Search results for: active compounds
3973 Evaluation of Medicinal Plants, Catunaregam spinosa, Houttuynia cordata, and Rhapis excelsa from Malaysia for Antibacterial, Antifungal and Antiviral Properties
Authors: Yik Sin Chan, Bee Ling Chuah, Wei Quan Chan, Ri Jin Cheng, Yan Hang Oon, Kong Soo Khoo, Nam Weng Sit
Abstract:
Traditionally, medicinal plants have been used to treat different kinds of ailments including infectious diseases. They serve as a good source of lead compounds for the development of new and safer anti-infective agents. This study aimed to investigate the antimicrobial potential of the leaves of three medicinal plants, namely Catunaregam spinosa (Rubiaceae; Mountain pomegranate), Houttuynia cordata (Saururaceae; "fishy-smell herb") and Rhapis excelsa (Arecaceae; “broadleaf lady palm”). The leaves extracts were obtained by sequential extraction using hexane, chloroform, ethyl acetate, ethanol, methanol and water. The antibacterial and antifungal activities were assessed using a colorimetric broth microdilution method against a panel of human pathogenic bacteria (Gram-positive: Bacillus cereus and Staphylococcus aureus; Gram-negative: Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa) and fungi (yeasts: Candida albicans, Candida parapsilosis and Cryptococcus neoformans; Moulds: Aspergillus fumigatus and Trichophyton mentagrophytes) respectively; while antiviral activity was evaluated against the Chikungunya virus on monkey kidney epithelial (Vero) cells by neutral red uptake assay. All the plant extracts showed bacteriostatic activity, however, only 72% of the extracts (13/18) were found to have bactericidal activity. The lowest minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were given by the hexane extract of C. spinosa against S. aureus with the values of 0.16 and 0.31 mg/mL respectively. All the extracts also possessed fungistatic activity. Only the hexane, chloroform and ethyl acetate extracts of H. cordata exerted inhibitory activity against A. fumigatus, giving the lowest fungal susceptibility index of 16.7%. In contrast, only 61% of the extracts (11/18) showed fungicidal activity. The ethanol extract of R. excelsa exhibited the strongest fungicidal activity against C. albicans, C. parapsilosis and T. mentagrophytes with minimum fungicidal concentration (MFC) values of 0.04–0.08 mg/mL, in addition to its methanol extract against T. mentagrophytes (MFC=0.02 mg/mL). For anti-Chikungunya virus activity, only chloroform and ethyl acetate extracts of R. excelsa showed significant antiviral activity with 50% effective concentrations (EC50) of 29.9 and 78.1 g/mL respectively. Extracts of R. excelsa warrant further investigations into their active principles responsible for antifungal and antiviral properties.Keywords: bactericidal, Chikungunya virus, extraction, fungicidal
Procedia PDF Downloads 4053972 O-Functionalized CNT Mediated CO Hydro-Deoxygenation and Chain Growth
Authors: K. Mondal, S. Talapatra, M. Terrones, S. Pokhrel, C. Frizzel, B. Sumpter, V. Meunier, A. L. Elias
Abstract:
Worldwide energy independence is reliant on the ability to leverage locally available resources for fuel production. Recently, syngas produced through gasification of carbonaceous materials provided a gateway to a host of processes for the production of various chemicals including transportation fuels. The basis of the production of gasoline and diesel-like fuels is the Fischer Tropsch Synthesis (FTS) process: A catalyzed chemical reaction that converts a mixture of carbon monoxide (CO) and hydrogen (H2) into long chain hydrocarbons. Until now, it has been argued that only transition metal catalysts (usually Co or Fe) are active toward the CO hydrogenation and subsequent chain growth in the presence of hydrogen. In this paper, we demonstrate that carbon nanotube (CNT) surfaces are also capable of hydro-deoxygenating CO and producing long chain hydrocarbons similar to that obtained through the FTS but with orders of magnitude higher conversion efficiencies than the present state-of-the-art FTS catalysts. We have used advanced experimental tools such as XPS and microscopy techniques to characterize CNTs and identify C-O functional groups as the active sites for the enhanced catalytic activity. Furthermore, we have conducted quantum Density Functional Theory (DFT) calculations to confirm that C-O groups (inherent on CNT surfaces) could indeed be catalytically active towards reduction of CO with H2, and capable of sustaining chain growth. The DFT calculations have shown that the kinetically and thermodynamically feasible route for CO insertion and hydro-deoxygenation are different from that on transition metal catalysts. Experiments on a continuous flow tubular reactor with various nearly metal-free CNTs have been carried out and the products have been analyzed. CNTs functionalized by various methods were evaluated under different conditions. Reactor tests revealed that the hydrogen pre-treatment reduced the activity of the catalysts to negligible levels. Without the pretreatment, the activity for CO conversion as found to be 7 µmol CO/g CNT/s. The O-functionalized samples showed very activities greater than 85 µmol CO/g CNT/s with nearly 100% conversion. Analyses show that CO hydro-deoxygenation occurred at the C-O/O-H functional groups. It was found that while the products were similar to FT products, differences in selectivities were observed which, in turn, was a result of a different catalytic mechanism. These findings now open a new paradigm for CNT-based hydrogenation catalysts and constitute a defining point for obtaining clean, earth abundant, alternative fuels through the use of efficient and renewable catalyst.Keywords: CNT, CO Hydrodeoxygenation, DFT, liquid fuels, XPS, XTL
Procedia PDF Downloads 3483971 Fluorescence Gold Nanoparticles: Sensing Properties and Cytotoxicity Studies in MCF-7 Human Breast Cancer Cells
Authors: Cristina Núñez, Rufina Bastida, Elena Labisbal, Alejandro Macías, María T. Pereira, José M. Vila
Abstract:
A highly selective quinoline-based fluorescent sensor L was designed in order to functionalize gold nanoparticles (GNPs@L). The cytotoxicity of compound L and GNPs@L on the MCF-7 breast cancer cells was explored and it was observed that L and GNPs@L compounds induced apoptosis in MCF-7 cancer cells. The cellular uptake of the hybrid system GNPs@L was studied using confocal laser scanning microscopy (CLSM).Keywords: cytotoxicity, fluorescent probes, nanoparticles, quinoline
Procedia PDF Downloads 3863970 Unsteady Flow Simulations for Microchannel Design and Its Fabrication for Nanoparticle Synthesis
Authors: Mrinalini Amritkar, Disha Patil, Swapna Kulkarni, Sukratu Barve, Suresh Gosavi
Abstract:
Micro-mixers play an important role in the lab-on-a-chip applications and micro total analysis systems to acquire the correct level of mixing for any given process. The mixing process can be classified as active or passive according to the use of external energy. Literature of microfluidics reports that most of the work is done on the models of steady laminar flow; however, the study of unsteady laminar flow is an active area of research at present. There are wide applications of this, out of which, we consider nanoparticle synthesis in micro-mixers. In this work, we have developed a model for unsteady flow to study the mixing performance of a passive micro mixer for reactants used for such synthesis. The model is developed in Finite Volume Method (FVM)-based software, OpenFOAM. The model is tested by carrying out the simulations at Re of 0.5. Mixing performance of the micro-mixer is investigated using simulated concentration values of mixed species across the width of the micro-mixer and calculating the variance across a line profile. Experimental validation is done by passing dyes through a Y shape micro-mixer fabricated using polydimethylsiloxane (PDMS) polymer and comparing variances with the simulated ones. Gold nanoparticles are later synthesized through the micro-mixer and collected at two different times leading to significantly different size distributions. These times match with the time scales over which reactant concentrations vary as obtained from simulations. Our simulations could thus be used to create design aids for passive micro-mixers used in nanoparticle synthesis.Keywords: Lab-on-chip, LOC, micro-mixer, OpenFOAM, PDMS
Procedia PDF Downloads 1633969 Volatile Organic Compounds (VOCS) Destruction by Catalytic Oxidation for Environmental Applications
Authors: Mohammed Nasir Kajama, Ngozi Claribelle Nwogu, Edward Gobina
Abstract:
Pt/γ-Al2O3 membrane catalysts were prepared via an evaporative-crystallization deposition method. The obtained Pt/γ-Al2O3 catalyst activity was tested after characterization (SEM-EDAX observation, BET measurement, permeability assessment) in the catalytic oxidation of selected volatile organic compound (VOC) i.e. propane, fed in mixture of oxygen. The VOC conversion (nearly 90%) obtained by varying the operating temperature showed that flow-through membrane reactor might do better in the abatement of VOCs.Keywords: VOC combustion, flow-through membrane reactor, platinum supported alumina catalysts
Procedia PDF Downloads 5453968 Bring Your Own Device Security Model in a Financial Institution of South Africa
Authors: Michael Nthabiseng Moeti, Makhulu Relebogile Langa, Joey Jansen van Vuuren
Abstract:
This paper examines the utilization of personal electronic devices like laptops, tablets, and smartphones for professional duties within a financial organization. This phenomenon is known as bring your own device (BYOD). BYOD accords employees the freedom to use their personal devices to access corporate resources from anywhere in the world with Internet access. BYOD arrangements introduce significant security risks for both organizations and users. These setups change the threat landscape for enterprises and demand unique security strategies, as conventional tools tailored for safeguarding managed devices fall short in adequately protecting enterprise assets without active user cooperation. This paper applies protection motivation theory (PMT) to highlight behavioral risks from BYOD users that may impact the security of financial institutions. Thematic analysis was applied to gain a comprehensive understanding of how users perceive this phenomenon. These findings demonstrates that the existence of a security policy does not ensure that all employees will take measures to protect their personal devices. Active promotion of BYOD security policies is crucial for financial institution employees and management. This paper developed a BYOD security model which is useful for understanding compliant behaviors. Given that BYOD security is becoming a major concern across financial sector, it is important. The paper recommends that future research could expand the number of universities from which data is collected.Keywords: BYOD, information security, protection motivation theory, security risks, thematic analysis
Procedia PDF Downloads 333967 Ordered Mesoporous Carbons of Different Morphology for Loading and Controlled Release of Active Pharmaceutical Ingredients
Authors: Aleksander Ejsmont, Aleksandra Galarda, Joanna Goscianska
Abstract:
Smart porous carriers with defined structure and physicochemical properties are required for releasing the therapeutic drug with precise control of delivery time and location in the body. Due to their non-toxicity, ordered structure, chemical, and thermal stability, mesoporous carbons can be considered as modern carriers for active pharmaceutical ingredients (APIs) whose effectiveness needs frequent dosing algorithms. Such an API-carrier system, if programmed precisely, may stabilize the pharmaceutical and increase its dissolution leading to enhanced bioavailability. The substance conjugated with the material, through its prior adsorption, can later be successfully applied internally to the organism, as well as externally if the API release is feasible under these conditions. In the present study, ordered mesoporous carbons of different morphologies and structures, prepared by hard template method, were applied as carriers in the adsorption and controlled release of active pharmaceutical ingredients. In the first stage, the carbon materials were synthesized and functionalized with carboxylic groups by chemical oxidation using ammonium persulfate solution and then with amine groups. Materials obtained were thoroughly characterized with respect to morphology (scanning electron microscopy), structure (X-ray diffraction, transmission electron microscopy), characteristic functional groups (FT-IR spectroscopy), acid-base nature of surface groups (Boehm titration), parameters of the porous structure (low-temperature nitrogen adsorption) and thermal stability (TG analysis). This was followed by a series of tests of adsorption and release of paracetamol, benzocaine, and losartan potassium. Drug release experiments were performed in the simulated gastric fluid of pH 1.2 and phosphate buffer of pH 7.2 or 6.8 at 37.0 °C. The XRD patterns in the small-angle range and TEM images revealed that functionalization of mesoporous carbons with carboxylic or amine groups leads to the decreased ordering of their structure. Moreover, the modification caused a considerable reduction of the carbon-specific surface area and pore volume, but it simultaneously resulted in changing their acid-base properties. Mesoporous carbon materials exhibit different morphologies, which affect the host-guest interactions during the adsorption process of active pharmaceutical ingredients. All mesoporous carbons show high adsorption capacity towards drugs. The sorption capacity of materials is mainly affected by BET surface area and the structure/size matching between adsorbent and adsorbate. Selected APIs are linked to the surface of carbon materials mainly by hydrogen bonds, van der Waals forces, and electrostatic interactions. The release behavior of API is highly dependent on the physicochemical properties of mesoporous carbons. The release rate of APIs could be regulated by the introduction of functional groups and by changing the pH of the receptor medium. Acknowledgments—This research was supported by the National Science Centre, Poland (project SONATA-12 no: 2016/23/D/NZ7/01347).Keywords: ordered mesoporous carbons, sorption capacity, drug delivery, carbon nanocarriers
Procedia PDF Downloads 1773966 Exploitation of the Solvent Effect and the Mechanism of the Cycloaddition Reaction Between 2-Chlorobenzimidazole and Benzonitrile N-Oxide
Authors: M. Abdoul-Hakim, A. Zeroual, H. Garmes
Abstract:
2-Chlorobenzimidazoles are amphoteric compounds and versatile intermediates for the construction of polycyclic heterocycles. In this theoretical study performed by DFT at the B3LYP/6-311+G(d,p) level, we showed that the most likely route to obtain benzimidazo[1,2-d]oxadiazole from the reaction of 2-Chlorobenzimidazole with benzonitrile N-oxide involves the presence of anionic species, a concerted mechanism is not possible. The inclusion of the effect of the polar protic solvent (MeOH) favors the course of the reaction. The key interactions causing bond formation and breakage were identified by ELF topological analysis.Keywords: benzimidazo[1, 2-d]oxadiazole, benzonitrile N-oxide, DFT, ELF, polycyclic heterocycles
Procedia PDF Downloads 1023965 Eye Tracking Syntax in Language Education
Authors: Marcus Maia
Abstract:
The present study reports and discusses the use of eye tracking qualitative data in reading workshops in Brazilian middle and high schools and in Generative Syntax and Sentence Processing courses at the undergraduate and graduate levels at the Federal University of Rio de Janeiro, respectively. Both endeavors take the sentential level as the proper object to be metacognitively explored in language education (cf. Chomsky, Gallego & Ott, 2019) to develop innate science forming capacity and knowledge of language. In both projects, non-discrepant qualitative eye tracking data collected and quantitatively analyzed in experimental syntax and psycholinguistic studies carried out in Lapex (Experimental Psycholinguistics Laboratory of the Federal University of Rio de Janeiro) were displayed to students as a point of departure, triggering discussions. Classes would generally start with the display of videos showing eye tracking data, such as gaze plots and heatmaps from several studies in Psycholinguistics and Experimental Syntax that we had already developed in our laboratory. The videos usually triggered discussions with students about linguistic and psycholinguistic issues, such as the reading of sentences for gist, garden-path sentences, syntactic and semantic anomalies, the filled-gap effect, island effects, direct and indirect cause, and recursive constructions, among other topics. Active, problem-solving based methodologies were employed with the objective of stimulating student participation. The communication also discusses the importance of developing full literacy, epistemic vigilance and intellectual self-defense in an infodemic world in the lines of Maia (2022).Keywords: reading, educational psycholinguistics, eye-tracking, active methodology
Procedia PDF Downloads 663964 A Preliminary in vitro Investigation of the Acetylcholinesterase and α-Amylase Inhibition Potential of Pomegranate Peel Extracts
Authors: Zoi Konsoula
Abstract:
The increasing prevalence of Alzheimer’s disease (AD) and diabetes mellitus (DM) constitutes them major global health problems. Recently, the inhibition of key enzyme activity is considered a potential treatment of both diseases. Specifically, inhibition of acetylcholinesterase (AChE), the key enzyme involved in the breakdown of the neurotransmitter acetylcholine, is a promising approach for the treatment of AD, while inhibition of α-amylase retards the hydrolysis of carbohydrates and, thus, reduces hyperglycemia. Unfortunately, commercially available AChE and α-amylase inhibitors are reported to possess side effects. Consequently, there is a need to develop safe and effective treatments for both diseases. In the present study, pomegranate peel (PP) was extracted using various solvents of increasing polarity, while two extraction methods were employed, the conventional maceration and the ultrasound assisted extraction (UAE). The concentration of bioactive phytoconstituents, such as total phenolics (TPC) and total flavonoids (TFC) in the prepared extracts was evaluated by the Folin-Ciocalteu and the aluminum-flavonoid complex method, respectively. Furthermore, the anti-neurodegenerative and anti-hyperglycemic activity of all extracts was determined using AChE and α-amylase inhibitory activity assays, respectively. The inhibitory activity of the extracts against AChE and α-amylase was characterized by estimating their IC₅₀ value using a dose-response curve, while galanthamine and acarbose were used as positive controls, respectively. Finally, the kinetics of AChE and α-amylase in the presence of the most inhibitory potent extracts was determined by the Lineweaver-Burk plot. The methanolic extract prepared using the UAE contained the highest amount of phytoconstituents, followed by the respective ethanolic extract. All extracts inhibited acetylcholinesterase in a dose-dependent manner, while the increased anticholinesterase activity of the methanolic (IC₅₀ = 32 μg/mL) and ethanolic (IC₅₀ = 42 μg/mL) extract was positively correlated with their TPC content. Furthermore, the activity of the aforementioned extracts was comparable to galanthamine. Similar results were obtained in the case of α-amylase, however, all extracts showed lower inhibitory effect on the carbohydrate hydrolyzing enzyme than on AChE, since the IC₅₀ value ranged from 84 to 100 μg/mL. Also, the α-amylase inhibitory effect of the extracts was lower than acarbose. Finally, the methanolic and ethanolic extracts prepared by UAE inhibited both enzymes in a mixed (competitive/noncompetitive) manner since the Kₘ value of both enzymes increased in the presence of extracts, while the Vmax value decreased. The results of the present study indicate that PP may be a useful source of active compounds for the management of AD and DM. Moreover, taking into consideration that PP is an agro-industrial waste product, its valorization could not only result in economic efficiency but also reduce the environmental pollution.Keywords: acetylcholinesterase, Alzheimer’s disease, α-amylase, diabetes mellitus, pomegranate
Procedia PDF Downloads 1223963 A Green Optically Active Hydrogen and Oxygen Generation System Employing Terrestrial and Extra-Terrestrial Ultraviolet Solar Irradiance
Authors: H. Shahid
Abstract:
Due to Ozone layer depletion on earth, the incoming ultraviolet (UV) radiation is recorded at its high index levels such as 25 in South Peru (13.5° S, 3360 m a.s.l.) Also, the planning of human inhabitation on Mars is under discussion where UV radiations are quite high. The exposure to UV is health hazardous and is avoided by UV filters. On the other hand, artificial UV sources are in use for water thermolysis to generate Hydrogen and Oxygen, which are later used as fuels. This paper presents the utility of employing UVA (315-400nm) and UVB (280-315nm) electromagnetic radiation from the solar spectrum to design and implement an optically active, Hydrogen and Oxygen generation system via thermolysis of desalinated seawater. The proposed system finds its utility on earth and can be deployed in the future on Mars (UVB). In this system, by using Fresnel lens arrays as an optical filter and via active tracking, the ultraviolet light from the sun is concentrated and then allowed to fall on two sub-systems of the proposed system. The first sub-system generates electrical energy by using UV based tandem photovoltaic cells such as GaAs/GaInP/GaInAs/GaInAsP and the second elevates temperature of water to lower the electric potential required to electrolyze the water. An empirical analysis is performed at 30 atm and an electrical potential is observed to be the main controlling factor for the rate of production of Hydrogen and Oxygen and hence the operating point (Q-Point) of the proposed system. The hydrogen production rate in the case of the commercial system in static mode (650ᵒC, 0.6V) is taken as a reference. The silicon oxide electrolyzer cell (SOEC) is used in the proposed (UV) system for the Hydrogen and Oxygen production. To achieve the same amount of Hydrogen as in the case of the reference system, with minimum chamber operating temperature of 850ᵒC in static mode, the corresponding required electrical potential is calculated as 0.3V. However, practically, the Hydrogen production rate is observed to be low in comparison to the reference system at 850ᵒC at 0.3V. However, it has been shown empirically that the Hydrogen production can be enhanced and by raising the electrical potential to 0.45V. It increases the production rate to the same level as is of the reference system. Therefore, 850ᵒC and 0.45V are assigned as the Q-point of the proposed system which is actively stabilized via proportional integral derivative controllers which adjust the axial position of the lens arrays for both subsystems. The functionality of the controllers is based on maintaining the chamber fixed at 850ᵒC (minimum operating temperature) and 0.45V; Q-Point to realize the same Hydrogen production rate as-is for the reference system.Keywords: hydrogen, oxygen, thermolysis, ultraviolet
Procedia PDF Downloads 1333962 Polyvinyl Alcohol Incorporated with Hibiscus Extract Microcapsules as Combined Active and Intelligent Composite Film for Meat Preservation: Antimicrobial, Antioxidant, and Physicochemical Investigations
Authors: Ahmed F. Ghanem, Marwa I. Wahba, Asmaa N. El-Dein, Mohamed A. EL-Raey, Ghada E. A. Awad
Abstract:
Numerous attempts are being performed in order to formulate suitable packaging materials for the meat products. However, to the best of our knowledge, the incorporation of the free hibiscus extract or its microcapsules in the pure polyvinyl alcohol (PVA) matrix as packaging materials for the meats is seldom reported. Therefore, this study aims at the protection of the aqueous crude extract of the hibiscus flowers utilizing the spry drying encapsulation technique. Results of the Fourier transform infrared (FTIR), the scanning electron microscope (SEM), and the particle size analyzer confirmed the successful formation of the assembled capsules via strong interactions, the spherical rough microparticles, and the particle size of ~ 235 nm, respectively. Also, the obtained microcapsules enjoy higher thermal stability than the free extract. Then, the obtained spray-dried particles were incorporated into the casting solution of the pure PVA film with a concentration of 10 wt. %. The segregated free-standing composite films were investigated, compared to the neat matrix, with several characterization techniques such as FTIR, SEM, thermal gravimetric analysis (TGA), mechanical tester, contact angle, water vapor permeability, and oxygen transmission. The results demonstrated variations in the physicochemical properties of the PVA film after the inclusion of the free and the extract microcapsules. Moreover, biological studies emphasized the biocidal potential of the hybrid films against the microorganisms contaminating the meat. Specifically, the microcapsules imparted not only antimicrobial but also antioxidant activities to the PVA matrix. Application of the prepared films on the real meat samples displayed a low bacterial growth with a slight increase in the pH over the storage time which continued up to 10 days at 4 oC, as further evidence to the meat safety. Moreover, the colors of the films did not significantly changed except after 21 days indicating the spoilage of the meat samples. No doubt, the dual-functional of the prepared composite films pave the way towards combined active and smart food packaging applications. This would play a vital role in the food hygiene, including also the quality control and the assurance.Keywords: PVA, hibiscus, extraction, encapsulation, active packaging, smart and intelligent packaging, meat spoilage
Procedia PDF Downloads 903961 Maximizing the Aerodynamic Performance of Wind and Water Turbines by Utilizing Advanced Flow Control Techniques
Authors: Edwin Javier Cortes, Surupa Shaw
Abstract:
In recent years, there has been a growing emphasis on enhancing the efficiency and performance of wind and water turbines to meet the increasing demand for sustainable energy sources. One promising approach is the utilization of advanced flow control techniques to optimize aerodynamic performance. This paper explores the application of advanced flow control techniques in both wind and water turbines, aiming to maximize their efficiency and output. By manipulating the flow of air or water around the turbine blades, these techniques offer the potential to improve energy capture, reduce drag, and minimize turbulence-induced losses. The paper will review various flow control strategies, including passive and active techniques such as vortex generators, boundary layer suction, and plasma actuators. It will examine their effectiveness in optimizing turbine performance under different operating conditions and environmental factors. Furthermore, the paper will discuss the challenges and opportunities associated with implementing these techniques in practical turbine designs. It will consider factors such as cost-effectiveness, reliability, and scalability, as well as the potential impact on overall turbine efficiency and lifecycle. Through a comprehensive analysis of existing research and case studies, this paper aims to provide insights into the potential benefits and limitations of advanced flow control techniques for wind and water turbines. It will also highlight areas for future research and development, with the ultimate goal of advancing the state-of-the-art in turbine technology and accelerating the transition towards a more sustainable energy future.Keywords: flow control, efficiency, passive control, active control
Procedia PDF Downloads 723960 A Robust and Efficient Segmentation Method Applied for Cardiac Left Ventricle with Abnormal Shapes
Authors: Peifei Zhu, Zisheng Li, Yasuki Kakishita, Mayumi Suzuki, Tomoaki Chono
Abstract:
Segmentation of left ventricle (LV) from cardiac ultrasound images provides a quantitative functional analysis of the heart to diagnose disease. Active Shape Model (ASM) is a widely used approach for LV segmentation but suffers from the drawback that initialization of the shape model is not sufficiently close to the target, especially when dealing with abnormal shapes in disease. In this work, a two-step framework is proposed to improve the accuracy and speed of the model-based segmentation. Firstly, a robust and efficient detector based on Hough forest is proposed to localize cardiac feature points, and such points are used to predict the initial fitting of the LV shape model. Secondly, to achieve more accurate and detailed segmentation, ASM is applied to further fit the LV shape model to the cardiac ultrasound image. The performance of the proposed method is evaluated on a dataset of 800 cardiac ultrasound images that are mostly of abnormal shapes. The proposed method is compared to several combinations of ASM and existing initialization methods. The experiment results demonstrate that the accuracy of feature point detection for initialization was improved by 40% compared to the existing methods. Moreover, the proposed method significantly reduces the number of necessary ASM fitting loops, thus speeding up the whole segmentation process. Therefore, the proposed method is able to achieve more accurate and efficient segmentation results and is applicable to unusual shapes of heart with cardiac diseases, such as left atrial enlargement.Keywords: hough forest, active shape model, segmentation, cardiac left ventricle
Procedia PDF Downloads 3413959 General Evaluation of a Three-Year Holistic Physical Activity Interventions Program in Qatar Campuses: Step into Health (SIH) in Campuses 2013- 2016
Authors: Daniela Salih Khidir, Mohamed G. Al Kuwari, Mercia V. Walt, Izzeldin J. Ibrahim
Abstract:
Background: University-based physical activity interventions aim to establish durable social patterns during the transition to adulthood. This study is a comprehensive evaluation of a 3-year intervention-based program to increase the culture of physical activity (PA) routine in Qatar campuses community, using a holistic approach. Methodology: General assessment methods: formative evaluation-SIH Campuses logic model design, stakeholders’ identification; process evaluation-members’ step counts analyze and qualitative Appreciative Inquiry session (4-D model); daily steps categorized as: ≤5,000, inactive; 5,000-7,499 low active; ≥7,500, physically active; outcome evaluation - records 3 years interventions. Holistic PA interventions methods: walking interventions - pedometers distributions and walking competitions for students and staff; educational interventions - in campuses implementation of bilingual educational materials, lectures, video related to PA in prevention of non-communicable diseases (NCD); articles published online; monthly emails and sms notifications for pedometer use; mass media campaign - radio advertising, yearly pre/post press releases; community stakeholders interventions-biyearly planning/reporting/achievements rewarding/ qualitative meetings; continuous follow-up communication, biweekly steps reports. Findings: Results formative evaluation - SIH in Campuses logic model identified the need of PA awareness and education within universities, resources, activities, health benefits, program continuity. Results process evaluation: walking interventions: Phase 1: 5 universities recruited, 2352 members, 3 months competition; Phase 2: 6 new universities recruited, 1328 members in addition, 4 months competition; Phase 3: 4 new universities recruited in addition, 1210 members, 6 months competition. Results phase 1 and 2: 1,299 members eligible for analyzes: 800 females (62%), 499 males (38%); 86% non-Qataris, 14% Qatari nationals, daily step count 5,681 steps, age groups 18–24 (n=841; 68%) students, 25–64; (n=458; 35.3%) staff; 38% - low active, 37% physically active and 25% inactive. The AI main themes engaging stakeholders: awareness/education - 5 points (100%); competition, multi levels of involvement in SIH, community-based program/motivation - 4 points each (80%). The AI points represent themes’ repetition within stakeholders’ discussions. Results education interventions: 2 videos implementation, 35 000 educational materials, 3 online articles, 11 walking benefits lectures, 40 emails and sms notifications. Results community stakeholders’ interventions: 6 stakeholders meetings, 3 rewarding gatherings, 1 focus meeting, 40 individual reports, 18 overall reports. Results mass media campaign: 1 radio campaign, 7 press releases, 52 campuses newsletters. Results outcome evaluation: overall 2013-2016, the study used: 1 logic model, 3 PA holistic interventions, partnerships 15 universities, registered 4890 students and staff (aged 18-64 years), engaged 30 campuses stakeholders and 14 internal stakeholders; Total registered population: 61.5% female (2999), 38.5% male (1891), 20.2% (988) Qatari nationals, 79.8% (3902) non-Qataris, 55.5% (2710) students aged 18 – 25 years, 44.5% (2180) staff aged 26 - 64 years. Overall campaign 1,558 members eligible for analyzes: daily step count 7,923; 37% - low active, 43% physically active and 20% inactive. Conclusion: The study outcomes confirm program effectiveness and engagement of young campuses community, specifically female, in PA. The authors recommend implementations of 'holistic PA intervention program approach in Qatar' aiming to impact the community at national level for PA guidelines achievement in support of NCD prevention.Keywords: campuses, evaluation, Qatar, step-count
Procedia PDF Downloads 3123958 Li2S Nanoparticles Impact on the First Charge of Li-ion/Sulfur Batteries: An Operando XAS/XES Coupled With XRD Analysis
Authors: Alice Robba, Renaud Bouchet, Celine Barchasz, Jean-Francois Colin, Erik Elkaim, Kristina Kvashnina, Gavin Vaughan, Matjaz Kavcic, Fannie Alloin
Abstract:
With their high theoretical energy density (~2600 Wh.kg-1), lithium/sulfur (Li/S) batteries are highly promising, but these systems are still poorly understood due to the complex mechanisms/equilibria involved. Replacing S8 by Li2S as the active material allows the use of safer negative electrodes, like silicon, instead of lithium metal. S8 and Li2S have different conductivity and solubility properties, resulting in a profoundly changed activation process during the first cycle. Particularly, during the first charge a high polarization and a lack of reproducibility between tests are observed. Differences observed between raw Li2S material (micron-sized) and that electrochemically produced in a battery (nano-sized) may indicate that the electrochemical process depends on the particle size. Then the major focus of the presented work is to deepen the understanding of the Li2S material charge mechanism, and more precisely to characterize the effect of the initial Li2S particle size both on the mechanism and the electrode preparation process. To do so, Li2S nanoparticles were synthetized according to two ways: a liquid path synthesis and a dissolution in ethanol, allowing Li2S nanoparticles/carbon composites to be made. Preliminary chemical and electrochemical tests show that starting with Li2S nanoparticles could effectively suppress the high initial polarization but also influence the electrode slurry preparation. Indeed, it has been shown that classical formulation process - a slurry composed of Polyvinylidone Fluoride polymer dissolved in N-methyle-2-pyrrolidone - cannot be used with Li2S nanoparticles. This reveals a complete different Li2S material behavior regarding polymers and organic solvents when going at the nanometric scale. Then the coupling between two operando characterizations such as X-Ray Diffraction (XRD) and X-Ray Absorption and Emission Spectroscopy (XAS/XES) have been carried out in order to interpret the poorly understood first charge. This study discloses that initial particle size of the active material has a great impact on the working mechanism and particularly on the different equilibria involved during the first charge of the Li2S based Li-ion batteries. These results explain the electrochemical differences and particularly the polarization differences observed during the first charge between micrometric and nanometric Li2S-based electrodes. Finally, this work could lead to a better active material design and so to more efficient Li2S-based batteries.Keywords: Li-ion/Sulfur batteries, Li2S nanoparticles effect, Operando characterizations, working mechanism
Procedia PDF Downloads 2673957 Enhancing Air Quality: Investigating Filter Lifespan and Byproducts in Air Purification Solutions
Authors: Freja Rydahl Rasmussen, Naja Villadsen, Stig Koust
Abstract:
Air purifiers have become widely implemented in a wide range of settings, including households, schools, institutions, and hospitals, as they tackle the pressing issue of indoor air pollution. With their ability to enhance indoor air quality and create healthier environments, air purifiers are particularly vital when ventilation options are limited. These devices incorporate a diverse array of technologies, including HEPA filters, active carbon filters, UV-C light, photocatalytic oxidation, and ionizers, each designed to combat specific pollutants and improve air quality within enclosed spaces. However, the safety of air purifiers has not been investigated thoroughly, and many questions still arise when applying them. Certain air purification technologies, such as UV-C light or ionization, can unintentionally generate undesirable byproducts that can negatively affect indoor air quality and health. It is well-established that these technologies can inadvertently generate nanoparticles or convert common gaseous compounds into harmful ones, thus exacerbating air pollution. However, the formation of byproducts can vary across products, necessitating further investigation. There is a particular concern about the formation of the carcinogenic substance formaldehyde from common gases like acetone. Many air purifiers use mechanical filtration to remove particles, dust, and pollen from the air. Filters need to be replaced periodically for optimal efficiency, resulting in an additional cost for end-users. Currently, there are no guidelines for filter lifespan, and replacement recommendations solely rely on manufacturers. A market screening revealed that manufacturers' recommended lifespans vary greatly (from 1 month to 10 years), and there is a need for general recommendations to guide consumers. Activated carbon filters are used to adsorb various types of chemicals that can pose health risks or cause unwanted odors. These filters have a certain capacity before becoming saturated. If not replaced in a timely manner, the adsorbed substances are likely to be released from the filter through off-gassing or losing adsorption efficiency. The goal of this study is to investigate the lifespan of filters as well as investigate the potentially harmful effects of air purifiers. Understanding the lifespan of filters used in air purifiers and the potential formation of harmful byproducts is essential for ensuring their optimal performance, guiding consumers in their purchasing decisions, and establishing industry standards for safer and more effective air purification solutions. At this time, a selection of air purifiers has been chosen, and test methods have been established. In the following 3 months, the tests will be conducted, and the results will be ready for presentation later.Keywords: air purifiers, activated carbon filters, byproducts, clean air, indoor air quality
Procedia PDF Downloads 733956 Camera Trapping Coupled With Field Sign Survey Reveal the Mammalian Diversity and Abundance at Murree-Kotli Sattian-Kahuta National Park, Pakistan
Authors: Shehnila Kanwal
Abstract:
Murree-Kotli Sattian-Kahta National Park (MKKNP) was declared in 2009. However, not much is known about the diversity and relative abundance of the mammalian fauna of this park. In the current study, we used field sign survey and infrared camera trapping techniques to get an insight into the diversity of mammalian species and their relative abundance. We conducted field surveys in different areas of the park at various elevations from April 2023 up to March 2024 to record the field signs (scats, pug marks etc.) of the mammals’ species; in addition, we deployed a total of 22 infrared trail camera traps in different areas of the park, for 116 nights. We obtained a total of 5201 photographs using camera trapping. Results of camera trapping coupled with field sign surveys confirmed the presence of a total of twenty-one different mammalian species (large, meso and small mammals) recorded in the study area. The common leopard was recorded at four different sites in the park, with an altitudinal range between 648m-1533m. Distribution of Asiatic jackal and a red fox was recorded positive at all the sites surveyed in the park with an altitudinal range between 498m-1287m and 433m-2049m, respectively. Leopard cats were recorded at two different sites within the altitudinal range between 498m-894m. Jungle cat was recorded at three sites within an altitudinal range between 498m-846. Asian palm civets and small Indian civets were both recorded at three sites. Grey mongoose and small Indian mongoose were recorded at four and three sites. We also collected a total of 75 scats of different mammal species in the park to further confirm their occurrence. For the Indian pangolin, we recorded three field burrows at two different sites. Diversity index (H’=2.369960) and species evenness (E=0.81995) were calculated. Analysis of data revealed that wild boar (Sus sucrofa) was the most abundant species in the park; most of the mammal species were found nocturnal; these remain active from dusk throughout the night, and some of them remain active at dawn time. Leopard and Asian palm civets were highly overlapping species in the study area. Their temporal activity pattern overlapped 61%. Barking deer and Indian crested porcupine were also found to be nocturnal species they remained active throughout the night.Keywords: MKKNP, diversity, abundance, evenness, distribution, mammals, overlapped
Procedia PDF Downloads 203955 Physicochemical Profile of Essential Oil of Daucus carota
Authors: Nassima Behidj-Benyounes, Thoraya Dahmene
Abstract:
Essential oils have a significant antimicrobial activity. These oils can successfully replace the antibiotics. So, the microorganisms show their inefficiencies resistant for the antibiotics. For this reason, we study the physic-chemical analysis and antimicrobial activity of the essential oil of Daucus carota. The extraction is done by steam distillation of water which brought us a very significant return of 4.65%. The analysis of the essential oil is performed by GC/MS and has allowed us to identify 32 compounds in the oil of D. carota flowering tops of Bouira. Three of which are in the majority are the α-pinene (22.3%), the carotol (21.7%) and the limonene (15.8%).Keywords: daucus carota, essential oil, α-pinene, carotol, limonene
Procedia PDF Downloads 3833954 Additional Method for the Purification of Lanthanide-Labeled Peptide Compounds Pre-Purified by Weak Cation Exchange Cartridge
Authors: K. Eryilmaz, G. Mercanoglu
Abstract:
Aim: Purification of the final product, which is the last step in the synthesis of lanthanide-labeled peptide compounds, can be accomplished by different methods. Among these methods, the two most commonly used methods are C18 solid phase extraction (SPE) and weak cation exchanger cartridge elution. SPE C18 solid phase extraction method yields high purity final product, while elution from the weak cation exchanger cartridge is pH dependent and ineffective in removing colloidal impurities. The aim of this work is to develop an additional purification method for the lanthanide-labeled peptide compound in cases where the desired radionuclidic and radiochemical purity of the final product can not be achieved because of pH problem or colloidal impurity. Material and Methods: For colloidal impurity formation, 3 mL of water for injection (WFI) was added to 30 mCi of 177LuCl3 solution and allowed to stand for 1 day. 177Lu-DOTATATE was synthesized using EZAG ML-EAZY module (10 mCi/mL). After synthesis, the final product was mixed with the colloidal impurity solution (total volume:13 mL, total activity: 40 mCi). The resulting mixture was trapped in SPE-C18 cartridge. The cartridge was washed with 10 ml saline to remove impurities to the waste vial. The product trapped in the cartridge was eluted with 2 ml of 50% ethanol and collected to the final product vial via passing through a 0.22μm filter. The final product was diluted with 10 mL of saline. Radiochemical purity before and after purification was analysed by HPLC method. (column: ACE C18-100A. 3µm. 150 x 3.0mm, mobile phase: Water-Acetonitrile-Trifluoro acetic acid (75:25:1), flow rate: 0.6 mL/min). Results: UV and radioactivity detector results in HPLC analysis showed that colloidal impurities were completely removed from the 177Lu-DOTATATE/ colloidal impurity mixture by purification method. Conclusion: The improved purification method can be used as an additional method to remove impurities that may result from the lanthanide-peptide synthesis in which the weak cation exchange purification technique is used as the last step. The purification of the final product and the GMP compliance (the final aseptic filtration and the sterile disposable system components) are two major advantages.Keywords: lanthanide, peptide, labeling, purification, radionuclide, radiopharmaceutical, synthesis
Procedia PDF Downloads 1643953 Rapid and Sensitive Detection: Biosensors as an Innovative Analytical Tools
Authors: Sylwia Baluta, Joanna Cabaj, Karol Malecha
Abstract:
The evolution of biosensors was driven by the need for faster and more versatile analytical methods for application in important areas including clinical, diagnostics, food analysis or environmental monitoring, with minimum sample pretreatment. Rapid and sensitive neurotransmitters detection is extremely important in modern medicine. These compounds mainly occur in the brain and central nervous system of mammals. Any changes in the neurotransmitters concentration may lead to many diseases, such as Parkinson’s or schizophrenia. Classical techniques of chemical analysis, despite many advantages, do not permit to obtain immediate results or automatization of measurements.Keywords: adrenaline, biosensor, dopamine, laccase, tyrosinase
Procedia PDF Downloads 1433952 Density functional (DFT), Study of the Structural and Phase Transition of ThC and ThN: LDA vs GGA Computational
Authors: Hamza Rekab Djabri, Salah Daoud
Abstract:
The present paper deals with the computational of structural and electronic properties of ThC and ThN compounds using density functional theory within generalized-gradient (GGA) apraximation and local density approximation (LDA). We employ the full potential linear muffin-tin orbitals (FP-LMTO) as implemented in the Lmtart code. We have used to examine structure parameter in eight different structures such as in NaCl (B1), CsCl (B2), ZB (B3), NiAs (B8), PbO (B10), Wurtzite (B4) , HCP (A3) βSn (A5) structures . The equilibrium lattice parameter, bulk modulus, and its pressure derivative were presented for all calculated phases. The calculated ground state properties are in good agreement with available experimental and theoretical results.Keywords: DFT, GGA, LDA, properties structurales, ThC, ThN
Procedia PDF Downloads 1023951 pH-Responsive Carrier Based on Polymer Particle
Authors: Florin G. Borcan, Ramona C. Albulescu, Adela Chirita-Emandi
Abstract:
pH-responsive drug delivery systems are gaining more importance because these systems deliver the drug at a specific time in regards to pathophysiological necessity, resulting in improved patient therapeutic efficacy and compliance. Polyurethane materials are well-known for industrial applications (elastomers and foams used in different insulations and automotive), but they are versatile biocompatible materials with many applications in medicine, as artificial skin for the premature neonate, membrane in the hybrid artificial pancreas, prosthetic heart valves, etc. This study aimed to obtain the physico-chemical characterization of a drug delivery system based on polyurethane microparticles. The synthesis is based on a polyaddition reaction between an aqueous phase (mixture of polyethylene-glycol M=200, 1,4-butanediol and Tween® 20) and an organic phase (lysin-diisocyanate in acetone) combined with simultaneous emulsification. Different active agents (omeprazole, amoxicillin, metoclopramide) were used to verify the release profile of the macromolecular particles in different pH mediums. Zetasizer measurements were performed using an instrument based on two modules: a Vasco size analyzer and a Wallis Zeta potential analyzer (Cordouan Technol., France) in samples that were kept in various solutions with different pH and the maximum absorbance in UV-Vis spectra were collected on a UVi Line 9,400 Spectrophotometer (SI Analytics, Germany). The results of this investigation have revealed that these particles are proper for a prolonged release in gastric medium where they can assure an almost constant concentration of the active agents for 1-2 weeks, while they can be disassembled faster in a medium with neutral pHs, such as the intestinal fluid.Keywords: lysin-diisocyanate, nanostructures, polyurethane, Zetasizer
Procedia PDF Downloads 1853950 Application of Nanoparticles on Surface of Commercial Carbon-Based Adsorbent for Removal of Contaminants from Water
Authors: Ahmad Kayvani Fard, Gordon Mckay, Muataz Hussien
Abstract:
Adsorption/sorption is believed to be one of the optimal processes for the removal of heavy metals from water due to its low operational and capital cost as well as its high removal efficiency. Different materials have been reported in literature as adsorbent for heavy metal removal in waste water such as natural sorbents, organic polymers (synthetic) and mineral materials (inorganic). The selection of adsorbents and development of new functional materials that can achieve good removal of heavy metals from water is an important practice and depends on many factors, such as the availability of the material, cost of material, and material safety and etc. In this study we reported the synthesis of doped Activated carbon and Carbon nanotube (CNT) with different loading of metal oxide nanoparticles such as Fe2O3, Fe3O4, Al2O3, TiO2, SiO2 and Ag nanoparticles and their application in removal of heavy metals, hydrocarbon, and organics from waste water. Commercial AC and CNT with different loadings of mentioned nanoparticle were prepared and effect of pH, adsorbent dosage, sorption kinetic, and concentration effects are studied and optimum condition for removal of heavy metals from water is reported. The prepared composite sorbent is characterized using field emission scanning electron microscopy (FE-SEM), high transmission electron microscopy (HR-TEM), thermogravimetric analysis (TGA), X-ray diffractometer (XRD), the Brunauer, Emmett and Teller (BET) nitrogen adsorption technique, and Zeta potential. The composite materials showed higher removal efficiency and superior adsorption capacity compared to commercially available carbon based adsorbent. The specific surface area of AC increased by 50% reaching up to 2000 m2/g while the CNT specific surface area of CNT increased by more than 8 times reaching value of 890 m2/g. The increased surface area is one of the key parameters along with surface charge of the material determining the removal efficiency and removal efficiency. Moreover, the surface charge density of the impregnated CNT and AC have enhanced significantly where can benefit the adsorption process. The nanoparticles also enhance the catalytic activity of material and reduce the agglomeration and aggregation of material which provides more active site for adsorbing the contaminant from water. Some of the results for treating wastewater includes 100% removal of BTEX, arsenic, strontium, barium, phenolic compounds, and oil from water. The results obtained are promising for the use of AC and CNT loaded with metal oxide nanoparticle in treatment and pretreatment of waste water and produced water before desalination process. Adsorption can be very efficient with low energy consumption and economic feasibility.Keywords: carbon nanotube, activated carbon, adsorption, heavy metal, water treatment
Procedia PDF Downloads 2343949 Crosslinking of Unsaturated Elastomers in Presence of Aromatic Chlorine-Containing Compounds
Authors: Shiraz M. Mammadov, Elvin M. Aliyev, Adil A. Garibov
Abstract:
The role of the disulfochloride benzene in unsaturated rubbers (SKIN, SKN-26) which is in the systems of SKIN+disulfochloride benzene and SKN-26+disulfochloride benzene was studied by the radiation exposure. By the usage of physical, chemical and spectral methods the changes in the molecular structure of the rubber were shown after irradiation by y-rays at 300 kGy. The outputs and the emergence of the crosslinking in the elastomers for each system depending on absorbed dose were defined. It is suggested that the mechanism of radiation occurs by the heterogeneous transformation of elastomers in the presence of disulfochloride benzene.Keywords: acrylonitrile-butadiene rubber, crosslinking, polyfunctional monomers, radiation, sensitizier, vulcanization
Procedia PDF Downloads 4493948 Permeable Reactive Pavement for Controlling the Transport of Benzene, Toluene, Ethyl-Benzene, and Xylene (BTEX) Contaminants
Authors: Shengyi Huang, Chenju Liang
Abstract:
Volatile organic compounds such as benzene, toluene, ethyl-benzene, and xylene (BTEX) are common contaminants in environment, which could come from asphalt concrete or exhaust emissions of vehicles. The BTEX may invade to the subsurface environment via wet and dry atmospheric depositions. If there aren’t available ways for controlling contaminants’ fate and transport, they would extensively harm natural environment. In the 1st phase of this study, various adsorbents were screened for a suitable one to be an additive in the porous asphalt mixture. In the 2nd phase, addition of the selected adsorbent was incorporated with the design of porous asphalt concrete (PAC) to produce the permeable reactive pavement (PRP), which was subsequently tested for the potential of adsorbing aqueous BTEX as compared to the PAC, in the 3rd phase. The PRP was prepared according to the following steps: firstly, the suitable adsorbent was chosen based on the analytical results of specific surface area analysis, thermal-gravimetric analysis, adsorption kinetics and isotherms, and thermal dynamics analysis; secondly, the materials of coarse aggregate, fine aggregate, filler, asphalt, and fiber were tested in order to meet regulated specifications (e.g., water adsorption, soundness, viscosity etc.) for preparing the PRP; thirdly, the amount of adsorbent additive was determined in the PRP; fourthly, the prepared PAC and PRP were examined for their physical properties (e.g., abrasion loss, drain-down loss, Marshall stability, Marshall flow, dynamic stability etc.). As a result of comparison between PRP and PAC, the PRP showed better physical performance than the traditional PAC. At last, the Marshall Specimen column tests were conducted to explore the adsorption capacities of PAC and PRPs. The BTEX adsorption capacities of PRPs are higher than those obtained from traditional PAC. In summary, PRPs showed superior physical performance and adsorption capacities, which exhibit the potential of PRP to be applied as a replacement of PAC for better controlling the transport of non-point source pollutants.Keywords: porous asphalt concrete, volatile organic compounds, permeable reactive pavement, non-point source pollution
Procedia PDF Downloads 2133947 High Throughput Virtual Screening against ns3 Helicase of Japanese Encephalitis Virus (JEV)
Authors: Soma Banerjee, Aamen Talukdar, Argha Mandal, Dipankar Chaudhuri
Abstract:
Japanese Encephalitis is a major infectious disease with nearly half the world’s population living in areas where it is prevalent. Currently, treatment for it involves only supportive care and symptom management through vaccination. Due to the lack of antiviral drugs against Japanese Encephalitis Virus (JEV), the quest for such agents remains a priority. For these reasons, simulation studies of drug targets against JEV are important. Towards this purpose, docking experiments of the kinase inhibitors were done against the chosen target NS3 helicase as it is a nucleoside binding protein. Previous efforts regarding computational drug design against JEV revealed some lead molecules by virtual screening using public domain software. To be more specific and accurate regarding finding leads, in this study a proprietary software Schrödinger-GLIDE has been used. Druggability of the pockets in the NS3 helicase crystal structure was first calculated by SITEMAP. Then the sites were screened according to compatibility with ATP. The site which is most compatible with ATP was selected as target. Virtual screening was performed by acquiring ligands from databases: KinaseSARfari, KinaseKnowledgebase and Published inhibitor Set using GLIDE. The 25 ligands with best docking scores from each database were re-docked in XP mode. Protein structure alignment of NS3 was performed using VAST against MMDB, and similar human proteins were docked to all the best scoring ligands. The low scoring ligands were chosen for further studies and the high scoring ligands were screened. Seventy-three ligands were listed as the best scoring ones after performing HTVS. Protein structure alignment of NS3 revealed 3 human proteins with RMSD values lesser than 2Å. Docking results with these three proteins revealed the inhibitors that can interfere and inhibit human proteins. Those inhibitors were screened. Among the ones left, those with docking scores worse than a threshold value were also removed to get the final hits. Analysis of the docked complexes through 2D interaction diagrams revealed the amino acid residues that are essential for ligand binding within the active site. Interaction analysis will help to find a strongly interacting scaffold among the hits. This experiment yielded 21 hits with the best docking scores which could be investigated further for their drug like properties. Aside from getting suitable leads, specific NS3 helicase-inhibitor interactions were identified. Selection of Target modification strategies complementing docking methodologies which can result in choosing better lead compounds are in progress. Those enhanced leads can lead to better in vitro testing.Keywords: antivirals, docking, glide, high-throughput virtual screening, Japanese encephalitis, ns3 helicase
Procedia PDF Downloads 2323946 Perception of Neighbourhood-Level Built Environment in Relation to Youth Physical Activity in Malaysia
Authors: A. Abdullah, N. Faghih Mirzaei, S. Hany Haron
Abstract:
Neighbourhood environment walkability on reported physical activity (PA) levels of students of Universiti Sains Malaysia (USM) in Malaysia. Compared with previous generations, today’s young people spend less time playing outdoors and have lower participation rates in PA. Research suggests that negative perceptions of neighbourhood walkability may be a potential barrier to adolescents’ PA. The sample consisted of 200 USM students (to 24 years old) who live outside of the main campus and engage in PA in sport halls and sport fields of USM. The data were analysed using the t-test, binary logistic regression, and discriminant analysis techniques. The present study found that youth PA was affected by neighbourhood environment walkability factors, including neighbourhood infrastructures, neighbourhood safety (crime), and recreation facilities, as well as street characteristics and neighbourhood design variables such as facades of sidewalks, roadside trees, green spaces, and aesthetics. The finding also illustrated that active students were influenced by street connectivity, neighbourhood infrastructures, recreation facilities, facades of sidewalks, and aesthetics, whereas students in the less active group were affected by access to destinations, neighbourhood safety (crime), and roadside trees and green spaces for their PAs. These results report which factors of built environments have more effect on youth PA and they message to the public to create more awareness about the benefits of PA on youth health.Keywords: fear of crime, neighbourhood built environment, physical activities, street characteristics design
Procedia PDF Downloads 3543945 Solanum Nigrum Show Anti-Obesity Effects on High Fat Diet Fed Sprague Dawley Rats
Authors: Kathryn Nderitu, Atunga Nyachieo, Ezekiel Mecha
Abstract:
Introduction: Solanum nigrum , also known as black nightshade, biosynthesizes various phytochemical compounds with various pharmacological activities, including treating cardiovascular diseases and type 2 diabetes, among others. Materials and Methods: To assess the anti-obesity effects of Solanum nigrum using high-fat-fed diet rats, Sprague Dawley male rats (n = 35) of weights 160–180 g were assigned randomly into seven groups comprising n = 5 rats each. Each group was fed for 11 weeks as follows: normal group (normal chow rat feed); high-fat diet control (HFD); HFD and standard drug (Orlistat 30 mg/kg bw); HFD and methanolic extract 150 mg/kgbw; HFD and methanolic extract 300 mg/kgbw; HFD and dichloromethane extract 150 mg/kgbw; HFD and dichloromethane extract 300 mg/kgbw. Body mass index and food intake were monitored per week, and an oral glucose tolerance test was measured in weeks 5 and 10. Lipid profiles, liver function tests, adipose tissue, liver weights, and phytochemical analysis of Solanum nigrum were later carried out. Results: High-fat diet control group rats exhibited a significant increase in body mass index (BMI), while rats administered with leaf extracts of Solanum nigrum showed a reduction in BMI. Both low doses of dichloromethane (150 mg/kgbw) and high doses of methanol extracts (300 mg/kgbw) showed a better reduction in BMI than the other treatment groups. A significant decrease (p <0.05) in low-density lipoprotein-cholesterol, triglycerides, and cholesterol was observed among the rats administered with Solanum nigrum extracts compared to those of HFD control. Moreover, the HFD control group significantly increased liver and adipose tissue weights compared to other treatment groups (p<0.05). Solanum nigrum also decreased glycemic levels and normalized the hepatic enzymes of HFD control. However, food intake among the groups showed no significant difference (p>0.05). Qualitative analysis of Solanum nigrum leaf extracts indicated the presence of various bioactive compounds associated with anti-obesity. Conclusion: These results validate the use of Solanum nigrum in controlling obesity.Keywords: solanum nigrum, High fat diet, phytocompounds, obesity
Procedia PDF Downloads 553944 Nanotextiles to Marine Collagen: Advancing Skin Care Through Textile Technology
Authors: Anushka Saxena, Rakhi Wahee Pratap
Abstract:
Skincare textiles, an emerging field at the crossroads of textile technology and wellness, offer groundbreaking innovations that aim to enhance health and well-being through everyday wear. This research paper explores the diverse spectrum of skin-friendly textiles, with a focus on key categories such as cosmetotextiles, skincare finishes, marine collagen fabrics, and nanotextiles. These developments reflect a shift towards a more holistic approach to clothing, where garments not only serve as fashion or protection but also contribute actively to personal care and wellness. Cosmetotextiles represent a transformative fusion of beauty and textile industries, where fabrics are impregnated with active cosmetic ingredients that provide skincare benefits as they are worn. By incorporating substances such as vitamins, moisturizers, essential oils, and antioxidants, these textiles continuously release beneficial ingredients to the skin throughout the day. The result is improved skin hydration, enhanced smoothness, and targeted therapeutic effects that redefine how clothing can interact with the body. Marine collagen fabrics introduce a novel approach to skincare, harnessing collagen derived from marine life to improve skin elasticity, hydration, and overall texture. With their natural bioactive compounds, these textiles can help stimulate skin repair and rejuvenation, positioning them as a promising tool in both beauty and medical applications. Marine collagen offers the dual benefit of contributing to sustainable textiles while delivering scientifically-backed skincare benefits. Nanotextiles, on the other hand, leverage the advancements in nanotechnology by integrating nanoparticles into fabric structures. These textiles exhibit multifunctional properties, such as antimicrobial action, UV protection, and wound-healing capabilities, making them highly suitable for medical textiles. Nanotextiles provide an avenue for creating clothing that not only protects the skin from environmental aggressors but also aids in recovery, regeneration, and long-term health maintenance. This paper provides an in-depth overview of healing textiles, examining their current advancements, practical applications, and the challenges faced in their development. Furthermore, it explores the future prospects of this innovative field, particularly its potential in bridging the gap between cutting-edge technology and traditional textile practices. As consumer demand for multifunctional and health-promoting textiles grows, healing textiles present a promising solution for improving quality of life through fabric innovation.Keywords: skincare textiles, nanotechnology, cosmetotextiles, nanotextiles, marine collagen textiles and health
Procedia PDF Downloads 6