Search results for: carbon nanoparticle
1866 Trastuzumab Decorated Bioadhesive Nanoparticles for Targeted Breast Cancer Therapy
Authors: Kasi Viswanadh Matte, Abhisheh Kumar Mehata, M.S. Muthu
Abstract:
Brest cancer, up-regulated with human epidermal growth factor receptor type-2 (HER-2) led to the concept of developing HER-2 targeted anticancer therapeutics. Docetaxel-loaded D-α-tocopherol polyethylene glycol succinate 1000 conjugated chitosan (TPGS-g-chitosan) nanoparticles were prepared with or without Trastuzumab decoration. The particle size and entrapment efficiency of conventional, non-targeted and targeted nanoparticles were found to be in the range of 126-186 nm and 74-78% respectively. In-vitro, MDA-MB-231 cells showed that docetaxel-loaded non-targeted and HER-2 receptor targeted TPGS-g-chitosan nanoparticles have enhanced the cellular uptake and cytotoxicity with a promising bioadhesion property, in comparison to conventional nanoparticles. The IC50 values of non-targeted and targeted nanoparticles from cytotoxic assay were found to be 43 and 223 folds higher than DocelTM. The in-vivo pharmacokinetic study showed 2.33, and 2.82-fold enhancement in relative bioavailability of docetaxel for non-targeted and HER-2 receptor targeted nanoparticles, respectively than DocelTM, and after i.v administration, non-targeted and targeted nanoparticle achieved 3.48 and 5.94 times prolonged half-life in comparison to DocelTM. The area under the curve (AUC), relative bioavailability (FR) and mean residence time (MRT) were found to be higher for non-targeted and targeted nanoparticles compared to DocelTM. Further, histopathology results of non-targeted and targeted nanoparticles showed less toxicity on vital organs such as lungs, liver, and kidney compared to DocelTM.Keywords: breast cancer, HER-2 receptor, targeted nanomedicine, chitosan, TPGS
Procedia PDF Downloads 2401865 A Deep Learning Model with Greedy Layer-Wise Pretraining Approach for Optimal Syngas Production by Dry Reforming of Methane
Authors: Maryam Zarabian, Hector Guzman, Pedro Pereira-Almao, Abraham Fapojuwo
Abstract:
Dry reforming of methane (DRM) has sparked significant industrial and scientific interest not only as a viable alternative for addressing the environmental concerns of two main contributors of the greenhouse effect, i.e., carbon dioxide (CO₂) and methane (CH₄), but also produces syngas, i.e., a mixture of hydrogen (H₂) and carbon monoxide (CO) utilized by a wide range of downstream processes as a feedstock for other chemical productions. In this study, we develop an AI-enable syngas production model to tackle the problem of achieving an equivalent H₂/CO ratio [1:1] with respect to the most efficient conversion. Firstly, the unsupervised density-based spatial clustering of applications with noise (DBSAN) algorithm removes outlier data points from the original experimental dataset. Then, random forest (RF) and deep neural network (DNN) models employ the error-free dataset to predict the DRM results. DNN models inherently would not be able to obtain accurate predictions without a huge dataset. To cope with this limitation, we employ reusing pre-trained layers’ approaches such as transfer learning and greedy layer-wise pretraining. Compared to the other deep models (i.e., pure deep model and transferred deep model), the greedy layer-wise pre-trained deep model provides the most accurate prediction as well as similar accuracy to the RF model with R² values 1.00, 0.999, 0.999, 0.999, 0.999, and 0.999 for the total outlet flow, H₂/CO ratio, H₂ yield, CO yield, CH₄ conversion, and CO₂ conversion outputs, respectively.Keywords: artificial intelligence, dry reforming of methane, artificial neural network, deep learning, machine learning, transfer learning, greedy layer-wise pretraining
Procedia PDF Downloads 861864 Effect of Surfactant on Thermal Conductivity of Ethylene Glycol/Silver Nanofluid
Authors: E. C. Muhammed Irshad
Abstract:
Nanofluids are a new class of solid-liquid colloidal mixture consisting of nanometer sized (< 100nm) solid particles suspended in heat transfer fluids such as water, ethylene/propylene glycol etc. Nanofluids offer excellent scope of enhancing thermal conductivity of common heat transfer fluids and it leads to enhancement of the heat transfer coefficient. In the present study, silver nanoparticles are dispersed in ethylene glycol water mixture. Low volume concentrations (0.05%, 0.1% and 0.15%) of silver nanofluids were synthesized. The thermal conductivity of these nanofluids was determined with thermal property analyzer (KD2 pro apparatus) and heat transfer coefficient was found experimentally. Initially, the thermal conductivity and viscosity of nanofluids were calculated with various correlations at different concentrations and were compared. Thermal conductivity of silver nanofluid at 0.02% and 0.1% concentration of silver nanoparticle increased to 23.3% and 27.7% for Sodium Dodecyl Sulfate (SDS) and to 33.6% and 36.7% for Poly Vinyl Pyrrolidone (PVP), respectively. The nanofluid maintains the stability for two days and it starts to settle down due to high density of silver. But it shows good improvement in the thermal conductivity for low volume concentration and it also shows better improvement with Poly Vinyl Pyrrolidone (PVP) surfactant than Sodium Dodecyl Sulfate (SDS).Keywords: k-thermal conductivity, sodium dodecyl sulfate, vinyl pyrrolidone, mechatronics engineering
Procedia PDF Downloads 3131863 Direct Electrical Communication of Redox Enzyme Based on 3-Dimensional Cross-Linked Redox Enzyme/Nanomaterials
Authors: A. K. M. Kafi, S. N. Nina, Mashitah M. Yusoff
Abstract:
In this work, we have described a new 3-dimensional (3D) network of cross-linked Horseradish Peroxidase/Carbon Nanotube (HRP/CNT) on a thiol-modified Au surface in order to build up the effective electrical wiring of the enzyme units with the electrode. This was achieved by the electropolymerization of aniline-functionalized carbon nanotubes (CNTs) and 4-aminothiophenol -modified-HRP on a 4-aminothiophenol monolayer-modified Au electrode. The synthesized 3D HRP/CNT networks were characterized with cyclic voltammetry and amperometry, resulting the establishment direct electron transfer between the redox active unit of HRP and the Au surface. Electrochemical measurements reveal that the immobilized HRP exhibits high biological activity and stability and a quasi-reversible redox peak of the redox center of HRP was observed at about −0.355 and −0.275 V vs. Ag/AgCl. The electron transfer rate constant, KS and electron transfer co-efficient were found to be 0.57 s-1 and 0.42, respectively. Based on the electrocatalytic process by direct electrochemistry of HRP, a biosensor for detecting H2O2 was developed. The developed biosensor exhibits excellent electrocatalytic activity for the reduction of H2O2. The proposed biosensor modified with HRP/CNT 3D network displays a broader linear range and a lower detection limit for H2O2 determination. The linear range is from 1.0×10−7 to 1.2×10−4M with a detection limit of 2.2.0×10−8M at 3σ. Moreover, this biosensor exhibits very high sensitivity, good reproducibility and long-time stability. In summary, ease of fabrication, a low cost, fast response and high sensitivity are the main advantages of the new biosensor proposed in this study. These obvious advantages would really help for the real analytical applicability of the proposed biosensor.Keywords: redox enzyme, nanomaterials, biosensors, electrical communication
Procedia PDF Downloads 4541862 Dynamic Analysis of Functionally Graded Nano Composite Pipe with PZT Layers Subjected to Moving Load
Authors: Morteza Raminnia
Abstract:
In this study, dynamic analysis of functionally graded nano-composite pipe reinforced by single-walled carbon nano-tubes (SWCNTs) with simply supported boundary condition subjected to moving mechanical loads is investigated. The material properties of functionally graded carbon nano tube-reinforced composites (FG-CNTRCs) are assumed to be graded in the thickness direction and are estimated through a micro-mechanical model. In this paper polymeric matrix considered as isotropic material and for the CNTRC, uniform distribution (UD) and three types of FG distribution patterns of SWCNT reinforcements are considered. The system equation of motion is derived by using Hamilton's principle under the assumptions of first order shear deformation theory (FSDT).The thin piezoelectric layers embedded on inner and outer surfaces of FG-CNTRC layer are acted as distributed sensor and actuator to control dynamic characteristics of the FG-CNTRC laminated pipe. The modal analysis technique and Newmark's integration method are used to calculate the displacement and dynamic stress of the pipe subjected to moving loads. The effects of various material distribution and velocity of moving loads on dynamic behavior of the pipe is presented. This present approach is validated by comparing the numerical results with the published numerical results in literature. The results show that the above-mentioned effects play very important role on dynamic behavior of the pipe .This present work shows that some meaningful results that which are interest to scientific and engineering community in the field of FGM nano-structures.Keywords: nano-composite, functionally garded material, moving load, active control, PZT layers
Procedia PDF Downloads 4191861 CFD Studies on Forced Convection Nanofluid Flow Inside a Circular Conduit
Authors: M. Khalid, W. Rashmi, L. L. Kwan
Abstract:
This work provides an overview on the experimental and numerical simulations of various nanofluids and their flow and heat transfer behavior. It was further extended to study the effect of nanoparticle concentration, fluid flow rates and thermo-physical properties on the heat transfer enhancement of Al2O3/water nanofluid in a turbulent flow circular conduit using ANSYS FLUENT™ 14.0. Single-phase approximation (homogeneous model) and two-phase (mixture and Eulerian) models were used to simulate the nanofluid flow behavior in the 3-D horizontal pipe. The numerical results were further validated with experimental correlations reported in the literature. It was found that heat transfer of nanofluids increases with increasing particle volume concentration and Reynolds number, respectively. Results showed good agreement (~9% deviation) with the experimental correlations, especially for a single-phase model with constant properties. Among two-phase models, mixture model (~14% deviation) showed better prediction compared to Eulerian-dispersed model (~18% deviation) when temperature independent properties were used. Non-drag forces were also employed in the Eulerian two-phase model. However, the two-phase mixture model with temperature dependent nanofluid properties gave slightly closer agreement (~12% deviation).Keywords: nanofluid, CFD, heat transfer, forced convection, circular conduit
Procedia PDF Downloads 5231860 Energy and Carbon Footprint Analysis of Food Waste Treatment Alternatives for Hong Kong
Authors: Asad Iqbal, Feixiang Zan, Xiaoming Liu, Guang-Hao Chen
Abstract:
Water, food, and energy nexus is a vital subject to achieve sustainable development goals worldwide. Wastewater (WW) and food waste (FW) from municipal sources are primary contributors to their respective wastage sum from a country. Along with the loss of these invaluable natural resources, their treatment systems also consume a lot of abiotic energy and resources input with a perceptible contribution to global warming. Hence, the global paradigm has evolved from simple pollution mitigation to a resource recovery system (RRS). In this study, the prospects of six alternative FW treatment scenarios are quantitatively evaluated for Hong Kong in terms of energy use and greenhouse emissions (GHEs) potential, using life cycle assessment (LCA). Considered scenarios included: aerobic composting, anaerobic digestion (AD), combine AD and composting (ADC), co-disposal, and treatment with wastewater (CoD-WW), incineration, and conventional landfilling as base-case. Results revealed that in terms of GHEs saving, all-new scenarios performed significantly better than conventional landfilling, with ADC scenario as best-case and incineration, AD alone, CoD-WW ranked as second, third, and fourth best respectively. Whereas, composting was the worst-case scenario in terms of energy balance, while incineration ranked best and AD alone, ADC, and CoD-WW ranked as second, third, and fourth best, respectively. However, these results are highly sensitive to boundary settings, e.g., the inclusion of the impact of biogenic carbon emissions and waste collection and transportation, and several other influential parameters. The study provides valuable insights and policy guidelines for the decision-makers locally and a generic modelling template for environmental impact assessment.Keywords: food waste, resource recovery, greenhouse emissions, energy balance
Procedia PDF Downloads 1071859 Experimental Study and Numerical Simulation of the Reaction and Flow on the Membrane Wall of Entrained Flow Gasifier
Authors: Jianliang Xu, Zhenghua Dai, Zhongjie Shen, Haifeng Liu, Fuchen Wang
Abstract:
In an entrained flow gasifier, the combustible components are converted into the gas phase, and the mineral content is converted into ash. Most of the ash particles or droplets are deposited on the refractory or membrane wall and form a slag layer that flows down to the quenching system. The captured particle reaction process and slag flow and phase transformation play an important role in gasifier performance and safe and stable operation. The reaction characteristic of captured char particles on the molten slag had been studied by applied a high-temperature stage microscope. The gasification process of captured chars with CO2 on the slag surface was observed and recorded, compared to the original char gasification. The particle size evolution, heat transfer process are discussed, and the gasification reaction index of the capture char particle are modeled. Molten slag layer promoted the char reactivity from the analysis of reaction index, Coupled with heat transfer analysis, shrinking particle model (SPM) was applied and modified to predict the gasification time at carbon conversion of 0.9, and results showed an agreement with the experimental data. A comprehensive model with gas-particle-slag flow and reaction models was used to model the different industry gasifier. The carbon conversion information in the spatial space and slag layer surface are investigated. The slag flow characteristic, such as slag velocity, molten slag thickness, slag temperature distribution on the membrane wall and refractory brick are discussed.Keywords: char, slag, numerical simulation, gasification, wall reaction, membrane wall
Procedia PDF Downloads 3071858 Synthesis of Pd@ Cu Core−Shell Nanowires by Galvanic Displacement of Cu by Pd²⁺ Ions as a Modified Glassy Carbon Electrode for the Simultaneous Determination of Dihydroxybenzene Isomers Speciation
Authors: Majid Farsadrouh Rashti, Parisa Jahani, Amir Shafiee, Mehrdad Mofidi
Abstract:
The dihydroxybenzene isomers, hydroquinone (HQ), catechol (CC) and resorcinol (RS) have been widely recognized as important environmental pollutants due to their toxicity and low degradability in the ecological environment. Speciation of HQ, CC and RS is very important for environmental analysis because they co-exist of these isomers in environmental samples and are too difficult to degrade as an environmental contaminant with high toxicity. There are many analytical methods have been reported for detecting these isomers, such as spectrophotometry, fluorescence, High-performance liquid chromatography (HPLC) and electrochemical methods. These methods have attractive advantages such as simple and fast response, low maintenance costs, wide linear analysis range, high efficiency, excellent selectivity and high sensitivity. A novel modified glassy carbon electrode (GCE) with Pd@ Cu/CNTs core−shell nanowires for the simultaneous determination of hydroquinone (HQ), catechol (CC) and resorcinol (RS) is described. A detailed investigation by field emission scanning electron microscopy and electrochemistry was performed in order to elucidate the preparation process and properties of the GCE/ Pd/CuNWs-CNTs. The electrochemical response characteristic of the modified GPE/LFOR toward HQ, CC and RS were investigated by cyclic voltammetry, differential pulse voltammetry (DPV) and Chronoamperometry. Under optimum conditions, the calibrations curves were linear up to 228 µM for each with detection limits of 0.4, 0.6 and 0.8 µM for HQ, CC and RS, respectively. The diffusion coefficient for the oxidation of HQ, CC and RS at the modified electrode was calculated as 6.5×10⁻⁵, 1.6 ×10⁻⁵ and 8.5 ×10⁻⁵ cm² s⁻¹, respectively. DPV was used for the simultaneous determination of HQ, CC and RS at the modified electrode and the relative standard deviations were 2.1%, 1.9% and 1.7% for HQ, CC and RS, respectively. Moreover, GCE/Pd/CuNWs-CNTs was successfully used for determination of HQ, CC and RS in real samples.Keywords: dihydroxybenzene isomers, galvanized copper nanowires, electrochemical sensor, Palladium, speciation
Procedia PDF Downloads 1281857 Detection of Cytotoxicity of Green Synthesized Silver, Gold, and Silver/Gold Bimetallic on Baby Hamster Kidney-21 Cells Using MTT Assay
Authors: Naila Sher, Mushtaq Ahmed, Nadia Mushtaq, Rahmat Ali Khan
Abstract:
In cancer therapy, nanoparticles (NPs) shall be applied possibly by inoculation in the veins of humans. This action will connect them with white (WBCs) and red blood cells (RBCs) in the bloodstream before they reach their main targeted cancer cells. However, possible effects of silver, gold, and silver/gold bimetallic NPs (Ag, Au, and Ag/Au BNPs) on baby hamster kidney-21 (BHK-21) cells were studied by MTT assay. Here, Ag, Au, and their Ag/Au BNPs (bimetallic nanoparticles) were synthesized by using Hippeastrum hybridum (HH) extract. These NPs were characterized by UV-visible spectroscopy, FT-IR, XRD, and EDX, and SEM analysis. XRD analysis conferring the crystal structure with an average size of 13.3, 10.72, and 8.34nm of Ag, Au, and Ag/Au BNPs, respectively. SEM showed that Ag, Au, and Ag/Au BNPs had irregular morphologies, with nano measures calculated sizes of 40, 30, and 20 nm respectively. EDX spectrometers confirmed the presence of elemental Ag signal of the AgNPs with 22.75%, Au signal of the AuNPs with 48.08%, Ag signal with 12%, and Au signal with 38.26% of the Ag/Au BNPs. The BHK-21cells were incubated in the existence of doxorubicin, plant extract, Ag, Au, and Ag/Au BNPs. The cytotoxic effects could be observed in a dose-dependent mode; doxorubicin and Ag/Au BNPs were more toxic than plant extract, Ag, and Au NPs. It is demonstrated that NPs interact with BHK-21cells and significantly reduce cell viability in a concentration-dependent manner. However, to reduce the potential threats of NPs further studies are recommended.Keywords: hippeastrum hybridum, nanoparticle, BHK-21cells
Procedia PDF Downloads 1331856 N-Heterocyclic Carbene Based Dearomatized Iridium Complex as an Efficient Catalyst towards Carbon-Carbon Bond Formation via Hydrogen Borrowing Strategy
Authors: Mandeep Kaur, Jitendra K. Bera
Abstract:
The search for atom-economical and green synthetic methods for the synthesis of functionalized molecules has attracted much attention. Metal ligand cooperation (MLC) plays a pivotal role in organometallic catalysis to activate C−H, H−H, O−H, N−H and B−H bonds through reversible bond breaking and bond making process. Towards this goal, a bifunctional N─heterocyclic carbene (NHC) based pyridyl-functionalized amide ligand precursor, and corresponding dearomatized iridium complex was synthesized. The NMR and UV/Vis acid titration study have been done to prove the proton response nature of the iridium complex. Further, the dearomatized iridium complex explored as a catalyst on the platform of MLC via dearomatzation/aromatization mode of action towards atom economical α and β─alkylation of ketones and secondary alcohols by using primary alcohols through hydrogen borrowing methodology. The key features of the catalysis are high turnover frequency (TOF) values, low catalyst loading, low base loading and no waste product. The greener syntheses of quinoline, lactone derivatives and selective alkylation of drug molecules like pregnenolone and testosterone were also achieved successfully. Another structurally similar iridium complex was also synthesized with modified ligand precursor where a pendant amide unit was absent. The inactivity of this analogue iridium complex towards catalysis authenticated the participation of proton responsive imido sidearm of the ligand to accelerate the catalytic reaction. The mechanistic investigation through control experiments, NMR and deuterated labeling study, authenticate the borrowing hydrogen strategy.Keywords: C-C bond formation, hydrogen borrowing, metal ligand cooperation (MLC), n-heterocyclic carbene
Procedia PDF Downloads 1811855 Microclimate Impacts on Solar Panel Power Generation in Midlands Area, UK
Authors: Stamatis Zoras, Boris Ceranic, Ashley Redfern
Abstract:
Green House Gas emissions from domestic properties currently account for a substantial part of the total UK’s carbon emissions and is a priority area for UK to reach zero carbon emissions. However, GHG emissions of urban complexes depend on building, road, structural developments etc surfaces that form urban microclimate. This in turn may further influence renewable energy system power generation that depend on solar or wind potential. Moreover, urban climatic conditions are also influenced by the installation of those power generation systems that may impact their own power generation efficiency. Increased air temperature is attributed to densely installed roof based solar panels that consequently impact their own production efficiency. Installation of roof based solar panels requires adequate guidance to enable housing businesses, councils and organisations to implement sufficient measures for improved power generation in relation to local urban microclimate. How microclimate is affected and how, in return, it affects solar power productivity. Derby Council & Derby Homes have been collecting solar panel power generation data for a large number of properties. The different building areas and system operation performance will be studied against microclimate conditions through time. It is envisaged that the outcomes of the study will support a working up strategy for Derby city to ensure that owned homes would be able to access information and data of solar photo voltaic PV and solar thermal panels potential on social housing, helping residents on low incomes create their own green energy to power their homes and heat their homeshot water.Keywords: microclimate, solar power, urban climatology, urban morphology
Procedia PDF Downloads 691854 Effect of Multi-Walled Carbon Nanotubes on Fuel Cell Membrane Performance
Authors: Rabindranath Jana, Biswajit Maity, Keka Rana
Abstract:
The most promising clean energy source is the fuel cell, since it does not generate toxic gases and other hazardous compounds. Again the direct methanol fuel cell (DMFC) is more user-friendly as it is easy to be miniaturized and suited as energy source for automobiles as well as domestic applications and portable devices. And unlike the hydrogen used for some fuel cells, methanol is a liquid that is easy to store and transport in conventional tanks. The most important part of a fuel cell is its membrane. Till now, an overall efficiency for a methanol fuel cell is reported to be about 20 ~ 25%. The lower efficiency of the cell may be due to the critical factors, e.g. slow reaction kinetics at the anode and methanol crossover. The oxidation of methanol is composed of a series of successive reactions creating formaldehyde and formic acid as intermediates that contribute to slow reaction rates and decreased cell voltage. Currently, the investigation of new anode catalysts to improve oxidation reaction rates is an active area of research as it applies to the methanol fuel cell. Surprisingly, there are very limited reports on nanostructured membranes, which are rather simple to manufacture with different tuneable compositions and are expected to allow only the proton permeation but not the methanol due to their molecular sizing effects and affinity to the membrane surface. We have developed a nanostructured fuel cell membrane from polydimethyl siloxane rubber (PDMS), ethylene methyl co-acrylate (EMA) and multi-walled carbon nanotubes (MWNTs). The effect of incorporating different proportions of f-MWNTs in polymer membrane has been studied. The introduction of f-MWNTs in polymer matrix modified the polymer structure, and therefore the properties of the device. The proton conductivity, measured by an AC impedance technique using open-frame and two-electrode cell and methanol permeability of the membranes was found to be dependent on the f-MWNTs loading. The proton conductivity of the membranes increases with increase in concentration of f-MWNTs concentration due to increased content of conductive materials. Measured methanol permeabilities at 60oC were found to be dependant on loading of f-MWNTs. The methanol permeability decreased from 1.5 x 10-6 cm²/s for pure film to 0.8 x 10-7 cm²/s for a membrane containing 0.5wt % f-MWNTs. This is due to increasing proportion of f-MWNTs, the matrix becomes more compact. From DSC melting curves it is clear that the polymer matrix with f-MWNTs is thermally stable. FT-IR studies show good interaction between EMA and f-MWNTs. XRD analysis shows good crystalline behavior of the prepared membranes. Significant cost savings can be achieved when using the blended films which contain less expensive polymers.Keywords: fuel cell membrane, polydimethyl siloxane rubber, carbon nanotubes, proton conductivity, methanol permeability
Procedia PDF Downloads 4131853 Estimation of Thermal Conductivity of Nanofluids Using MD-Stochastic Simulation-Based Approach
Authors: Sujoy Das, M. M. Ghosh
Abstract:
The thermal conductivity of a fluid can be significantly enhanced by dispersing nano-sized particles in it, and the resultant fluid is termed as "nanofluid". A theoretical model for estimating the thermal conductivity of a nanofluid has been proposed here. It is based on the mechanism that evenly dispersed nanoparticles within a nanofluid undergo Brownian motion in course of which the nanoparticles repeatedly collide with the heat source. During each collision a rapid heat transfer occurs owing to the solid-solid contact. Molecular dynamics (MD) simulation of the collision of nanoparticles with the heat source has shown that there is a pulse-like pick up of heat by the nanoparticles within 20-100 ps, the extent of which depends not only on thermal conductivity of the nanoparticles, but also on the elastic and other physical properties of the nanoparticle. After the collision the nanoparticles undergo Brownian motion in the base fluid and release the excess heat to the surrounding base fluid within 2-10 ms. The Brownian motion and associated temperature variation of the nanoparticles have been modeled by stochastic analysis. Repeated occurrence of these events by the suspended nanoparticles significantly contributes to the characteristic thermal conductivity of the nanofluids, which has been estimated by the present model for a ethylene glycol based nanofluid containing Cu-nanoparticles of size ranging from 8 to 20 nm, with Gaussian size distribution. The prediction of the present model has shown a reasonable agreement with the experimental data available in literature.Keywords: brownian dynamics, molecular dynamics, nanofluid, thermal conductivity
Procedia PDF Downloads 3711852 Quantifying the Impacts of Elevated CO2 and N Fertilization on Wood Density in Loblolly Pine
Authors: Y. Cochet, A. Achim, Tom Flatman, J-C. Domec, J. Ogée, L. Wingate, Ram Oren
Abstract:
It is accepted that atmospheric CO2 concentration will increase in the future. For the past 30 years, researchers have used FACE (Free-Air Carbon Dioxide Enrichment) facilities to study the development of terrestrial ecosystems under elevated CO2 (eCO2). Forest responses to eCO2 are likely to impact timber industries with potential feedbacks towards the atmosphere. The main objectives of this study were to examine whether eCO2 alone or in combination with N-fertilization alter wood properties and to identify changes in wood anatomy related to water transport. Wood disks were sampled at breast height from mature loblolly pine trees (Pinus taeda L.) harvested at the Duke FACE site (NC, USA). By measuring ring width and intra-ring changes in density (X-ray densitometry) and tracheid size (lumen and cell wall thickness) from pith to bark, the following hypotheses were tested: 1) eCO2 and N-fertilization interact positively to increase significantly above-ground primary productivity; 2) eCO2 and N-fertilization lead to a decrease in density; 3) eCO2 and N-fertilization increase lumen diameter and decrease cell wall thickness, thus affecting water transport capacity. Our results revealed a boost in earlywood tracheid production induced by eCO2 lasting a few years. The following decrease seemed to be buffered by N-fertilization. X-ray profiles did not show a marked decrease in wood density under eCO2 or N-fertilization, although there were changes in cell anatomical properties such as a reduction in cell-wall thickness and an increase in lumen diameter. If such effects of eCO2 are confirmed, forest management strategies for example N-fertilization should be redesigned.Keywords: wood density, Duke FACE (free-air carbon dioxide enrichment), N fertilization, tree ring
Procedia PDF Downloads 3351851 A Proteomic Approach for Discovery of Microbial Cellulolytic Enzymes
Authors: M. S. Matlala, I. Ignatious
Abstract:
Environmental sustainability has taken the center stage in human life all over the world. Energy is the most essential component of our life. The conventional sources of energy are non-renewable and have a detrimental environmental impact. Therefore, there is a need to move from conventional to non-conventional renewable energy sources to satisfy the world’s energy demands. The study aimed at screening for microbial cellulolytic enzymes using a proteomic approach. The objectives were to screen for microbial cellulases with high specific activity and separate the cellulolytic enzymes using a combination of zymography and two-dimensional (2-D) gel electrophoresis followed by tryptic digestion, Matrix-assisted Laser Desorption Ionisation-Time of Flight (MALDI-TOF) and bioinformatics analysis. Fungal and bacterial isolates were cultured in M9 minimal and Mandel media for a period of 168 hours at 60°C and 30°C with cellobiose and Avicel as carbon sources. Microbial cells were separated from supernatants through centrifugation, and the crude enzyme from the cultures was used for the determination of cellulase activity, zymography, SDS-PAGE, and two-dimensional gel electrophoresis. Five isolates, with lytic action on carbon sources studied, were a bacterial strain (BARK) and fungal strains (VCFF1, VCFF14, VCFF17, and VCFF18). Peak cellulase production by the selected isolates was found to be 3.8U/ml, 2.09U/ml, 3.38U/ml, 3.18U/ml, and 1.95U/ml, respectively. Two-dimensional gel protein maps resulted in the separation and quantitative expression of different proteins by the microbial isolates. MALDI-TOF analysis and database search showed that the expressed proteins in this study closely relate to different glycoside hydrolases produced by other microbial species with an acceptable confidence level of 100%.Keywords: cellulases, energy, two-dimensional gel electrophoresis, matrix-assisted laser desorption ionisation-time of flight, MALDI-TOF MS
Procedia PDF Downloads 1341850 Mechanical Behavior of Corroded RC Beams Strengthened by NSM CFRP Rods
Authors: Belal Almassri, Amjad Kreit, Firas Al Mahmoud, Raoul François
Abstract:
Corrosion of steel in reinforced concrete leads to several major defects. Firstly, a reduction in the crosssectional area of the reinforcement and in its ductility results in premature bar failure. Secondly, the expansion of the corrosion products causes concrete cracking and steel–concrete bond deterioration and also affects the bending stiffness of the reinforced concrete members, causing a reduction in the overall load-bearing capacity of the reinforced concrete beams. This paper investigates the validity of a repair technique using Near Surface Mounted (NSM) carbon-fibre-reinforced polymer (CFRP) rods to restore the mechanical performance of corrosion-damaged RC beams. In the NSM technique, the CFRP rods are placed inside pre-cut grooves and are bonded to the concrete with epoxy adhesive. Experimental results were obtained on two beams: a corroded beam that had been exposed to natural corrosion for 25 years and a control beam, (both are 3 m long) repaired in bending only. Each beam was repaired with one 6-mm-diameter NSM CFRP rod. The beams were tested in a three-point bending test up to failure. Overall stiffness and crack maps were studied before and after the repair. Ultimate capacity, ductility and failure mode were also reviewed. Finally some comparisons were made between repaired and non-repaired beams in order to assess the effectiveness of the NSM technique. The experimental results showed that the NSM technique improved the overall characteristics (ultimate load capacity and stiffness) of the control and corroded beams and allowed sufficient ductility to be restored to the repaired corroded elements, thus restoring the safety margin, despite the non-classical mode of failure that occurred in the corroded beam, with the separation of the concrete cover due to corrosion products.Keywords: carbon fibre, corrosion, strength, mechanical testing
Procedia PDF Downloads 4511849 Synthesis and Surface Engineering of Lanthanide Nanoparticles for NIR Luminescence Imaging and Photodynamic Therapy
Authors: Syue-Liang Lin, C. Allen Chang
Abstract:
Luminescence imaging is an important technique used in biomedical research and clinical diagnostic applications in recent years. Concurrently, the development of NIR luminescence probes / imaging contrast agents has helped the understanding of the structural and functional properties of cells and animals. Photodynamic therapy (PDT) is used clinically to treat a wide range of medical conditions, but the therapeutic efficacy of general PDT for deeper tumor was limited by the penetration of excitation source. The tumor targeting biomedical nanomaterials UCNP@PS (upconversion nanoparticle conjugated with photosensitizer) for photodynamic therapy and near-infrared imaging of cancer will be developed in our study. Synthesis and characterization of biomedical nanomaterials were completed in this studies. The spectrum of UCNP was characterized by photoluminescence spectroscopy and the morphology was characterized by Transmission Electron Microscope (TEM). TEM and XRD analyses indicated that these nanoparticles are about 20~50 nm with hexagonal phase. NaYF₄:Ln³⁺ (Ln= Yb, Nd, Er) upconversion nanoparticles (UCNPs) with core / shell structure, synthesized by thermal decomposition method in 300°C, have the ability to emit visible light (upconversion: 540 nm, 660 nm) and near-infrared with longer wavelength (downconversion: NIR: 980 nm, 1525 nm) by absorbing 800 nm NIR laser. The information obtained from these studies would be very useful for applications of these nanomaterials for bio-luminescence imaging and photodynamic therapy of deep tumor tissue in the future.Keywords: Near Infrared (NIR), lanthanide, core-shell structure, upconversion, theranostics
Procedia PDF Downloads 2351848 In-Process Integration of Resistance-Based, Fiber Sensors during the Braiding Process for Strain Monitoring of Carbon Fiber Reinforced Composite Materials
Authors: Oscar Bareiro, Johannes Sackmann, Thomas Gries
Abstract:
Carbon fiber reinforced polymer composites (CFRP) are used in a wide variety of applications due to its advantageous properties and design versatility. The braiding process enables the manufacture of components with good toughness and fatigue strength. However, failure mechanisms of CFRPs are complex and still present challenges associated with their maintenance and repair. Within the broad scope of structural health monitoring (SHM), strain monitoring can be applied to composite materials to improve reliability, reduce maintenance costs and safely exhaust service life. Traditional SHM systems employ e.g. fiber optics, piezoelectrics as sensors, which are often expensive, time consuming and complicated to implement. A cost-efficient alternative can be the exploitation of the conductive properties of fiber-based sensors such as carbon, copper, or constantan - a copper-nickel alloy – that can be utilized as sensors within composite structures to achieve strain monitoring. This allows the structure to provide feedback via electrical signals to a user which are essential for evaluating the structural condition of the structure. This work presents a strategy for the in-process integration of resistance-based sensors (Elektrisola Feindraht AG, CuNi23Mn, Ø = 0.05 mm) into textile preforms during its manufacture via the braiding process (Herzog RF-64/120) to achieve strain monitoring of braided composites. For this, flat samples of instrumented composite laminates of carbon fibers (Toho Tenax HTS40 F13 24K, 1600 tex) and epoxy resin (Epikote RIMR 426) were manufactured via vacuum-assisted resin infusion. These flat samples were later cut out into test specimens and the integrated sensors were wired to the measurement equipment (National Instruments, VB-8012) for data acquisition during the execution of mechanical tests. Quasi-static tests were performed (tensile, 3-point bending tests) following standard protocols (DIN EN ISO 527-1 & 4, DIN EN ISO 14132); additionally, dynamic tensile tests were executed. These tests were executed to assess the sensor response under different loading conditions and to evaluate the influence of the sensor presence on the mechanical properties of the material. Several orientations of the sensor with regards to the applied loading and sensor placements inside the laminate were tested. Strain measurements from the integrated sensors were made by programming a data acquisition code (LabView) written for the measurement equipment. Strain measurements from the integrated sensors were then correlated to the strain/stress state for the tested samples. From the assessment of the sensor integration approach it can be concluded that it allows for a seamless sensor integration into the textile preform. No damage to the sensor or negative effect on its electrical properties was detected during inspection after integration. From the assessment of the mechanical tests of instrumented samples it can be concluded that the presence of the sensors does not alter significantly the mechanical properties of the material. It was found that there is a good correlation between resistance measurements from the integrated sensors and the applied strain. It can be concluded that the correlation is of sufficient accuracy to determinate the strain state of a composite laminate based solely on the resistance measurements from the integrated sensors.Keywords: braiding process, in-process sensor integration, instrumented composite material, resistance-based sensor, strain monitoring
Procedia PDF Downloads 1061847 Microbial Electrochemical Remediation System: Integrating Wastewater Treatment with Simultaneous Power Generation
Authors: Monika Sogani, Zainab Syed, Adrian C. Fisher
Abstract:
Pollution of estrogenic compounds has caught the attention of researchers as the slight increase of estrogens in the water bodies has a significant impact on the aquatic system. They belong to a class of endocrine disrupting compounds (EDCs) and are able to mimic hormones or interfere with the action of endogenous hormones. The microbial electrochemical remediation system (MERS) is employed here for exploiting an electrophototrophic bacterium for evaluating the capacity of biodegradation of ethinylestradiol hormone (EE2) under anaerobic conditions with power generation. MERS using electro-phototrophic bacterium offers a tailored solution of wastewater treatment in a developing country like India which has a huge solar potential. It is a clean energy generating technology as they require only sunlight, water, nutrients, and carbon dioxide to operate. Its main feature that makes it superior over other technologies is that the main fuel for this MERS is sunlight which is indefinitely present. When grown in light with organic compounds, these photosynthetic bacteria generate ATP by cyclic photophosphorylation and use carbon compounds to make cell biomass (photoheterotrophic growth). These cells showed EE2 degradation and were able to generate hydrogen as part of the process of nitrogen fixation. The two designs of MERS were studied, and a maximum of 88.45% decrease in EE2 was seen in a total period of 14 days in the better design. This research provides a better insight into microbial electricity generation and self-sustaining wastewater treatment facilities. Such new models of waste treatment aiming waste to energy generation needs to be followed and implemented for building a resource efficient and sustainable economy.Keywords: endocrine disrupting compounds, ethinylestradiol, microbial electrochemical remediation systems, wastewater treatment
Procedia PDF Downloads 1181846 Effect of Particles Size and Volume Fraction Concentration on the Thermal Conductivity and Thermal Diffusivity of Al2O3 Nanofluids Measured Using Transient Hot–Wire Laser Beam Deflection Technique
Authors: W. Mahmood Mat Yunus, Faris Mohammed Ali, Zainal Abidin Talib
Abstract:
In this study we present new data for the thermal conductivity enhancement in four nanofluids containing 11, 25, 50, 63 nm diameter aluminum oxide (Al2O3) nanoparticles in distilled water. The nanofluids were prepared using single step method (i.e. by dispersing nanoparticle directly in base fluid) which was gathered in ultrasonic device for approximately 7 hours. The transient hot-wire laser beam displacement technique was used to measure the thermal conductivity and thermal diffusivity of the prepared nanofluids. The thermal conductivity and thermal diffusivity were obtained by fitting the experimental data to the numerical data simulated for aluminum oxide in distilled water. The results show that the thermal conductivity and thermal diffusivity of nanofluids increases in non-linear behavior as the particle size increases. While, the thermal conductivity and thermal diffusivity of Al2O3 nanofluids was observed increasing linearly with concentration as the volume fraction concentration increases. We believe that the interfacial layer between solid/fluid is the main factor for the enhancement of thermal conductivity and thermal diffusivity of Al2O3 nanofluids in the present work.Keywords: transient hot wire-laser beam technique, Al2O3 nanofluid, particle size, volume fraction concentration
Procedia PDF Downloads 5531845 PNIPAAm-MAA Nanoparticles as Delivery Vehicles for Curcumin Against MCF-7 Breast Cancer Cells
Authors: H. Tayefih, F. farajzade ahari, F. Zarghami, V. Zeighamian, N. Zarghami, Y. Pilehvar-soltanahmadi
Abstract:
Breast cancer is the most frequently occurring cancer among women throughout the world. Natural compounds such as curcumin hold promise to treat a variety of cancers including breast cancer. However, curcumin's therapeutic application is limited, due to its rapid degradation and poor aqueous solubility. On the other hand, previous studies have stated that drug delivery using nanoparticles might improve the therapeutic response to anticancer drugs. Poly (N-isopropylacrylamide-co-methacrylic acid) (PNIPAAm–MAA) is one of the hydrogel copolymers utilized in the drug delivery system for cancer therapy. The aim of this study was to examine the cytotoxic potential of curcumin encapsulated within the NIPAAm-MAA nanoparticle, on the MCF-7 breast cancer cell line. In this work, polymeric nanoparticles were synthesized through the free radical mechanism, and curcumin was encapsulated into NIPAAm-MAA nanoparticles. Then, the cytotoxic effect of curcumin-loaded NIPAAm-MAA on the MCF-7 breast cancer cell line was measured by MTT assays. The evaluation of the results showed that curcumin-loaded NIPAAm-MAA has more cytotoxic effect on the MCF-7 cell line and efficiently inhibited the growth of the breast cancer cell population, compared with free curcumin. In conclusion, this study indicates that curcumin-loaded NIPAAm-MAA suppresses the growth of the MCF-7 cell line. Overall, it is concluded that encapsulating curcumin into the NIPAAm-MAA copolymer could open up new avenues for breast cancer treatment.Keywords: PNIPAAm-MAA, breast cancer, curcumin, drug delivery
Procedia PDF Downloads 3741844 Experimental Studies of Sigma Thin-Walled Beams Strengthen by CFRP Tapes
Authors: Katarzyna Rzeszut, Ilona Szewczak
Abstract:
The review of selected methods of strengthening of steel structures with carbon fiber reinforced polymer (CFRP) tapes and the analysis of influence of composite materials on the steel thin-walled elements are performed in this paper. The study is also focused to the problem of applying fast and effective strengthening methods of the steel structures made of thin-walled profiles. It is worth noting that the issue of strengthening the thin-walled structures is a very complex, due to inability to perform welded joints in this type of elements and the limited ability to applying mechanical fasteners. Moreover, structures made of thin-walled cross-section demonstrate a high sensitivity to imperfections and tendency to interactive buckling, which may substantially contribute to the reduction of critical load capacity. Due to the lack of commonly used and recognized modern methods of strengthening of thin-walled steel structures, authors performed the experimental studies of thin-walled sigma profiles strengthened with CFRP tapes. The paper presents the experimental stand and the preliminary results of laboratory test concerning the analysis of the effectiveness of the strengthening steel beams made of thin-walled sigma profiles with CFRP tapes. The study includes six beams made of the cold-rolled sigma profiles with height of 140 mm, wall thickness of 2.5 mm, and a length of 3 m, subjected to the uniformly distributed load. Four beams have been strengthened with carbon fiber tape Sika CarboDur S, while the other two were tested without strengthening to obtain reference results. Based on the obtained results, the evaluation of the accuracy of applied composite materials for strengthening of thin-walled structures was performed.Keywords: CFRP tapes, sigma profiles, steel thin-walled structures, strengthening
Procedia PDF Downloads 3051843 Antibody-Conjugated Nontoxic Arginine-Doped Fe3O4 Nanoparticles for Magnetic Circulating Tumor Cells Separation
Authors: F. Kashanian, M. M. Masoudi, A. Akbari, A. Shamloo, M. R. Zand, S. S. Salehi
Abstract:
Nano-sized materials present new opportunities in biology and medicine and they are used as biomedical tools for investigation, separation of molecules and cells. To achieve more effective cancer therapy, it is essential to select cancer cells exactly. This research suggests that using the antibody-functionalized nontoxic Arginine-doped magnetic nanoparticles (A-MNPs), has been prosperous in detection, capture, and magnetic separation of circulating tumor cells (CTCs) in tumor tissue. In this study, A-MNPs were synthesized via a simple precipitation reaction and directly immobilized Ep-CAM EBA-1 antibodies over superparamagnetic A-MNPs for Mucin BCA-225 in breast cancer cell. The samples were characterized by vibrating sample magnetometer (VSM), FT-IR spectroscopy, Tunneling Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). These antibody-functionalized nontoxic A-MNPs were used to capture breast cancer cell. Through employing a strong permanent magnet, the magnetic separation was achieved within a few seconds. Antibody-Conjugated nontoxic Arginine-doped Fe3O4 nanoparticles have the potential for the future study to capture CTCs which are released from tumor tissue and for drug delivery, and these results demonstrate that the antibody-conjugated A-MNPs can be used in magnetic hyperthermia techniques for cancer treatment.Keywords: tumor tissue, antibody, magnetic nanoparticle, CTCs capturing
Procedia PDF Downloads 3611842 A Multi-Objective Decision Making Model for Biodiversity Conservation and Planning: Exploring the Concept of Interdependency
Authors: M. Mohan, J. P. Roise, G. P. Catts
Abstract:
Despite living in an era where conservation zones are de-facto the central element in any sustainable wildlife management strategy, we still find ourselves grappling with several pareto-optimal situations regarding resource allocation and area distribution for the same. In this paper, a multi-objective decision making (MODM) model is presented to answer the question of whether or not we can establish mutual relationships between these contradicting objectives. For our study, we considered a Red-cockaded woodpecker (Picoides borealis) habitat conservation scenario in the coastal plain of North Carolina, USA. Red-cockaded woodpecker (RCW) is a non-migratory territorial bird that excavates cavities in living pine trees for roosting and nesting. The RCW groups nest in an aggregation of cavity trees called ‘cluster’ and for our model we use the number of clusters to be established as a measure of evaluating the size of conservation zone required. The case study is formulated as a linear programming problem and the objective function optimises the Red-cockaded woodpecker clusters, carbon retention rate, biofuel, public safety and Net Present Value (NPV) of the forest. We studied the variation of individual objectives with respect to the amount of area available and plotted a two dimensional dynamic graph after establishing interrelations between the objectives. We further explore the concept of interdependency by integrating the MODM model with GIS, and derive a raster file representing carbon distribution from the existing forest dataset. Model results demonstrate the applicability of interdependency from both linear and spatial perspectives, and suggest that this approach holds immense potential for enhancing environmental investment decision making in future.Keywords: conservation, interdependency, multi-objective decision making, red-cockaded woodpecker
Procedia PDF Downloads 3371841 Jabodebek Light Rail Transit with Grade of Automation (GoA) No.3 (Driverless) Technology towards Jakarta Net-Zero Emissions (NZE) 2050
Authors: Nadilla Saskia, Octoria Nur, Assegaf Zareeva
Abstract:
Mass transport infrastructures are essential to enhance the connectivity between regions and regional equity in Indonesia. Indonesia’s capital city, Jakarta, ranked the 10th highest congestion rate in the world based on the 2019 traffic index, contributing to air pollution and energy consumption. Other than that, the World Air Quality Report in 2019 depicted Jakarta’s air pollutant concentration at 49.4 mg, the 5th highest in the world. Issues of severe traffic congestion, lack of sufficient urban infrastructure in Jakarta, and greenhouse gas emissions have to be addressed through mass transportation. Indonesia’s government is currently constructing The Greater Jakarta LRT (Light Rapid Transit) as convenient, efficient, and environmentally friendly transportation connecting Jakarta with Bekasi and Cibubur areas and plans to serve the passengers in August 2023. Greater Jakarta LRT is operated with Grade of Automation (GoA) No.3, Driverless Train Operation (DTO). Hence, the automated technology used in rail infrastructure is anticipated to address these issues with greater results. The paper will be validated and establish the extent to which the automation system would increase energy efficiency, help reduce carbon emissions, and benefit the environment. Based on the calculated CO2 emissions and fuel consumption for the existing condition (2015) during the feasibility study of the LRT Project and the predicted condition in 2030, it is obtained that Greater Jakarta LRT with GoA3 operation will reduce the CO2 emissions and fuel consumption by more than 50% in 2030. In the bigger picture, Greater Jakarta LRT supports the government's goal of achieving Jakarta Net-Zero Emissions (NZE) 2050.Keywords: LRT, Grade of Automation (GoA), energy efficiency, carbon emissions, railway infrastructure, DKI Jakarta
Procedia PDF Downloads 831840 Degradation of Petroleum Hydrocarbons Using Pseudomonas Aeruginosa Isolated from Oil Contaminated Soil Incorporated into E. coli DH5α Host
Authors: C. S. Jeba Samuel
Abstract:
Soil, especially from oil field has posed a great hazard for terrestrial and marine ecosystems. The traditional treatment of oil contaminated soil cannot degrade the crude oil completely. So far, biodegradation proves to be an efficient method. During biodegradation, crude oil is used as the carbon source and addition of nitrogenous compounds increases the microbial growth, resulting in the effective breakdown of crude oil components to low molecular weight components. The present study was carried out to evaluate the biodegradation of crude oil by hydrocarbon-degrading microorganism Pseudomonas aeruginosa isolated from natural environment like oil contaminated soil. Pseudomonas aeruginosa, an oil degrading microorganism also called as hydrocarbon utilizing microorganism (or “HUM” bug) can utilize crude oil as sole carbon source. In this study, the biodegradation of crude oil was conducted with modified mineral basal salt medium and nitrogen sources so as to increase the degradation. The efficacy of the plasmid from the isolated strain was incorporated into E.coli DH5 α host to speed up the degradation of oil. The usage of molecular techniques has increased oil degradation which was confirmed by the degradation of aromatic and aliphatic rings of hydrocarbons and was inferred by the lesser number of peaks in Fourier Transform Infrared Spectroscopy (FTIR). The gas chromatogram again confirms better degradation by transformed cells by the lesser number of components obtained in the oil treated with transformed cells. This study demonstrated the technical feasibility of using direct inoculation of transformed cells onto the oil contaminated region thereby leading to the achievement of better oil degradation in a shorter time than the degradation caused by the wild strain.Keywords: biodegradation, aromatic rings, plasmid, hydrocarbon, Fourier Transform Infrared Spectroscopy (FTIR)
Procedia PDF Downloads 3721839 Formulation and in Vitro Characterization of Bioactives Loaded Polymeric Nanoparticle Incorporated into Multiphase Hydrogel System for the Treatment of Infected Burn Wound
Authors: Rajni Kant Panik, Deependra Singh, Manju Singh
Abstract:
Despite significant advances in the treatment of severe burn injury, infection and sepsis persist as frequent causes of morbidity and mortality for burn victims due to extensive compromise of the skin and contiguous tissue that serve as a protective barrier against microbial invasion. In the setting of a burn wound infection, Staphylococcus aureus is the most commonly isolated pathogens from bloodstream infections in burn care hospitals. We aimed to develop a biocompatible system of Poly vinyl alcohol (PVA)-sodium alginate hydrogel carrying multiple drugs- catalase and mupirocin in controlled manner for effective and complete burn wound healing. PLGA nanoparticles of Catalase and mupirocin were prepared by homogenization method and optimized system was incorporated in PVA-sodium alginate slurry. PVA-sodium alginate hydrogels were prepared by freeze thaw method. The prepared dispersion was casted into films to prepare multiphase hydrogel system and characterized by in vitro and in vivo studies. The study clearly showed the beneficial effect of antioxidant enzyme and antibiotic in the treatment of infected burn wound, as evidenced by the reduced incidence of wound infection and the shortening of healing time.Keywords: burn wound, catalase, mupirocin, wound healing
Procedia PDF Downloads 5031838 Comprehensive, Up-to-Date Climate System Change Indicators, Trends and Interactions
Authors: Peter Carter
Abstract:
Comprehensive climate change indicators and trends inform the state of the climate (system) with respect to present and future climate change scenarios and the urgency of mitigation and adaptation. With data records now going back for many decades, indicator trends can complement model projections. They are provided as datasets by several climate monitoring centers, reviewed by state of the climate reports, and documented by the IPCC assessments. Up-to-date indicators are provided here. Rates of change are instructive, as are extremes. The indicators include greenhouse gas (GHG) emissions (natural and synthetic), cumulative CO2 emissions, atmospheric GHG concentrations (including CO2 equivalent), stratospheric ozone, surface ozone, radiative forcing, global average temperature increase, land temperature increase, zonal temperature increases, carbon sinks, soil moisture, sea surface temperature, ocean heat content, ocean acidification, ocean oxygen, glacier mass, Arctic temperature, Arctic sea ice (extent and volume), northern hemisphere snow cover, permafrost indices, Arctic GHG emissions, ice sheet mass, sea level rise, and stratospheric and surface ozone. Global warming is not the most reliable single metric for the climate state. Radiative forcing, atmospheric CO2 equivalent, and ocean heat content are more reliable. Global warming does not provide future commitment, whereas atmospheric CO2 equivalent does. Cumulative carbon is used for estimating carbon budgets. The forcing of aerosols is briefly addressed. Indicator interactions are included. In particular, indicators can provide insight into several crucial global warming amplifying feedback loops, which are explained. All indicators are increasing (adversely), most as fast as ever and some faster. One particularly pressing indicator is rapidly increasing global atmospheric methane. In this respect, methane emissions and sources are covered in more detail. In their application, indicators used in assessing safe planetary boundaries are included. Indicators are considered with respect to recent published papers on possible catastrophic climate change and climate system tipping thresholds. They are climate-change-policy relevant. In particular, relevant policies include the 2015 Paris Agreement on “holding the increase in the global average temperature to well below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C above pre-industrial levels” and the 1992 UN Framework Convention on Climate change, which has “stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system.”Keywords: climate change, climate change indicators, climate change trends, climate system change interactions
Procedia PDF Downloads 1051837 The Comparation of Limits of Detection of Lateral Flow Immunochromatographic Strips of Different Types of Mycotoxins
Authors: Xinyi Zhao, Furong Tian
Abstract:
Mycotoxins are secondary metabolic products of fungi. These are poisonous, carcinogens and mutagens in nature and pose a serious health threat to both humans and animals, causing severe illnesses and even deaths. The rapid, simple and cheap detection methods of mycotoxins are of immense importance and in great demand in the food and beverage industry as well as in agriculture and environmental monitoring. Lateral flow immunochromatographic strips (ICSTs) have been widely used in food safety, environment monitoring. Forty-six papers were identified and reviewed on Google Scholar and Scopus for their limit of detection and nanomaterial on Lateral flow immunochromatographic strips on different types of mycotoxins. The papers were dated 2001-2021. Twenty five papers were compared to identify the lowest limit of detection of among different mycotoxins (Aflatoxin B1: 10, Zearalenone:5, Fumonisin B1: 5, Trichothecene-A: 5). Most of these highly sensitive strips are competitive. Sandwich structure are usually used in large scale detection. In conclusion, the mycotoxin receives that most researches is aflatoxin B1 and its limit of detection is the lowest. Gold-nanopaticle based immunochromatographic test strips has the lowest limit of detection. Five papers involve smartphone detection and they all detect aflatoxin B1 with gold nanoparticles. In these papers, quantitative concentration results can be obtained when the user uploads the photograph of test lines using the smartphone application.Keywords: aflatoxin B1, limit of detection, gold nanoparticle, lateral flow immunochromatographic strips, mycotoxins
Procedia PDF Downloads 195