-art benchmarks, the experimental results show the effectiveness and superiority of the proposed method in clustering health trajectories.

Keywords: health trajectory, clustering, deep learning, DBN

Procedia PDF Downloads 371
11120 Ointment of Rosella Flower Petals Extract (Hibiscus sabdariffa): Pharmaceutical Preparations Formulation Development of Herbs for Antibacterial S. aureus

Authors: Muslihatus Syarifah

Abstract:

Introduction: Rosella flower petals can be used as an antibacterial because it contains alkaloids, flavonoids, phenolics, and terpenoids) for the . Bacteria activity is S. aureus can cause skin infections and pengobatanya most appropriate use of topical preparations. Ointment is a topical preparation comprising the active substance and ointment base. Not all the base matches the active substances or any type of disease. In this study using flavonoid active substances contained in rosella flower petals (Hibiscus sabdariffa) to be made ointment by testing a variety of different bases in order to obtain a suitable basis for the formulation of ointment extract rosella flower petals. Methods: Experimental research with research methods Post test control group design using the ointment is hydrocarbon sample, absorption, leached water and dissolved water. Then tested for bacteria S. aureus with different concentrations of 1%, 2%, 4%, 8%, 16, 32%. Data were analyzed using One Way ANOVA followed by Post Hoc test. Results: Ointment with a hydrocarbon base, absorption, leached water and dissolved water having no change in physical properties during storage. Base affect the physical properties of an ointment that adhesion, dispersive power and pH. The physical properties of the ointment with different concentrations produce different physical properties including adhesion, dispersive power and pH. The higher the concentration the higher dispersive power, but the smaller the adhesion and pH. Conclusion: Differences bases, storage time, the concentration of the extract can affect the physical properties of the ointment. Concentration of extract in the ointment extract rosella flower petals is 32%.

Keywords: rosella, physical properties, ointments, antibacterial

Procedia PDF Downloads 371