Search results for: database annotation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1716

Search results for: database annotation

96 Influence of a High-Resolution Land Cover Classification on Air Quality Modelling

Authors: C. Silveira, A. Ascenso, J. Ferreira, A. I. Miranda, P. Tuccella, G. Curci

Abstract:

Poor air quality is one of the main environmental causes of premature deaths worldwide, and mainly in cities, where the majority of the population lives. It is a consequence of successive land cover (LC) and use changes, as a result of the intensification of human activities. Knowing these landscape modifications in a comprehensive spatiotemporal dimension is, therefore, essential for understanding variations in air pollutant concentrations. In this sense, the use of air quality models is very useful to simulate the physical and chemical processes that affect the dispersion and reaction of chemical species into the atmosphere. However, the modelling performance should always be evaluated since the resolution of the input datasets largely dictates the reliability of the air quality outcomes. Among these data, the updated LC is an important parameter to be considered in atmospheric models, since it takes into account the Earth’s surface changes due to natural and anthropic actions, and regulates the exchanges of fluxes (emissions, heat, moisture, etc.) between the soil and the air. This work aims to evaluate the performance of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), when different LC classifications are used as an input. The influence of two LC classifications was tested: i) the 24-classes USGS (United States Geological Survey) LC database included by default in the model, and the ii) CLC (Corine Land Cover) and specific high-resolution LC data for Portugal, reclassified according to the new USGS nomenclature (33-classes). Two distinct WRF-Chem simulations were carried out to assess the influence of the LC on air quality over Europe and Portugal, as a case study, for the year 2015, using the nesting technique over three simulation domains (25 km2, 5 km2 and 1 km2 horizontal resolution). Based on the 33-classes LC approach, particular emphasis was attributed to Portugal, given the detail and higher LC spatial resolution (100 m x 100 m) than the CLC data (5000 m x 5000 m). As regards to the air quality, only the LC impacts on tropospheric ozone concentrations were evaluated, because ozone pollution episodes typically occur in Portugal, in particular during the spring/summer, and there are few research works relating to this pollutant with LC changes. The WRF-Chem results were validated by season and station typology using background measurements from the Portuguese air quality monitoring network. As expected, a better model performance was achieved in rural stations: moderate correlation (0.4 – 0.7), BIAS (10 – 21µg.m-3) and RMSE (20 – 30 µg.m-3), and where higher average ozone concentrations were estimated. Comparing both simulations, small differences grounded on the Leaf Area Index and air temperature values were found, although the high-resolution LC approach shows a slight enhancement in the model evaluation. This highlights the role of the LC on the exchange of atmospheric fluxes, and stresses the need to consider a high-resolution LC characterization combined with other detailed model inputs, such as the emission inventory, to improve air quality assessment.

Keywords: land use, spatial resolution, WRF-Chem, air quality assessment

Procedia PDF Downloads 158
95 Developmental Difficulties Prevalence and Management Capacities among Children Including Genetic Disease in a North Coastal District of Andhra Pradesh, India: A Cross-sectional Study

Authors: Koteswara Rao Pagolu, Raghava Rao Tamanam

Abstract:

The present study was aimed to find out the prevalence of DD's in Visakhapatnam, one of the north coastal districts of Andhra Pradesh, India during a span of five years. A cross-sectional investigation was held at District early intervention center (DEIC), Visakhapatnam from 2016 to 2020. To identify the pattern and trend of different DD's including seasonal variations, a retrospective analysis of the health center's inpatient database for the past 5 years was done. Male and female children aged 2 months-18 years are included in the study with the prior permission of the concerned medical officer. The screening tool developed by the Ministry of health and family welfare, India, was used for the study. Among 26,423 cases, children with birth defects are 962, 2229 with deficiencies, 7516 with diseases, and 15716 with disabilities were admitted during the study period. From birth defects, congenital deafness occurred in large numbers with 22.66%, and neural tube defect observed in a small number of cases with 0.83% during the period. From the side of deficiencies, severe acute malnutrition has mostly occurred (66.80 %) and a small number of children were affected with goiter (1.70%). Among the diseases, dental carriers (67.97%) are mostly found and these cases were at peak during the years 2016 and 2019. From disabilities, children with vision impairment (20.55%) have mostly approached the center. Over the past 5 years, the admission rate of down's syndrome and congenital deafness cases showed a rising trend up to 2019 and then declined. Hearing impairment, motor delay, and learning disorder showed a steep rise and gradual decline trend, whereas severe anemia, vitamin-D deficiency, otitis media, reactive airway disease, and attention deficit hyperactivity disorder showed a declining trend. However, congenital heart diseases, dental caries, and vision impairment admission rates showed a zigzag pattern over the past 5 years. This center had inadequate diagnostic facilities related to genetic disease management. For advanced confirmation, the cases are referred to a district government hospital or private diagnostic laboratories in the city for genetic tests. Information regarding the overall burden and pattern of admissions in the health center is obtained by the review of DEIC records. Through this study, it is observed that the incidence of birth defects, as well as genetic disease burden, is high in the Visakhapatnam district. Hence there is a need for strengthening of management services for these diseases in this region.

Keywords: child health screening, developmental delays, district early intervention center, genetic disease management, infrastructural facility, Visakhapatnam district

Procedia PDF Downloads 213
94 A Systematic Review of Forest School for Early Childhood Education in China: Lessons Learned from European Studies from a Perspective of Ecological System

Authors: Xiaoying Zhang

Abstract:

Forest school – an outdoor educational experience that is undertaken in an outdoor environment with trees – becomes an emerging field of early childhood education recently. In China, the benefits of natural outdoor education to children and young people’s wellness have raised attention. Although different types of outdoor-based activities have been involved in some pre-school of China, few study and practice have been conducted in terms of the notion of forest school. To comprehend the impact of forest school for children and young people, this study aims to systematically review articles on the topic of forest school in preschool education from an ecological perspective, i.e. from individual level (e.g., behavior and mental health) to microsystem level (e.g., the relationship between teachers and children) to ecosystem level. Based on PRISMA framework flow, using the key words of “Forest School” and “Early Childhood Education” for searching in Web-of-science database, a total of 33 articles were identified. Sample participants of 13 studies were not preschool children, five studies were not on forest school theme, and two literature review articles were excluded for further analysis. Finally, 13 articles were eligible for thematic analysis. According to Bronfenbrenner's ecological systems theory, there are some fingdings, on the individual level, current forest school studies are concerned about the children behavioral experience in forest school, how these experience may relate to their achievement or to develop children’s wellbeing/wellness, and how this type of learning experience may enhance children’s self-awareness on risk and safety issues. On the microsystem/mesosystem level, this review indicated that pedagogical development for forest school, risk perception from teachers and parents, social development between peers, and adult’s role in the participation of forest school were concerned, explored and discussed most frequently. On the macrosystem, the conceptualization of forest school is the key theme. Different forms of presentation in various countries with diverse cultures could provide various models of forest school education. However, there was no study investigating forest school on an ecosystem level. As for the potential benefits of physical health and mental wellness that results from forest school, it informs us to reflect the system of preschool education from the ecological perspective for Chinese children. For instance, most Chinese kindergartens ignored the significance of natural outdoor activities for children. Preschool education in China is strongly oriented by primary school system, which means pre-school children are expected to be trained as primary school students to do different subjects, such as math. Hardly any kindergarteners provide the opportunities for children and young people to take risks in a natural environment like forest school does. However, merely copying forest school model for a Chinese preschool education system will be less effective. This review of different level concerns could inform us that the localization the idea of forest school to adapt to a Chinese political, educational and cultural background. More detailed results and profound discussions will be presented in the full paper.

Keywords: early childhood education, ecological system, education development prospects in China, forest school

Procedia PDF Downloads 151
93 An Approach on Intelligent Tolerancing of Car Body Parts Based on Historical Measurement Data

Authors: Kai Warsoenke, Maik Mackiewicz

Abstract:

To achieve a high quality of assembled car body structures, tolerancing is used to ensure a geometric accuracy of the single car body parts. There are two main techniques to determine the required tolerances. The first is tolerance analysis which describes the influence of individually tolerated input values on a required target value. Second is tolerance synthesis to determine the location of individual tolerances to achieve a target value. Both techniques are based on classical statistical methods, which assume certain probability distributions. To ensure competitiveness in both saturated and dynamic markets, production processes in vehicle manufacturing must be flexible and efficient. The dimensional specifications selected for the individual body components and the resulting assemblies have a major influence of the quality of the process. For example, in the manufacturing of forming tools as operating equipment or in the higher level of car body assembly. As part of the metrological process monitoring, manufactured individual parts and assemblies are recorded and the measurement results are stored in databases. They serve as information for the temporary adjustment of the production processes and are interpreted by experts in order to derive suitable adjustments measures. In the production of forming tools, this means that time-consuming and costly changes of the tool surface have to be made, while in the body shop, uncertainties that are difficult to control result in cost-intensive rework. The stored measurement results are not used to intelligently design tolerances in future processes or to support temporary decisions based on real-world geometric data. They offer potential to extend the tolerancing methods through data analysis and machine learning models. The purpose of this paper is to examine real-world measurement data from individual car body components, as well as assemblies, in order to develop an approach for using the data in short-term actions and future projects. For this reason, the measurement data will be analyzed descriptively in the first step in order to characterize their behavior and to determine possible correlations. In the following, a database is created that is suitable for developing machine learning models. The objective is to create an intelligent way to determine the position and number of measurement points as well as the local tolerance range. For this a number of different model types are compared and evaluated. The models with the best result are used to optimize equally distributed measuring points on unknown car body part geometries and to assign tolerance ranges to them. The current results of this investigation are still in progress. However, there are areas of the car body parts which behave more sensitively compared to the overall part and indicate that intelligent tolerancing is useful here in order to design and control preceding and succeeding processes more efficiently.

Keywords: automotive production, machine learning, process optimization, smart tolerancing

Procedia PDF Downloads 116
92 Training in Communicational Skills in Students of Medicine: Differences in Bilingualism

Authors: Naiara Ozamiz Etcebarria, Sonia Ruiz De Azua Garcia, Agurtzane Ortiz Jauregi, Virginia Guillen Cañas

Abstract:

Introduction: The most relevant competencies of a health professional are an adequate communication capacity, which will influence the satisfaction of professionals and patients, therapeutic compliance, conflict prevention, clinical outcomes´ improvement and efficiency of health services. The ability of Active listening , empathy, assertiveness and social skills, are important abilities to develop in all professions in which there is a relationship with other people. In the field of health, it is even more important to have adequate qualities so that the treatment with the patient will be adequate and satisfactory. We conducted a research with students of third year in the Degree of Medicine with the objectives: - to know how the active listening, empathy, assertiveness and social skills of students are. - to know if there are differences according to different demographic variables, such as sex, language, age, number of siblings and interest in the subject. Material and Methods: The students of the Third year in the Degree of Medicine (N = 212) participated voluntarily. Sociodemographic data were collected. Descriptive and comparative analysis of the averages of the students with respect to active listening, empathy, assertiveness and social skills were performed. Once the questionnaires were collected, they were entered into the SPSS 21 database. Four communicational aspects were evaluated: The active listening questionnaire, the TECA empathy questionnaire, the ACDA questionnaire and the EHS questionnaire Social Skills Scale. The active listening questionnaire assesses these factors: Listening without interruption and less contradiction, Listening with 100% attention, Listening beyond words, Listening encouraging the other to go deeper. The TECA questionnaire of cognitive and affective empathy evaluates: Adoption of perspectives, Emotional Comprehension, Emphasizing stress, Empathic joy. The EHS questionnaire Social Skills Scale: Self-expression in social situations, Defending one's own rights as a consumer, Expressing anger or dissatisfaction, Refusing to do and cutting interactions off, Making requests, Initiating positive interactions with the other sex. The ACDA questionnaire Assertiveness Assessment Scale evaluates self-assertiveness and heteroaservitivity. Applicability: To train these skills is so important for clinical practice of medical students and these capabilities that can be measured in a longitudinal way time. Ethical-legal aspects: The data were anonymous. The study was approved by the Ethics Committee. Results: The students of the Third year in the Degree of Medicine (34.4% Basque speakers and 65.6% Spanish speakers) with average age 20.93, (27.8% men and 72.2% women). There are no differences in social skills between men and women. The Basque speaker students of are more heteroactive (ACDA) than Spanish students. Active listening has a high correlation with social skills, especially with self-expression in social situations. Listening without interruption has a high correlation with self-expression in social situations and initiating positive interactions with the opposite sex. Adoption of perspectives presents a high correlation with auto- assertiveness. Emotional understanding presents a high correlation with positive interactions with the opposite sex. Empathic joy correlates with self-assertiveness, self-expression in social situations, and initiating positive interactions with the opposite sex.

Keywords: active listening, assertiveness, communicational skills, empathy, students of medicine

Procedia PDF Downloads 303
91 Use of Proton Pump Inhibitors Medications during the First Years of Life and Late Complications

Authors: Kamelia Hamza

Abstract:

Background: Proton pump inhibitors (PPIs) are the most prescribed drug classes for pediatric gastroesophageal reflux disease (GERD).Many patients are treated with these drugs for atypical manifestations attributed to gastroesophageal reflux (GER), even in the absence of proved causal relationship. There is an impression of increase use of PPI's treatment for reflux in "clalit health services," the largest health organization in Israel. In the recent years, the medicine is given without restriction, it's not limited to pediatric gastroenterologists only, but pediatricians and family doctors. The objective of this study is to evaluate the hypothesis that exposure to PPIs during the first year of life is associated with an increased risk of developing late adverse diseases: pneumonia, asthma, AGE, IBD, celiac disease, allergic disorders, obesity, attention deficit hyperactivity disorders (ADHD), autism spectrum disorders (ASD). Methods: The study is a retrospective case-control cohort study based on a computerized database of Clalit Health Services (CHS). It includes 9844 children born between 2002-2018 and reported to complain of at least one of the symptoms (reflux/ spitting up, irritability, feeding difficulties, colics). The study population included the study group (n=4922) of children exposed to PPIs at any time prior to the first year of life and a control group (n=4922) child not exposed to PPIs who were matched to each case of the study group on age, race, socioeconomic status, and year of birth. The prevalence of late complications/diseases in the study group was compared with the prevalence of late complications/diseases diagnosis between 2002-2020 in the control group. Odds ratios and 95% confidence intervals were calculated by using logistic regression models. Results: We found that compared to the control group, children exposed to PPIs in the first year of life had an increased risk of developing several late complications/ disorders: pneumonia, asthma, various allergies (urticaria, allergic rhinitis, or allergic conjunctivitis) OR, inhalant allergies, and food allergies. In addition, they showed an increased risk of being diagnosed with ADHD or ASD, but children exposed to PPIs in the first year of life had decrease the risk of obesity by 17% (OR 0.825, 95%CI 0.697-0.976). Conclusions: We found significant associations between the use of PPIs during the first year of life and subsequent development of late complications/diseases such as respiratory diseases, allergy diseases, ADHD, and ASD. More studies are needed to prove causality and determine the mechanism behind the effect of PPIs and the development of late complications.

Keywords: acid suppressing medications, proton pump inhibitors, histamine 2 blocker, late complications, gastroesophageal reflux, gastroesophageal reflux disease, acute gastroenteritis, community acquired pneumonia, asthma, allergic diseases, obesity, inflammatory bowel diseases, ulcerative colitis, crohn disease, attention deficit hyperactivity disorders, autism spectrum disorders

Procedia PDF Downloads 94
90 Gut Microbial Dynamics in a Mouse Model of Inflammation-Linked Carcinogenesis as a Result of Diet Supplementation with Specific Mushroom Extracts

Authors: Alvarez M., Chapela M. J., Balboa E., Rubianes D., Sinde E., Fernandez de Ana C., Rodríguez-Blanco A.

Abstract:

The gut microbiota plays an important role as gut inflammation could contribute to colorectal cancer development; however, this role is still not fully understood, and tools able to prevent this progression are yet to be developed. The main objective of this study was to monitor the effects of a mushroom extracts formulation in gut microbial community composition of an Azoxymethane (AOM)/Dextran sodium sulfate (DSS) mice model of inflammation-linked carcinogenesis. For the in vivo study, 41 adult male mice of the C57BL / 6 strain were obtained. 36 of them have been induced in a state of colon carcinogenesis by a single intraperitoneal administration of AOM at a dose of 12.5 mg/kg; the control group animals received instead of the same volume of 0.9% saline. DSS is an extremely toxic polysaccharide sulfate that causes chronic inflammation of the colon mucosa, favoring the appearance of severe colitis and the production of tumors induced by AOM. Induction by AOM/DSS is an interesting platform for chemopreventive intervention studies. This time the model was used to monitor gut microbiota changes as a result of supplementation with a specific mushroom extracts formulation previously shown to have prebiotic activity. The animals have been divided into three groups: (i) Cancer + mushroom extracts formulation experimental group: to which the MicoDigest2.0 mushroom extracts formulation developed by Hifas da Terra S.L has been administered dissolved in drinking water at an estimated concentration of 100 mg / ml. (ii) Control group of animals with Cancer: to which normal water has been administered without any type of treatment. (iii) Control group of healthy animals: these are the animals that have not been induced cancer or have not received any treatment in drinking water. This treatment has been maintained for a period of 3 months, after which the animals were sacrificed to obtain tissues that were subsequently analyzed to verify the effects of the mushroom extract formulation. A microbiological analysis has been carried out to compare the microbial communities present in the intestines of the mice belonging to each of the study groups. For this, the methodology of massive sequencing by molecular analysis of the 16S gene has been used (Ion Torrent technology). Initially, DNA extraction and metagenomics libraries were prepared using the 16S Metagenomics kit, always following the manufacturer's instructions. This kit amplifies 7 of the 9 hypervariable regions of the 16S gene that will then be sequenced. Finally, the data obtained will be compared with a database that makes it possible to determine the degree of similarity of the sequences obtained with a wide range of bacterial genomes. Results obtained showed that, similarly to certain natural compounds preventing colorectal tumorigenesis, a mushroom formulation enriched the Firmicutes and Proteobacteria phyla and depleted Bacteroidetes. Therefore, it was demonstrated that the consumption of the mushroom extracts’ formulation developed could promote the recovery of the microbial balance that is disrupted in the mice model of carcinogenesis. More preclinical and clinical studies are needed to validate this promising approach.

Keywords: carcinogenesis, microbiota, mushroom extracts, inflammation

Procedia PDF Downloads 149
89 Valuing Cultural Ecosystem Services of Natural Treatment Systems Using Crowdsourced Data

Authors: Andrea Ghermandi

Abstract:

Natural treatment systems such as constructed wetlands and waste stabilization ponds are increasingly used to treat water and wastewater from a variety of sources, including stormwater and polluted surface water. The provision of ancillary benefits in the form of cultural ecosystem services makes these systems unique among water and wastewater treatment technologies and greatly contributes to determine their potential role in promoting sustainable water management practices. A quantitative analysis of these benefits, however, has been lacking in the literature. Here, a critical assessment of the recreational and educational benefits in natural treatment systems is provided, which combines observed public use from a survey of managers and operators with estimated public use as obtained using geotagged photos from social media as a proxy for visitation rates. Geographic Information Systems (GIS) are used to characterize the spatial boundaries of 273 natural treatment systems worldwide. Such boundaries are used as input for the Application Program Interfaces (APIs) of two popular photo-sharing websites (Flickr and Panoramio) in order to derive the number of photo-user-days, i.e., the number of yearly visits by individual photo users in each site. The adequateness and predictive power of four univariate calibration models using the crowdsourced data as a proxy for visitation are evaluated. A high correlation is found between photo-user-days and observed annual visitors (Pearson's r = 0.811; p-value < 0.001; N = 62). Standardized Major Axis (SMA) regression is found to outperform Ordinary Least Squares regression and count data models in terms of predictive power insofar as standard verification statistics – such as the root mean square error of prediction (RMSEP), the mean absolute error of prediction (MAEP), the reduction of error (RE), and the coefficient of efficiency (CE) – are concerned. The SMA regression model is used to estimate the intensity of public use in all 273 natural treatment systems. System type, influent water quality, and area are found to statistically affect public use, consistently with a priori expectations. Publicly available information regarding the home location of the sampled visitors is derived from their social media profiles and used to infer the distance they are willing to travel to visit the natural treatment systems in the database. Such information is analyzed using the travel cost method to derive monetary estimates of the recreational benefits of the investigated natural treatment systems. Overall, the findings confirm the opportunities arising from an integrated design and management of natural treatment systems, which combines the objectives of water quality enhancement and provision of cultural ecosystem services through public use in a multi-functional approach and compatibly with the need to protect public health.

Keywords: constructed wetlands, cultural ecosystem services, ecological engineering, waste stabilization ponds

Procedia PDF Downloads 180
88 Higher Education Benefits and Undocumented Students: An Explanatory Model of Policy Adoption

Authors: Jeremy Ritchey

Abstract:

Undocumented immigrants in the U.S. face many challenges when looking to progress in society, especially when pursuing post-secondary education. The majority of research done on state-level policy adoption pertaining to undocumented higher-education pursuits, specifically in-state resident tuition and financial aid eligibility policies, have framed the discussion on the potential and actual impacts which implementation can and has achieved. What is missing is a model to view the social, political and demographic landscapes upon which such policies (in their various forms) find a route to legislative enactment. This research looks to address this gap in the field by investigating the correlations and significant state-level variables which can be operationalized to construct a framework for adoption of these specific policies. In the process, analysis will show that past unexamined conceptualizations of how such policies come to fruition may be limited or contradictory when compared to available data. Circling on the principles of Policy Innovation and Policy Diffusion theory, this study looks to use variables collected via Michigan State University’s Correlates of State Policy Project, a collectively and ongoing compiled database project centered around annual variables (1900-2016) collected from all 50 states relevant to policy research. Using established variable groupings (demographic, political, social capital measurements, and educational system measurements) from the time period of 2000 to 2014 (2001 being when such policies began), one can see how this data correlates with the adoption of policies related to undocumented students and in-state college tuition. After regression analysis, the results will illuminate which variables appears significant and to what effect, as to help formulate a model upon which to explain when adoption appears to occur and when it does not. Early results have shown that traditionally held conceptions on conservative and liberal identities of the state, as they relate to the likelihood of such policies being adopted, did not fall in line with the collected data. Democratic and liberally identified states were, overall, less likely to adopt pro-undocumented higher education policies than Republican and conservatively identified states and vis versa. While further analysis is needed as to improve the model’s explanatory power, preliminary findings are showing promise in widening our understanding of policy adoption factors in this realm of policies compared to the gap of such knowledge in the publications of the field as it currently exists. The model also looks to serve as an important tool for policymakers in framing such potential policies in a way that is congruent with the relevant state-level determining factors while being sensitive to the most apparent sources of potential friction. While additional variable groups and individual variables will ultimately need to be added and controlled for, this research has already begun to demonstrate how shallow or unexamined reasoning behind policy adoption in the realm of this topic needs to be addressed or else the risk is erroneous conceptions leaking into the foundation of this growing and ever important field.

Keywords: policy adoption, in-state tuition, higher education, undocumented immigrants

Procedia PDF Downloads 115
87 Autobiographical Memory Functions and Perceived Control in Depressive Symptoms among Young Adults

Authors: Meenu S. Babu, K. Jayasankara Reddy

Abstract:

Depression is a serious mental health concern that leads to significant distress and dysfunction in an individual. Due to the high physical, psychological, social, and economic burden it causes, it is important to study various bio-psycho-social factors that influence the onset, course, duration, intensity of depressive symptoms. The study aims to explore relationship between autobiographical memory (AM) functions, perceived control over stressful events and depressive symptoms. AM functions and perceived control were both found to be protective factors for individuals against depression and were both modifiable to predict better behavioral and affective outcomes. An extensive review of literatur, with a systematic search on Google Scholar, JSTOR, Science Direct and Springer Journals database, was conducted for the purpose of this review paper. These were used for all the aforementioned databases. The time frame used for the search was 2010-2021. An additional search was conducted with no time bar to map the development of the theoretical concepts. The relevant studies with quantitative, qualitative, experimental, and quasi- experimental research designs were included for the review. Studies including a sample with a DSM- 5 or ICD-10 diagnosis of depressive disorders were excluded from the study to focus on the behavioral patterns in a non-clinical population. The synthesis of the findings that were obtained from the review indicates there is a significant relationship between cognitive variables of AM functions and perceived control and depressive symptoms. AM functions were found to be have significant effects on once sense of self, interpersonal relationships, decision making, self- continuity and were related to better emotion regulation and lower depressive symptoms. Not all the components of AM function were equally significant in their relationships with various depressive symptoms. While self and directive functions were more related to emotion regulation, anhedonia, motivation and hence mood and affect, the social function was related to perceived social support and social engagement. Perceived control was found to be another protective cognitive factor that provides individuals a sense of agency and control over one’s life outcomes which was found to be low in individuals with depression. This was also associated to the locus of control, competency beliefs, contingency beliefs and subjective well being in individuals and acted as protective factors against depressive symptoms. AM and perceived control over stressful events serve adaptive functions, hence it is imperative to study these variables more extensively. They can be imperative in planning and implementing therapeutic interventions to foster these cognitive protective factors to mitigate or alleviate depressive symptoms. Exploring AM as a determining factor in depressive symptoms along with perceived control over stress creates a bridge between biological and cognitive factors underlying depression and increases the scope of developing a more eclectic and effective treatment plan for individuals. As culture plays a crucial role in AM functions as well as certain aspects of control such as locus of control, it is necessary to study these variables keeping in mind the cultural context to tailor culture/community specific interventions for depression.

Keywords: autobiographical memories, autobiographical memory functions, perceived control, depressive symptoms, depression, young adults

Procedia PDF Downloads 103
86 Deep Learning Framework for Predicting Bus Travel Times with Multiple Bus Routes: A Single-Step Multi-Station Forecasting Approach

Authors: Muhammad Ahnaf Zahin, Yaw Adu-Gyamfi

Abstract:

Bus transit is a crucial component of transportation networks, especially in urban areas. Any intelligent transportation system must have accurate real-time information on bus travel times since it minimizes waiting times for passengers at different stations along a route, improves service reliability, and significantly optimizes travel patterns. Bus agencies must enhance the quality of their information service to serve their passengers better and draw in more travelers since people waiting at bus stops are frequently anxious about when the bus will arrive at their starting point and when it will reach their destination. For solving this issue, different models have been developed for predicting bus travel times recently, but most of them are focused on smaller road networks due to their relatively subpar performance in high-density urban areas on a vast network. This paper develops a deep learning-based architecture using a single-step multi-station forecasting approach to predict average bus travel times for numerous routes, stops, and trips on a large-scale network using heterogeneous bus transit data collected from the GTFS database. Over one week, data was gathered from multiple bus routes in Saint Louis, Missouri. In this study, Gated Recurrent Unit (GRU) neural network was followed to predict the mean vehicle travel times for different hours of the day for multiple stations along multiple routes. Historical time steps and prediction horizon were set up to 5 and 1, respectively, which means that five hours of historical average travel time data were used to predict average travel time for the following hour. The spatial and temporal information and the historical average travel times were captured from the dataset for model input parameters. As adjacency matrices for the spatial input parameters, the station distances and sequence numbers were used, and the time of day (hour) was considered for the temporal inputs. Other inputs, including volatility information such as standard deviation and variance of journey durations, were also included in the model to make it more robust. The model's performance was evaluated based on a metric called mean absolute percentage error (MAPE). The observed prediction errors for various routes, trips, and stations remained consistent throughout the day. The results showed that the developed model could predict travel times more accurately during peak traffic hours, having a MAPE of around 14%, and performed less accurately during the latter part of the day. In the context of a complicated transportation network in high-density urban areas, the model showed its applicability for real-time travel time prediction of public transportation and ensured the high quality of the predictions generated by the model.

Keywords: gated recurrent unit, mean absolute percentage error, single-step forecasting, travel time prediction.

Procedia PDF Downloads 72
85 Economic Valuation of Emissions from Mobile Sources in the Urban Environment of Bogotá

Authors: Dayron Camilo Bermudez Mendoza

Abstract:

Road transportation is a significant source of externalities, notably in terms of environmental degradation and the emission of pollutants. These emissions adversely affect public health, attributable to criteria pollutants like particulate matter (PM2.5 and PM10) and carbon monoxide (CO), and also contribute to climate change through the release of greenhouse gases, such as carbon dioxide (CO2). It is, therefore, crucial to quantify the emissions from mobile sources and develop a methodological framework for their economic valuation, aiding in the assessment of associated costs and informing policy decisions. The forthcoming congress will shed light on the externalities of transportation in Bogotá, showcasing methodologies and findings from the construction of emission inventories and their spatial analysis within the city. This research focuses on the economic valuation of emissions from mobile sources in Bogotá, employing methods like hedonic pricing and contingent valuation. Conducted within the urban confines of Bogotá, the study leverages demographic, transportation, and emission data sourced from the Mobility Survey, official emission inventories, and tailored estimates and measurements. The use of hedonic pricing and contingent valuation methodologies facilitates the estimation of the influence of transportation emissions on real estate values and gauges the willingness of Bogotá's residents to invest in reducing these emissions. The findings are anticipated to be instrumental in the formulation and execution of public policies aimed at emission reduction and air quality enhancement. In compiling the emission inventory, innovative data sources were identified to determine activity factors, including information from automotive diagnostic centers and used vehicle sales websites. The COPERT model was utilized to ascertain emission factors, requiring diverse inputs such as data from the national transit registry (RUNT), OpenStreetMap road network details, climatological data from the IDEAM portal, and Google API for speed analysis. Spatial disaggregation employed GIS tools and publicly available official spatial data. The development of the valuation methodology involved an exhaustive systematic review, utilizing platforms like the EVRI (Environmental Valuation Reference Inventory) portal and other relevant sources. The contingent valuation method was implemented via surveys in various public settings across the city, using a referendum-style approach for a sample of 400 residents. For the hedonic price valuation, an extensive database was developed, integrating data from several official sources and basing analyses on the per-square meter property values in each city block. The upcoming conference anticipates the presentation and publication of these results, embodying a multidisciplinary knowledge integration and culminating in a master's thesis.

Keywords: economic valuation, transport economics, pollutant emissions, urban transportation, sustainable mobility

Procedia PDF Downloads 58
84 Enhancing Residential Architecture through Generative Design: Balancing Aesthetics, Legal Constraints, and Environmental Considerations

Authors: Milena Nanova, Radul Shishkov, Martin Georgiev, Damyan Damov

Abstract:

This research paper presents an in-depth exploration of the use of generative design in urban residential architecture, with a dual focus on aligning aesthetic values with legal and environmental constraints. The study aims to demonstrate how generative design methodologies can innovate residential building designs that are not only legally compliant and environmentally conscious but also aesthetically compelling. At the core of our research is a specially developed generative design framework tailored for urban residential settings. This framework employs computational algorithms to produce diverse design solutions, meticulously balancing aesthetic appeal with practical considerations. By integrating site-specific features, urban legal restrictions, and environmental factors, our approach generates designs that resonate with the unique character of urban landscapes while adhering to regulatory frameworks. The paper explores how modern digital tools, particularly computational design, and algorithmic modelling, can optimize the early stages of residential building design. By creating a basic parametric model of a residential district, the paper investigates how automated design tools can explore multiple design variants based on predefined parameters (e.g., building cost, dimensions, orientation) and constraints. The paper aims to demonstrate how these tools can rapidly generate and refine architectural solutions that meet the required criteria for quality of life, cost efficiency, and functionality. The study utilizes computational design for database processing and algorithmic modelling within the fields of applied geodesy and architecture. It focuses on optimizing the forms of residential development by adjusting specific parameters and constraints. The results of multiple iterations are analysed, refined, and selected based on their alignment with predefined quality and cost criteria. The findings of this research will contribute to a modern, complex approach to residential area design. The paper demonstrates the potential for integrating BIM models into the design process and their application in virtual 3D Geographic Information Systems (GIS) environments. The study also examines the transformation of BIM models into suitable 3D GIS file formats, such as CityGML, to facilitate the visualization and evaluation of urban planning solutions. In conclusion, our research demonstrates that a generative parametric approach based on real geodesic data and collaborative decision-making could be introduced in the early phases of the design process. This gives the designers powerful tools to explore diverse design possibilities, significantly improving the qualities of the investment during its entire lifecycle.

Keywords: architectural design, residential buildings, urban development, geodesic data, generative design, parametric models, workflow optimization

Procedia PDF Downloads 7
83 Effectiveness of Dry Needling with and without Ultrasound Guidance in Patients with Knee Osteoarthritis and Patellofemoral Pain Syndrome: A Systematic Review and Meta-Analysis

Authors: Johnson C. Y. Pang, Amy S. N. Fu, Ryan K. L. Lee, Allan C. L. Fu

Abstract:

Dry needling (DN) is one of the puncturing methods that involves the insertion of needles into the tender spots of the human body without the injection of any substance. DN has long been used to treat the patient with knee pain caused by knee osteoarthritis (KOA) and patellofemoral pain syndrome (PFPS), but the effectiveness is still inconsistent. This study aimed to conduct a systematic review and meta-analysis to assess the intervention methods and effects of DN with and without ultrasound guidance for treating pain and dysfunctions in people with KOA and PFPS. Design: This systematic review adhered to the PRISMA reporting guidelines. The registration number of the study protocol published in the PROSPERO database was CRD42021221419. Six electronic databases were searched manually through CINAHL Complete (1976-2020), Cochrane Library (1996-2020), EMBASE (1947-2020), Medline (1946-2020), PubMed (1966-2020), and Psychinfo (1806-2020) in November 2020. Randomized controlled trials (RCTs) and controlled clinical trials were included to examine the effects of DN on knee pain, including KOA and PFPS. The key concepts included were: DN, acupuncture, ultrasound guidance, KOA, and PFPS. Risk of bias assessment and qualitative analysis were conducted by two independent reviewers using the PEDro score. Results: Fourteen articles met the inclusion criteria, and eight of them were high-quality papers in accordance with the PEDro score. There were variations in the techniques of DN. These included the direction, depth of insertion, number of needles, duration of stay, needle manipulation, and the number of treatment sessions. Meta-analysis was conducted on eight articles. DN group showed positive short-term effects (from immediate after DN to less than 3 months) on pain reduction for both KOA and PFPS with the overall standardized mean difference (SMD) of -1.549 (95% CI=-0.588 to -2.511); with great heterogeneity (P=0.002, I²=96.3%). In subgroup analysis, DN demonstrated significant effects in pain reduction on PFPS (p < 0.001) that could not be found in subjects with KOA (P=0.302). At 3-month post-intervention, DN also induced significant pain reduction in both subjects with KOA and PFPS with an overall SMD of -0.916 (95% CI=-0.133 to -1.699, and great heterogeneity (P=0.022, I²=95.63%). Besides, DN induced significant short-term improvement in function with the overall SMD=6.069; 95% CI=8.595 to 3.544; with great heterogeneity (P<0.001, I²=98.56%) when analyzed was conducted on both KOA and PFPS groups. In subgroup analysis, only PFPS showed a positive result with SMD=6.089, P<0.001; while KOA showed statistically insignificant with P=0.198 in short-term effect. Similarly, at 3-month post-intervention, significant improvement in function after DN was found when the analysis was conducted in both groups with the overall SMD=5.840; 95% CI=9.252 to 2.428; with great heterogeneity (P<0.001, I²=99.1%), but only PFPS showed significant improvement in sub-group analysis (P=0.002, I²=99.1%). Conclusions: The application of DN in KOA and PFPS patients varies among practitioners. DN is effective in reducing pain and dysfunction at short-term and 3-month post-intervention in individuals with PFPS. To our best knowledge, no study has reported the effects of DN with ultrasound guidance on KOA and PFPS. The longer-term effects of DN on KOA and PFPS are waiting for further study.

Keywords: dry needling, knee osteoarthritis, patellofemoral pain syndrome, ultrasound guidance

Procedia PDF Downloads 134
82 Ways for University to Conduct Research Evaluation: Based on National Research University Higher School of Economics Example

Authors: Svetlana Petrikova, Alexander Yu Kostinskiy

Abstract:

Management of research evaluation in the Higher School of Economics (HSE) originates from the HSE Academic Fund created in 2004 to facilitate and support academic research and presents its results to international academic community. As the means to inspire the applicants, science projects went through competitive selection process evaluated by the group of experts. Drastic development of HSE, quantity of applied projects for each Academic Fund competition and the need to coordinate the conduct of expert evaluation resulted in founding of the Office for Research Evaluation in 2013. The Office’s primary objective is management of research evaluation of science projects. The standards to conduct the evaluation are defined as follows: - The exercise of the process approach, the unification of the functioning of department. - The uniformity of regulatory, organizational and methodological framework. - The development of proper on-line evaluation system. - The broad involvement of external Russian and international experts, the renouncement of the usage of own employees. - The development of an algorithm to make a correspondence between experts and science projects. - The methodical usage of opened/closed international and Russian databases to extend the expert database. - The transparency of evaluation results – free access to assessment while keeping experts confidentiality. The management of research evaluation of projects is based on the sole standard, organization and financing. The standard way of conducting research evaluation at HSE is based upon Regulations on basic principles for research evaluation at HSE. These Regulations have been developed from the moment of establishment of the Office for Research Evaluation and are based on conventional corporate standards for regulatory document management. The management system of research evaluation is implemented on the process approach basis. Process approach means deployment of work as a process, which is the aggregation of interrelated and interacting activities processing inputs into outputs. Inputs are firstly client asking for the assessment to be conducted, defining the conditions for organizing and carrying of the assessment and secondly the applicant with proper for the competition application; output is assessment given to the client. While exercising process approach to clarify interrelation and interacting main parties or subjects of the assessment are determined and the way for interaction between them forms up. Parties to expert assessment are: - Ordering Party – The department of the university taking the decision to subject a project to expert assessment; - Providing Party – The department of the university authorized to provide such assessment by the Ordering Party; - Performing Party – The legal and natural entities that have expertise in the area of research evaluation. Experts assess projects in accordance with criteria and states of expert opinions approved by the Ordering Party. Objects of assessment generally are applications or HSE competition project reports. Mainly assessments are deployed for internal needs, i.e. the most ordering parties are HSE branches and departments, but assessment can also be conducted for external clients. The financing of research evaluation at HSE is based on the established corporate culture and traditions of HSE.

Keywords: expert assessment, management of research evaluation, process approach, research evaluation

Procedia PDF Downloads 253
81 The Display of Age-Period/Age-Cohort Mortality Trends Using 1-Year Intervals Reveals Period and Cohort Effects Coincident with Major Influenza A Events

Authors: Maria Ines Azambuja

Abstract:

Graphic displays of Age-Period-Cohort (APC) mortality trends generally uses data aggregated within 5 or 10-year intervals. Technology allows one to increase the amount of processed data. Displaying occurrences by 1-year intervals is a logic first step in the direction of attaining higher quality landscapes of variations in temporal occurrences. Method: 1) Comparison of UK mortality trends plotted by 10-, 5- and 1-year intervals; 2) Comparison of UK and US mortality trends (period X age and cohort X age) displayed by 1-year intervals. Source: Mortality data (period, 1x1, males, 1933-1912) uploaded from the Human Mortality Database to Excel files, where Period X Age and Cohort X Age graphics were produced. The choice of transforming age-specific trends from calendar to birth-cohort years (cohort = period – age) (instead of using cohort 1x1 data available at the HMD resource) was taken to facilitate the comparison of age-specific trends when looking across calendar-years and birth-cohorts. Yearly live births, males, 1933 to 1912 (UK) were uploaded from the HFD. Influenza references are from the literature. Results: 1) The use of 1-year intervals unveiled previously unsuspected period, cohort and interacting period x cohort effects upon all-causes mortality. 2) The UK and US figures showed variations associated with particular calendar years (1936, 1940, 1951, 1957-68, 72) and, most surprisingly, with particular birth-cohorts (1889-90 in the US, and 1900, 1918-19, 1940-41 and 1946-47, in both countries. Also, the figures showed ups and downs in age-specific trends initiated at particular birth-cohorts (1900, 1918-19 and 1947-48) or a particular calendar-year (1968, 1972, 1977-78 in the US), variations at times restricted to just a range of ages (cohort x period interacting effects). Importantly, most of the identified “scars” (period and cohort) correlates with the record of occurrences of Influenza A epidemics since the late 19th Century. Conclusions: The use of 1-year intervals to describe APC mortality trends both increases the amount of information available, thus enhancing the opportunities for patterns’ recognition, and increases our capability of interpreting those patterns by describing trends across smaller intervals of time (period or birth-cohort). The US and the UK mortality landscapes share many but not all 'scars' and distortions suggested here to be associated with influenza epidemics. Different size-effects of wars are evident, both in mortality and in fertility. But it would also be realistic to suppose that the preponderant influenza A viruses circulating in UK and US at the beginning of the 20th Century might be different and the difference to have intergenerational long-term consequences. Compared with the live births trend (UK data), birth-cohort scars clearly depend on birth-cohort sizes relatives to neighbor ones, which, if causally associated with influenza, would result from influenza-related fetal outcomes/selection. Fetal selection could introduce continuing modifications on population patterns of immune-inflammatory phenotypes that might give rise to 'epidemic constitutions' favoring the occurrence of particular diseases. Comparative analysis of mortality landscapes may help us to straight our record of past circulation of Influenza viruses and document associations between influenza recycling and fertility changes.

Keywords: age-period-cohort trends, epidemic constitution, fertility, influenza, mortality

Procedia PDF Downloads 230
80 Cobb Angle Measurement from Coronal X-Rays Using Artificial Neural Networks

Authors: Andrew N. Saylor, James R. Peters

Abstract:

Scoliosis is a complex 3D deformity of the thoracic and lumbar spines, clinically diagnosed by measurement of a Cobb angle of 10 degrees or more on a coronal X-ray. The Cobb angle is the angle made by the lines drawn along the proximal and distal endplates of the respective proximal and distal vertebrae comprising the curve. Traditionally, Cobb angles are measured manually using either a marker, straight edge, and protractor or image measurement software. The task of measuring the Cobb angle can also be represented by a function taking the spine geometry rendered using X-ray imaging as input and returning the approximate angle. Although the form of such a function may be unknown, it can be approximated using artificial neural networks (ANNs). The performance of ANNs is affected by many factors, including the choice of activation function and network architecture; however, the effects of these parameters on the accuracy of scoliotic deformity measurements are poorly understood. Therefore, the objective of this study was to systematically investigate the effect of ANN architecture and activation function on Cobb angle measurement from the coronal X-rays of scoliotic subjects. The data set for this study consisted of 609 coronal chest X-rays of scoliotic subjects divided into 481 training images and 128 test images. These data, which included labeled Cobb angle measurements, were obtained from the SpineWeb online database. In order to normalize the input data, each image was resized using bi-linear interpolation to a size of 500 × 187 pixels, and the pixel intensities were scaled to be between 0 and 1. A fully connected (dense) ANN with a fixed cost function (mean squared error), batch size (10), and learning rate (0.01) was developed using Python Version 3.7.3 and TensorFlow 1.13.1. The activation functions (sigmoid, hyperbolic tangent [tanh], or rectified linear units [ReLU]), number of hidden layers (1, 3, 5, or 10), and number of neurons per layer (10, 100, or 1000) were varied systematically to generate a total of 36 network conditions. Stochastic gradient descent with early stopping was used to train each network. Three trials were run per condition, and the final mean squared errors and mean absolute errors were averaged to quantify the network response for each condition. The network that performed the best used ReLU neurons had three hidden layers, and 100 neurons per layer. The average mean squared error of this network was 222.28 ± 30 degrees2, and the average mean absolute error was 11.96 ± 0.64 degrees. It is also notable that while most of the networks performed similarly, the networks using ReLU neurons, 10 hidden layers, and 1000 neurons per layer, and those using Tanh neurons, one hidden layer, and 10 neurons per layer performed markedly worse with average mean squared errors greater than 400 degrees2 and average mean absolute errors greater than 16 degrees. From the results of this study, it can be seen that the choice of ANN architecture and activation function has a clear impact on Cobb angle inference from coronal X-rays of scoliotic subjects.

Keywords: scoliosis, artificial neural networks, cobb angle, medical imaging

Procedia PDF Downloads 129
79 Genetically Informed Precision Drug Repurposing for Rheumatoid Arthritis

Authors: Sahar El Shair, Laura Greco, William Reay, Murray Cairns

Abstract:

Background: Rheumatoid arthritis (RA) is a chronic, systematic, inflammatory, autoimmune disease that involves damages to joints and erosions to the associated bones and cartilage, resulting in reduced physical function and disability. RA is a multifactorial disorder influenced by heterogenous genetic and environmental factors. Whilst different medications have proven successful in reducing inflammation associated with RA, they often come with significant side effects and limited efficacy. To address this, the novel pharmagenic enrichment score (PES) algorithm was tested in self-reported RA patients from the UK Biobank (UKBB), which is a cohort of predominantly European ancestry, and identified individuals with a high genetic risk in clinically actionable biological pathways to identify novel opportunities for precision interventions and drug repurposing to treat RA. Methods and materials: Genetic association data for rheumatoid arthritis was derived from publicly available genome-wide association studies (GWAS) summary statistics (N=97173). The PES framework exploits competitive gene set enrichment to identify pathways that are associated with RA to explore novel treatment opportunities. This data is then integrated into WebGestalt, Drug Interaction database (DGIdb) and DrugBank databases to identify existing compounds with existing use or potential for repurposed use. The PES for each of these candidates was then profiled in individuals with RA in the UKBB (Ncases = 3,719, Ncontrols = 333,160). Results A total of 209 pathways with known drug targets after multiple testing correction were identified. Several pathways, including interferon gamma signaling and TID pathway (which relates to a chaperone that modulates interferon signaling), were significantly associated with self-reported RA in the UKBB when adjusting for age, sex, assessment centre month and location, RA polygenic risk and 10 principal components. These pathways have a major role in RA pathogenesis, including autoimmune attacks against certain citrullinated proteins, synovial inflammation, and bone loss. Encouragingly, many also relate to the mechanism of action of existing RA medications. The analyses also revealed statistically significant association between RA polygenic scores and self-reported RA with individual PES scorings, highlighting the potential utility of the PES algorithm in uncovering additional genetic insights that could aid in the identification of individuals at risk for RA and provide opportunities for more targeted interventions. Conclusions In this study, pharmacologically annotated genetic risk was explored through the PES framework to overcome inter-individual heterogeneity and enable precision drug repurposing in RA. The results showed a statistically significant association between RA polygenic scores and self-reported RA and individual PES scorings for 3,719 RA patients. Interestingly, several enriched PES pathways were targeted by already approved RA drugs. In addition, the analysis revealed genetically supported drug repurposing opportunities for future treatment of RA with a relatively safe profile.

Keywords: rheumatoid arthritis, precision medicine, drug repurposing, system biology, bioinformatics

Procedia PDF Downloads 76
78 One Species into Five: Nucleo-Mito Barcoding Reveals Cryptic Species in 'Frankliniella Schultzei Complex': Vector for Tospoviruses

Authors: Vikas Kumar, Kailash Chandra, Kaomud Tyagi

Abstract:

The insect order Thysanoptera includes small insects commonly called thrips. As insect vectors, only thrips are capable of Tospoviruses transmission (genus Tospovirus, family Bunyaviridae) affecting various crops. Currently, fifteen species of subfamily Thripinae (Thripidae) have been reported as vectors for tospoviruses. Frankliniella schultzei, which is reported as act as a vector for at least five tospovirses, have been suspected to be a species complex with more than one species. It is one of the historical unresolved issues where, two species namely, F. schultzei Trybom and F. sulphurea Schmutz were erected from South Africa and Srilanaka respectively. These two species were considered to be valid until 1968 when sulphurea was treated as colour morph (pale form) and synonymised under schultzei (dark form) However, these two have been considered as valid species by some of the thrips workers. Parallel studies have indicated that brown form of schultzei is a vector for tospoviruses while yellow form is a non-vector. However, recent studies have shown that yellow populations have also been documented as vectors. In view of all these facts, it is highly important to have a clear understanding whether these colour forms represent true species or merely different populations with different vector carrying capacities and whether there is some hidden diversity in 'Frankliniella schultzei species complex'. In this study, we aim to study the 'Frankliniella schultzei species complex' with molecular spectacles with DNA data from India and Australia and Africa. A total of fifty-five specimens was collected from diverse locations in India and Australia. We generated molecular data using partial fragments of mitochondrial cytochrome c oxidase I gene (mtCOI) and 28S rRNA gene. For COI dataset, there were seventy-four sequences, out of which data on fifty-five was generated in the current study and others were retrieved from NCBI. All the four different tree construction methods: neighbor-joining, maximum parsimony, maximum likelihood and Bayesian analysis, yielded the same tree topology and produced five cryptic species with high genetic divergence. For, rDNA, there were forty-five sequences, out of which data on thirty-nine was generated in the current study and others were retrieved from NCBI. The four tree building methods yielded four cryptic species with high bootstrap support value/posterior probability. Here we could not retrieve one cryptic species from South Africa as we could not generate data on rDNA from South Africa and sequence for rDNA from African region were not available in the database. The results of multiple species delimitation methods (barcode index numbers, automatic barcode gap discovery, general mixed Yule-coalescent, and Poisson-tree-processes) also supported the phylogenetic data and produced 5 and 4 Molecular Operational Taxonomic Units (MOTUs) for mtCOI and 28S dataset respectively. These results of our study indicate the likelihood that F. sulphurea may be a valid species, however, more morphological and molecular data is required on specimens from type localities of these two species and comparison with type specimens.

Keywords: DNA barcoding, species complex, thrips, species delimitation

Procedia PDF Downloads 128
77 Virtual Reality Applications for Building Indoor Engineering: Circulation Way-Finding

Authors: Atefeh Omidkhah Kharashtomi, Rasoul Hedayat Nejad, Saeed Bakhtiyari

Abstract:

Circulation paths and indoor connection network of the building play an important role both in the daily operation of the building and during evacuation in emergency situations. The degree of legibility of the paths for navigation inside the building has a deep connection with the perceptive and cognitive system of human, and the way the surrounding environment is being perceived. Human perception of the space is based on the sensory systems in a three-dimensional environment, and non-linearly, so it is necessary to avoid reducing its representations in architectural design as a two-dimensional and linear issue. Today, the advances in the field of virtual reality (VR) technology have led to various applications, and architecture and building science can benefit greatly from these capabilities. Especially in cases where the design solution requires a detailed and complete understanding of the human perception of the environment and the behavioral response, special attention to VR technologies could be a priority. Way-finding in the indoor circulation network is a proper example for such application. Success in way-finding could be achieved if human perception of the route and the behavioral reaction have been considered in advance and reflected in the architectural design. This paper discusses the VR technology applications for the way-finding improvements in indoor engineering of the building. In a systematic review, with a database consisting of numerous studies, firstly, four categories for VR applications for circulation way-finding have been identified: 1) data collection of key parameters, 2) comparison of the effect of each parameter in virtual environment versus real world (in order to improve the design), 3) comparing experiment results in the application of different VR devices/ methods with each other or with the results of building simulation, and 4) training and planning. Since the costs of technical equipment and knowledge required to use VR tools lead to the limitation of its use for all design projects, priority buildings for the use of VR during design are introduced based on case-studies analysis. The results indicate that VR technology provides opportunities for designers to solve complex buildings design challenges in an effective and efficient manner. Then environmental parameters and the architecture of the circulation routes (indicators such as route configuration, topology, signs, structural and non-structural components, etc.) and the characteristics of each (metrics such as dimensions, proportions, color, transparency, texture, etc.) are classified for the VR way-finding experiments. Then, according to human behavior and reaction in the movement-related issues, the necessity of scenario-based and experiment design for using VR technology to improve the design and receive feedback from the test participants has been described. The parameters related to the scenario design are presented in a flowchart in the form of test design, data determination and interpretation, recording results, analysis, errors, validation and reporting. Also, the experiment environment design is discussed for equipment selection according to the scenario, parameters under study as well as creating the sense of illusion in the terms of place illusion, plausibility and illusion of body ownership.

Keywords: virtual reality (VR), way-finding, indoor, circulation, design

Procedia PDF Downloads 74
76 Analyzing the Investment Decision and Financing Method of the French Small and Medium-Sized Enterprises

Authors: Eliane Abdo, Olivier Colot

Abstract:

SMEs are always considered as a national priority due to their contribution to job creation, innovation and growth. Once the start-up phase is crossed with encouraging results, the company enters the phase of growth. In order to improve its competitiveness, maintain and increase its market share, the company is in the necessity even the obligation to develop its tangible and intangible investments. SMEs are generally closed companies with special and critical financial situation, limited resources and difficulty to access the capital markets; their shareholders are always living in a conflict between their independence and their need to increase capital that leads to the entry of new shareholder. The capital structure was always considered the core of research in corporate finance; moreover, the financial crisis and its repercussions on the credit’s availability, especially for SMEs make SME financing a hot topic. On the other hand, financial theories do not provide answers to capital structure’s questions; they offer tools and mode of financing that are more accessible to larger companies. Yet, SME’s capital structure can’t be independent of their governance structure. The classic financial theory supposes independence between the investment decision and the financing decision. Thus, investment determines the volume of funding, but not the split between internal or external funds. In this context, we find interesting to study the hypothesis that SMEs respond positively to the financial theories applied to large firms and to check if they are constrained by conventional solutions used by large companies. In this context, this research focuses on the analysis of the resource’s structure of SME in parallel with their investments’ structure, in order to highlight a link between their assets and liabilities structure. We founded our conceptual model based on two main theoretical frameworks: the Pecking order theory, and the Trade Off theory taking into consideration the SME’s characteristics. Our data were generated from DIANE database. Five hypotheses were tested via a panel regression to understand the type of dependence between the financing methods of 3,244 French SMEs and the development of their investment over a period of 10 years (2007-2016). The results show dependence between equity and internal financing in case of intangible investments development. Moreover, this type of business is constraint to financial debts since the guarantees provided are not sufficient to meet the banks' requirements. However, for tangible investments development, SMEs count sequentially on internal financing, bank borrowing, and new shares issuance or hybrid financing. This is compliant to the Pecking Order Theory. We, therefore, conclude that unlisted SMEs incur more financial debts to finance their tangible investments more than their intangible. However, they always prefer internal financing as a first choice. This seems to be confirmed by the assumption that the profitability of the company is negatively related to the increase of the financial debt. Thus, the Pecking Order Theory predictions seem to be the most plausible. Consequently, SMEs primarily rely on self-financing and then go, into debt as a priority to finance their financial deficit.

Keywords: capital structure, investments, life cycle, pecking order theory, trade off theory

Procedia PDF Downloads 113
75 Implementation of Hybrid Curriculum in Canadian Dental Schools to Manage Child Abuse and Neglect

Authors: Priyajeet Kaur Kaleka

Abstract:

Introduction: A dentist is often the first responder in the battle for a patient’s healthy body and maybe the first health professional to observe signs of child abuse, be it physical, emotional, and/or sexual mistreatment. Therefore, it is an ethical responsibility for the dental clinician to detect and report suspected cases of child abuse and neglect (CAN). The main reasons for not reporting suspected cases of CAN, with special emphasis on the third: 1) Uncertainty of the diagnosis, 2) Lack of knowledge of the reporting procedure, and 3) Child abuse and neglect somewhat remained the subject of ignorance among dental professionals because of a lack of advance clinical training. Given these epidemic proportions, there is a scope of further research about dental school curriculum design. Purpose: This study aimed to assess the knowledge and attitude of dentists in Canada regarding signs and symptoms of child abuse and neglect (CAN), reporting procedures, and whether educational strategies followed by dental schools address this sensitive issue. In pursuit of that aim, this abstract summarizes the evidence related to this question. Materials and Methods: Data was collected through a specially designed questionnaire adapted and modified from the author’s previous cross-sectional study on (CAN), which was conducted in Pune, India, in 2016 and is available on the database of PubMed. Design: A random sample was drawn from the targeted population of registered dentists and dental students in Canada regarding their knowledge, professional responsibilities, and behavior concerning child abuse. Questionnaire data were distributed to 200 members. Out of which, a total number of 157 subjects were in the final sample for statistical analysis, yielding response of 78.5%. Results: Despite having theoretical information on signs and symptoms, 55% of the participants indicated they are not confident to detect child physical abuse cases. 90% of respondents believed that recognition and handling the CAN cases should be a part of undergraduate training. Only 4.5% of the participants have correctly identified all signs of abuse due to inadequate formal training in dental schools and workplaces. Although nearly 96.3% agreed that it is a dentist’s legal responsibility to report CAN, only a small percentage of the participants reported an abuse case in the past. While 72% stated that the most common factor that might prevent a dentist from reporting a case was doubt over the diagnosis. Conclusion: The goal is to motivate dental schools to deal with this critical issue and provide their students with consummate training to strengthen their capability to care for and protect children. The educational institutions should make efforts to spread awareness among dental students regarding the management and tackling of CAN. Clinical Significance: There should be modifications in the dental school curriculum focusing on problem-based learning models to assist graduates to fulfill their legal and professional responsibilities. CAN literacy should be incorporated into the dental curriculum, which will eventually benefit future dentists to break this intergenerational cycle of violence.

Keywords: abuse, child abuse and neglect, dentist knowledge, dental school curriculum, problem-based learning

Procedia PDF Downloads 200
74 Hydration Evaluation In A Working Population in Greece

Authors: Aikaterini-Melpomeni Papadopoulou, Kyriaki Apergi, Margarita-Vasiliki Panagopoulou, Olga Malisova

Abstract:

Introduction: Adequate hydration is a vital factor that enhances concentration, memory, and decision-making abilities throughout the workday. Various factors may affect hydration status in workplace settings, and many variables, such as age, gender and activity level affect hydration needs. Employees frequently overlook their hydration needs amid busy schedules and demanding tasks, leading to dehydration that can negatively affect cognitive function, productivity, and overall well-being In addition, dietary habits, including fluid intake and food choices, can either support or hinder optimal hydration. However, factors that affect hydration balance among workers in Greece have not been adequately studied. Objective: This study aims to evaluate the hydration status of the working population in Greece and investigate the various factors that impact hydration status in workplace settings, considering demographic, dietary, and occupational influences in a Greek sample of employees from diverse working environments Materials & Methods: The study included 212 participants (46.2% women) from the working population in Greece. Water intake from both solid and liquid foods was recorded using a semi-quantified drinking frequency questionnaire the validated Water Balance Questionnaire was used to evaluate hydration status. The calculation of water from solid and liquid foods was based on data from the USDA National Nutrient Database. Water balance was calculated subtracting the total fluid loss from the total fluid intake in the body. Furthermore, the questionnaire including additional questions on drinking habits and work-related factors.volunteers answered questions of different categories such as a) demographic socio-economic b) work style characteristics c) health, d) physical activity, e) food and fluid intake, f) fluid excretion and g) trends on fluid and water intake. Individual and multivariate regression analyses were performed to assess the relationships between demographic, work-related factors, and hydration balance. Results: Analysis showed that demographic factors like gender, age, and BMI, as well as certain work-related factors, had a weak and statistically non-significant effect on hydration balance. However, the use of a bottle or water container during work hours (b = 944.93, p < 0.001) and engaging in intense physical activity outside of work (b = -226.28, p < 0.001) were found to have a significant impact. Additionally, the consumption of beverages other than water (b = -416.14, p = 0.059) could negatively impact hydration balance. On average, the total consumption of the sample is 3410 ml of water daily, with men consuming approximately 440 ml / day more water (3470 ml / day) compared to women (3030 ml / day) with this difference also being statistically significant. Finally, the water balance, defined as the difference between water intake and water excretion, was found to be negative on average for the entire sample. Conclusions: This study is among the first to explore hydration status within the Greek working population. Findings indicate that awareness of adequate hydration and individual actions, such as using a water bottle during work, may influence hydration balance.

Keywords: hydration, working population, water balance, workplace behavior

Procedia PDF Downloads 11
73 The System-Dynamic Model of Sustainable Development Based on the Energy Flow Analysis Approach

Authors: Inese Trusina, Elita Jermolajeva, Viktors Gopejenko, Viktor Abramov

Abstract:

Global challenges require a transition from the existing linear economic model to a model that will consider nature as a life support system for the development of the way to social well-being in the frame of the ecological economics paradigm. The objective of the article is to present the results of the analysis of socio-economic systems in the context of sustainable development using the systems power (energy flows) changes analyzing method and structural Kaldor's model of GDP. In accordance with the principles of life's development and the ecological concept was formalized the tasks of sustainable development of the open, non-equilibrium, stable socio-economic systems were formalized using the energy flows analysis method. The methodology of monitoring sustainable development and level of life were considered during the research of interactions in the system ‘human - society - nature’ and using the theory of a unified system of space-time measurements. Based on the results of the analysis, the time series consumption energy and economic structural model were formulated for the level, degree and tendencies of sustainable development of the system and formalized the conditions of growth, degrowth and stationarity. In order to design the future state of socio-economic systems, a concept was formulated, and the first models of energy flows in systems were created using the tools of system dynamics. During the research, the authors calculated and used a system of universal indicators of sustainable development in the invariant coordinate system in energy units. In order to design the future state of socio-economic systems, a concept was formulated, and the first models of energy flows in systems were created using the tools of system dynamics. In the context of the proposed approach and methods, universal sustainable development indicators were calculated as models of development for the USA and China. The calculations used data from the World Bank database for the period from 1960 to 2019. Main results: 1) In accordance with the proposed approach, the heterogeneous energy resources of countries were reduced to universal power units, summarized and expressed as a unified number. 2) The values of universal indicators of the life’s level were obtained and compared with generally accepted similar indicators.3) The system of indicators in accordance with the requirements of sustainable development can be considered as a basis for monitoring development trends. This work can make a significant contribution to overcoming the difficulties of forming socio-economic policy, which is largely due to the lack of information that allows one to have an idea of the course and trends of socio-economic processes. The existing methods for the monitoring of the change do not fully meet this requirement since indicators have different units of measurement from different areas and, as a rule, are the reaction of socio-economic systems to actions already taken and, moreover, with a time shift. Currently, the inconsistency or inconsistency of measures of heterogeneous social, economic, environmental, and other systems is the reason that social systems are managed in isolation from the general laws of living systems, which can ultimately lead to a systemic crisis.

Keywords: sustainability, system dynamic, power, energy flows, development

Procedia PDF Downloads 58
72 A Scoping Study and Stakeholder Consultation on Mental Health Determinants among Arab Immigrants and Refugees in North America

Authors: Sarah Elshahat, Tina Moffat

Abstract:

Suboptimal mental health is a considerable global public health challenge that leads to considerable inequalities worldwide. Newcomers are at elevated risk for developing mental health issues as a result of social exclusion, stigmatization, racism, unequal employment opportunities, and discrimination. The problem can be especially serious amongst Arabic-speaking immigrants and refugees (ASIR) whose mental wellness may have already been affected by exposure to political violence, persecution, hunger or war in their countries of origin. A scoping review was conducted to investigate pre- and post-migration mental health determinants amongst ASIR in North America (the U.S. and Canada), who are a rapidly growing population in both regions. Pertinent peer-reviewed papers and grey literature were located through a systematic search of five electronic databases (Medline, Embase, PsycINFO, Anthropology Plus, and Sociology Database). A stakeholder consultation was implemented to validate the analyzed findings of the included 44 studies. About 80% of the studies were carried out in the US, underscoring a lack of Canadian ASIR-mental health research. A gap in qualitative, mixed-method, and longitudinal research was detected, where approximately two-thirds of the studies adopted a cross-sectional method. Pre-migration determinants of mental health were related to the political unrest, violence and armed conflict in the Arab world, increasing post-traumatic stress disorder and psychological distress levels among ASIR. English language illiteracy and generational variations in acculturation patterns were major post-migration mental health triggering factors. Exposure to domestic violence, stigmatization, poverty, racialization, and harassment were significant post-migration mental health determinants that stem from social inequalities, triggering depression, and distress amongst ASIR. Family conflicts linked to child-rearing and gendered norms were considered as both pre- and post-migration mental health triggering factors. Most post-migration mental health protective factors were socio-culturally related and included the maintenance of positive ethnic identity, faith, family support, and community cohesion. Individual resilience, articulated as self-esteem and hope, was a significant negative predictor of depression and psychological distress among ASIR. Community-engaged, mixed-methods, and longitudinal studies are required to address the current gap in mental health research among ASIR in North America. A more thorough determination of potential mental health triggers and protective factors would help inform the development of mental wellness and resilience-promoting programs that are culturally sensitive to ASIR. On the policy level, the Health in All Policies framework of the World Health Organization can be potentially useful for addressing social and health inequalities among ASIR, reducing mental health challenges.

Keywords: depression, post-traumatic stress disorder, psychological distress, resilience

Procedia PDF Downloads 136
71 Delineation of Different Geological Interfaces Beneath the Bengal Basin: Spectrum Analysis and 2D Density Modeling of Gravity Data

Authors: Md. Afroz Ansari

Abstract:

The Bengal basin is a spectacular example of a peripheral foreland basin formed by the convergence of the Indian plate beneath the Eurasian and Burmese plates. The basin is embraced on three sides; north, west and east by different fault-controlled tectonic features whereas released in the south where the rivers are drained into the Bay of Bengal. The Bengal basin in the eastern part of the Indian subcontinent constitutes the largest fluvio-deltaic to shallow marine sedimentary basin in the world today. This continental basin coupled with the offshore Bengal Fan under the Bay of Bengal forms the biggest sediment dispersal system. The continental basin is continuously receiving the sediments by the two major rivers Ganga and Brahmaputra (known as Jamuna in Bengal), and Meghna (emerging from the point of conflux of the Ganga and Brahmaputra) and large number of rain-fed, small tributaries originating from the eastern Indian Shield. The drained sediments are ultimately delivered into the Bengal fan. The significance of the present study is to delineate the variations in thicknesses of the sediments, different crustal structures, and the mantle lithosphere throughout the onshore-offshore Bengal basin. In the present study, the different crustal/geological units and the shallower mantle lithosphere were delineated by analyzing the Bouguer Gravity Anomaly (BGA) data along two long traverses South-North (running from Bengal fan cutting across the transition offshore-onshore of the Bengal basin and intersecting the Main Frontal Thrust of India-Himalaya collision zone in Sikkim-Bhutan Himalaya) and West-East (running from the Peninsular Indian Shield across the Bengal basin to the Chittagong–Tripura Fold Belt). The BGA map was derived from the analysis of topex data after incorporating Bouguer correction and all terrain corrections. The anomaly map was compared with the available ground gravity data in the western Bengal basin and the sub-continents of India for consistency of the data used. Initially, the anisotropy associated with the thicknesses of the different crustal units, crustal interfaces and moho boundary was estimated through spectral analysis of the gravity data with varying window size over the study area. The 2D density sections along the traverses were finalized after a number of iterations with the acceptable root mean square (RMS) errors. The estimated thicknesses of the different crustal units and dips of the Moho boundary along both the profiles are consistent with the earlier results. Further the results were encouraged by examining the earthquake database and focal mechanism solutions for better understanding the geodynamics. The earthquake data were taken from the catalogue of US Geological Survey, and the focal mechanism solutions were compiled from the Harvard Centroid Moment Tensor Catalogue. The concentrations of seismic events at different depth levels are not uncommon. The occurrences of earthquakes may be due to stress accumulation as a result of resistance from three sides.

Keywords: anisotropy, interfaces, seismicity, spectrum analysis

Procedia PDF Downloads 273
70 Is Materiality Determination the Key to Integrating Corporate Sustainability and Maximising Value?

Authors: Ruth Hegarty, Noel Connaughton

Abstract:

Sustainability reporting has become a priority for many global multinational companies. This is associated with ever-increasing expectations from key stakeholders for companies to be transparent about their strategies, activities and management with regard to sustainability issues. The Global Reporting Initiative (GRI) encourages reporters to only provide information on the issues that are really critical in order to achieve the organisation’s goals for sustainability and manage its impact on environment and society. A key challenge for most reporting organisations is how to identify relevant issues for sustainability reporting and prioritise those material issues in accordance with company and stakeholder needs. A recent study indicates that most of the largest companies listed on the world’s stock exchanges are failing to provide data on key sustainability indicators such as employee turnover, energy, greenhouse gas emissions (GHGs), injury rate, pay equity, waste and water. This paper takes an indepth look at the approaches used by a select number of international sustainability leader corporates to identify key sustainability issues. The research methodology involves performing a detailed analysis of the sustainability report content of up to 50 companies listed on the 2014 Dow Jones Sustainability Indices (DJSI). The most recent sustainability report content found on the GRI Sustainability Disclosure Database is then compared with 91 GRI Specific Standard Disclosures and a small number of GRI Standard Disclosures. Preliminary research indicates significant gaps in the information disclosed in corporate sustainability reports versus the indicator content specified in the GRI Content Index. The following outlines some of the key findings to date: Most companies made a partial disclosure with regard to the Economic indicators of climate change risks and infrastructure investments, but did not focus on the associated negative impacts. The top Environmental indicators disclosed were energy consumption and reductions, GHG emissions, water withdrawals, waste and compliance. The lowest rates of indicator disclosure included biodiversity, water discharge, mitigation of environmental impacts of products and services, transport, environmental investments, screening of new suppliers and supply chain impacts. The top Social indicators disclosed were new employee hires, rates of injury, freedom of association in operations, child labour and forced labour. Lesser disclosure rates were reported for employee training, composition of governance bodies and employees, political contributions, corruption and fines for non-compliance. The reporting on most other Social indicators was found to be poor. In addition, most companies give only a brief explanation on how material issues are defined, identified and ranked. Data on the identification of key stakeholders and the degree and nature of engagement for determining issues and their weightings is also lacking. Generally, little to no data is provided on the algorithms used to score an issue. Research indicates that most companies lack a rigorous and thorough methodology to systematically determine the material issues of sustainability reporting in accordance with company and stakeholder needs.

Keywords: identification of key stakeholders, material issues, sustainability reporting, transparency

Procedia PDF Downloads 306
69 Barriers and Facilitators of Physical Activity among Adults and Older Adults from Black and Minority Ethnic Groups in the UK: A Meta-Ethnographic Study

Authors: Janet Ige, Paul Pilkington, Selena Gray, Jane Powell

Abstract:

Older adults from socially disadvantaged groups and Black and Minority Ethnic (BME) groups experience a higher burden of physical inactivity. Physical inactivity among BME groups is associated with the disproportionately higher level of health inequalities. People from minority ethnic groups encounter more barriers to physical activity. However, this is not often reported. There is very limited review-level evidence on the barriers and facilitators of physical activity among older adults from BME groups in the UK. This study aims to answer the following research question: what are the barriers and facilitators of physical activity participation among adults and older adults from BME background in the UK? To address this, we conducted a review of qualitative studies investigating the barriers and opportunities for physical activity among of BME adults and older adults in the UK. Method: This study is nested in an interpretive paradigm of meta-ethnography. A structured search for published literature was conducted on 6 electronic databases (MEDLINE, PsychINFO, Cumulative Index to Nursing & Allied Health Literature, Applied Social Sciences Index and Abstracts, Cochrane Database of Systematic Reviews, Allied and Complementary Medicine) from January 2007 to July 2017. Hand searching of the reference list of publications was performed in addition to a search conducted on Google Scholar to identify grey literature. Studies were eligible provided they employed any qualitative method and included participants identified as being BME, aged 50 and above, living in any community within the UK. In total, 1036 studies were identified from the structured search for literature, 718 studies were screened by titles after duplicates were removed. On applying the inclusion and exclusion criteria, a final selection of 10 studies was considered eligible for synthesis. Quality assessment was performed using the Critical Appraisal Skills Programme tool. Logic maps were used to show the relationship between factors that impact on physical activity participation among adults and older adults Result: Six key themes emerged from the data: awareness of the links between physical activity and health, interaction, and engagement with health professionals, cultural expectations and social responsibilities, appropriate environment, religious fatalism and practical challenges. Findings also showed that the barriers and facilitators of physical activity exist at the individual, community, and socio-economic, cultural and environmental level. There was a substantial gap in research among Black African groups. Findings from the review also informed the design of an ongoing survey investigating the experience and attitude of adults from Somali backgrounds towards physical activity in the UK. Conclusion: Identifying the barriers and facilitators of physical activity among BME groups is a crucial step in addressing the widening inequality gap. Findings from this study highlight the importance of engaging local BME residents in the design of exercise facilities within the community. This will ensure that cultural and social concerns are recognized and properly addressed.

Keywords: BME, UK, meta-ethnographic, adults

Procedia PDF Downloads 120
68 Early Diagnosis of Myocardial Ischemia Based on Support Vector Machine and Gaussian Mixture Model by Using Features of ECG Recordings

Authors: Merve Begum Terzi, Orhan Arikan, Adnan Abaci, Mustafa Candemir

Abstract:

Acute myocardial infarction is a major cause of death in the world. Therefore, its fast and reliable diagnosis is a major clinical need. ECG is the most important diagnostic methodology which is used to make decisions about the management of the cardiovascular diseases. In patients with acute myocardial ischemia, temporary chest pains together with changes in ST segment and T wave of ECG occur shortly before the start of myocardial infarction. In this study, a technique which detects changes in ST/T sections of ECG is developed for the early diagnosis of acute myocardial ischemia. For this purpose, a database of real ECG recordings that contains a set of records from 75 patients presenting symptoms of chest pain who underwent elective percutaneous coronary intervention (PCI) is constituted. 12-lead ECG’s of the patients were recorded before and during the PCI procedure. Two ECG epochs, which are the pre-inflation ECG which is acquired before any catheter insertion and the occlusion ECG which is acquired during balloon inflation, are analyzed for each patient. By using pre-inflation and occlusion recordings, ECG features that are critical in the detection of acute myocardial ischemia are identified and the most discriminative features for the detection of acute myocardial ischemia are extracted. A classification technique based on support vector machine (SVM) approach operating with linear and radial basis function (RBF) kernels to detect ischemic events by using ST-T derived joint features from non-ischemic and ischemic states of the patients is developed. The dataset is randomly divided into training and testing sets and the training set is used to optimize SVM hyperparameters by using grid-search method and 10fold cross-validation. SVMs are designed specifically for each patient by tuning the kernel parameters in order to obtain the optimal classification performance results. As a result of implementing the developed classification technique to real ECG recordings, it is shown that the proposed technique provides highly reliable detections of the anomalies in ECG signals. Furthermore, to develop a detection technique that can be used in the absence of ECG recording obtained during healthy stage, the detection of acute myocardial ischemia based on ECG recordings of the patients obtained during ischemia is also investigated. For this purpose, a Gaussian mixture model (GMM) is used to represent the joint pdf of the most discriminating ECG features of myocardial ischemia. Then, a Neyman-Pearson type of approach is developed to provide detection of outliers that would correspond to acute myocardial ischemia. Neyman – Pearson decision strategy is used by computing the average log likelihood values of ECG segments and comparing them with a range of different threshold values. For different discrimination threshold values and number of ECG segments, probability of detection and probability of false alarm values are computed, and the corresponding ROC curves are obtained. The results indicate that increasing number of ECG segments provide higher performance for GMM based classification. Moreover, the comparison between the performances of SVM and GMM based classification showed that SVM provides higher classification performance results over ECG recordings of considerable number of patients.

Keywords: ECG classification, Gaussian mixture model, Neyman–Pearson approach, support vector machine

Procedia PDF Downloads 162
67 Deep Learning Based Text to Image Synthesis for Accurate Facial Composites in Criminal Investigations

Authors: Zhao Gao, Eran Edirisinghe

Abstract:

The production of an accurate sketch of a suspect based on a verbal description obtained from a witness is an essential task for most criminal investigations. The criminal investigation system employs specifically trained professional artists to manually draw a facial image of the suspect according to the descriptions of an eyewitness for subsequent identification. Within the advancement of Deep Learning, Recurrent Neural Networks (RNN) have shown great promise in Natural Language Processing (NLP) tasks. Additionally, Generative Adversarial Networks (GAN) have also proven to be very effective in image generation. In this study, a trained GAN conditioned on textual features such as keywords automatically encoded from a verbal description of a human face using an RNN is used to generate photo-realistic facial images for criminal investigations. The intention of the proposed system is to map corresponding features into text generated from verbal descriptions. With this, it becomes possible to generate many reasonably accurate alternatives to which the witness can use to hopefully identify a suspect from. This reduces subjectivity in decision making both by the eyewitness and the artist while giving an opportunity for the witness to evaluate and reconsider decisions. Furthermore, the proposed approach benefits law enforcement agencies by reducing the time taken to physically draw each potential sketch, thus increasing response times and mitigating potentially malicious human intervention. With publically available 'CelebFaces Attributes Dataset' (CelebA) and additionally providing verbal description as training data, the proposed architecture is able to effectively produce facial structures from given text. Word Embeddings are learnt by applying the RNN architecture in order to perform semantic parsing, the output of which is fed into the GAN for synthesizing photo-realistic images. Rather than the grid search method, a metaheuristic search based on genetic algorithms is applied to evolve the network with the intent of achieving optimal hyperparameters in a fraction the time of a typical brute force approach. With the exception of the ‘CelebA’ training database, further novel test cases are supplied to the network for evaluation. Witness reports detailing criminals from Interpol or other law enforcement agencies are sampled on the network. Using the descriptions provided, samples are generated and compared with the ground truth images of a criminal in order to calculate the similarities. Two factors are used for performance evaluation: The Structural Similarity Index (SSIM) and the Peak Signal-to-Noise Ratio (PSNR). A high percentile output from this performance matrix should attribute to demonstrating the accuracy, in hope of proving that the proposed approach can be an effective tool for law enforcement agencies. The proposed approach to criminal facial image generation has potential to increase the ratio of criminal cases that can be ultimately resolved using eyewitness information gathering.

Keywords: RNN, GAN, NLP, facial composition, criminal investigation

Procedia PDF Downloads 161