Search results for: Kaatsu training
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3957

Search results for: Kaatsu training

2337 Optimizing Production Yield Through Process Parameter Tuning Using Deep Learning Models: A Case Study in Precision Manufacturing

Authors: Tolulope Aremu

Abstract:

This paper is based on the idea of using deep learning methodology for optimizing production yield by tuning a few key process parameters in a manufacturing environment. The study was explicitly on how to maximize production yield and minimize operational costs by utilizing advanced neural network models, specifically Long Short-Term Memory and Convolutional Neural Networks. These models were implemented using Python-based frameworks—TensorFlow and Keras. The targets of the research are the precision molding processes in which temperature ranges between 150°C and 220°C, the pressure ranges between 5 and 15 bar, and the material flow rate ranges between 10 and 50 kg/h, which are critical parameters that have a great effect on yield. A dataset of 1 million production cycles has been considered for five continuous years, where detailed logs are present showing the exact setting of parameters and yield output. The LSTM model would model time-dependent trends in production data, while CNN analyzed the spatial correlations between parameters. Models are designed in a supervised learning manner. For the model's loss, an MSE loss function is used, optimized through the Adam optimizer. After running a total of 100 training epochs, 95% accuracy was achieved by the models recommending optimal parameter configurations. Results indicated that with the use of RSM and DOE traditional methods, there was an increase in production yield of 12%. Besides, the error margin was reduced by 8%, hence consistent quality products from the deep learning models. The monetary value was annually around $2.5 million, the cost saved from material waste, energy consumption, and equipment wear resulting from the implementation of optimized process parameters. This system was deployed in an industrial production environment with the help of a hybrid cloud system: Microsoft Azure, for data storage, and the training and deployment of their models were performed on Google Cloud AI. The functionality of real-time monitoring of the process and automatic tuning of parameters depends on cloud infrastructure. To put it into perspective, deep learning models, especially those employing LSTM and CNN, optimize the production yield by fine-tuning process parameters. Future research will consider reinforcement learning with a view to achieving further enhancement of system autonomy and scalability across various manufacturing sectors.

Keywords: production yield optimization, deep learning, tuning of process parameters, LSTM, CNN, precision manufacturing, TensorFlow, Keras, cloud infrastructure, cost saving

Procedia PDF Downloads 41
2336 Evaluation Model in the Branch of Virtual Education of “Universidad Manuela Beltrán” Bogotá-Colombia

Authors: Javier López

Abstract:

This Paper presents the evaluation model designed for the virtual education branch of The “Universidad Manuela Beltrán, Bogotá-Colombia”. This was the result of a research, developed as a case study, which had three stages: Document review, observation, and a perception survey for teachers. In the present model, the evaluation is a cross-cutting issue to the educational process. Therefore, it consists in a group of actions and guidelines which lead to analyze the student’s learning process from the admission, during the academic training, and to the graduation. This model contributes to the evaluation components which might interest other educational institutions or might offer methodological guidance to consolidate an own model

Keywords: model, evaluation, virtual education, learning process

Procedia PDF Downloads 454
2335 Optimize Data Evaluation Metrics for Fraud Detection Using Machine Learning

Authors: Jennifer Leach, Umashanger Thayasivam

Abstract:

The use of technology has benefited society in more ways than one ever thought possible. Unfortunately, though, as society’s knowledge of technology has advanced, so has its knowledge of ways to use technology to manipulate people. This has led to a simultaneous advancement in the world of fraud. Machine learning techniques can offer a possible solution to help decrease this advancement. This research explores how the use of various machine learning techniques can aid in detecting fraudulent activity across two different types of fraudulent data, and the accuracy, precision, recall, and F1 were recorded for each method. Each machine learning model was also tested across five different training and testing splits in order to discover which testing split and technique would lead to the most optimal results.

Keywords: data science, fraud detection, machine learning, supervised learning

Procedia PDF Downloads 201
2334 Approaches To Counseling As Done By Traditional Cultural Healers In North America

Authors: Lewis Mehl-Madrona, Barbara Mainguy

Abstract:

We describe the type of counseling done by traditional cultural healers in North America. We follow an autoethnographic course development through the first author’s integration of mainstream training and Native-American heritage and study with traditional medicine people. We assemble traditional healing elders from North America and discuss with them their practices and their philosophies of healing. We draw parallels for their approaches in some European-based philosophies and religion, including the work of Heidegger, Levin, Fox, Kierkegaard, and others. An example of the treatment process with a depressed client is provided and similarities and differences with conventional psychotherapies are described.

Keywords: indigenous approaches to counseling, indigenous bodywork, indigenous healing, North American indigenous people

Procedia PDF Downloads 279
2333 Systematic Evaluation of Convolutional Neural Network on Land Cover Classification from Remotely Sensed Images

Authors: Eiman Kattan, Hong Wei

Abstract:

In using Convolutional Neural Network (CNN) for classification, there is a set of hyperparameters available for the configuration purpose. This study aims to evaluate the impact of a range of parameters in CNN architecture i.e. AlexNet on land cover classification based on four remotely sensed datasets. The evaluation tests the influence of a set of hyperparameters on the classification performance. The parameters concerned are epoch values, batch size, and convolutional filter size against input image size. Thus, a set of experiments were conducted to specify the effectiveness of the selected parameters using two implementing approaches, named pertained and fine-tuned. We first explore the number of epochs under several selected batch size values (32, 64, 128 and 200). The impact of kernel size of convolutional filters (1, 3, 5, 7, 10, 15, 20, 25 and 30) was evaluated against the image size under testing (64, 96, 128, 180 and 224), which gave us insight of the relationship between the size of convolutional filters and image size. To generalise the validation, four remote sensing datasets, AID, RSD, UCMerced and RSCCN, which have different land covers and are publicly available, were used in the experiments. These datasets have a wide diversity of input data, such as number of classes, amount of labelled data, and texture patterns. A specifically designed interactive deep learning GPU training platform for image classification (Nvidia Digit) was employed in the experiments. It has shown efficiency in both training and testing. The results have shown that increasing the number of epochs leads to a higher accuracy rate, as expected. However, the convergence state is highly related to datasets. For the batch size evaluation, it has shown that a larger batch size slightly decreases the classification accuracy compared to a small batch size. For example, selecting the value 32 as the batch size on the RSCCN dataset achieves the accuracy rate of 90.34 % at the 11th epoch while decreasing the epoch value to one makes the accuracy rate drop to 74%. On the other extreme, setting an increased value of batch size to 200 decreases the accuracy rate at the 11th epoch is 86.5%, and 63% when using one epoch only. On the other hand, selecting the kernel size is loosely related to data set. From a practical point of view, the filter size 20 produces 70.4286%. The last performed image size experiment shows a dependency in the accuracy improvement. However, an expensive performance gain had been noticed. The represented conclusion opens the opportunities toward a better classification performance in various applications such as planetary remote sensing.

Keywords: CNNs, hyperparamters, remote sensing, land cover, land use

Procedia PDF Downloads 173
2332 Employees Retention through Effective HR Practices

Authors: Choi Sang Long

Abstract:

It is vital for Human Resource (HR) managers to address and overcome employees’ turnover intention in their organization. Ability to keep good employees is critical for ensuring success of the organization in future. People are seeking many ways of live that is meaningful and less complicated and this new lifestyle actually has an impact on how an employee must be motivated and managed. Therefore, this paper discusses extensively on the impact of human resource practices that can alter the negative effect on the organization due to high employees’ turnover. These critical practices are employees’ career development, performance management, training and a fair compensation scheme.

Keywords: turnover intention, career development, performance management, compensation, human resource management, organization

Procedia PDF Downloads 497
2331 Blended Cloud Based Learning Approach in Information Technology Skills Training and Paperless Assessment: Case Study of University of Cape Coast

Authors: David Ofosu-Hamilton, John K. E. Edumadze

Abstract:

Universities have come to recognize the role Information and Communication Technology (ICT) skills plays in the daily activities of tertiary students. The ability to use ICT – essentially, computers and their diverse applications – are important resources that influence an individual’s economic and social participation and human capital development. Our society now increasingly relies on the Internet, and the Cloud as a means to communicate and disseminate information. The educated individual should, therefore, be able to use ICT to create and share knowledge that will improve society. It is, therefore, important that universities require incoming students to demonstrate a level of computer proficiency or trained to do so at a minimal cost by deploying advanced educational technologies. The training and standardized assessment of all in-coming first-year students of the University of Cape Coast in Information Technology Skills (ITS) have become a necessity as students’ most often than not highly overestimate their digital skill and digital ignorance is costly to any economy. The one-semester course is targeted at fresh students and aimed at enhancing the productivity and software skills of students. In this respect, emphasis is placed on skills that will enable students to be proficient in using Microsoft Office and Google Apps for Education for their academic work and future professional work whiles using emerging digital multimedia technologies in a safe, ethical, responsible, and legal manner. The course is delivered in blended mode - online and self-paced (student centered) using Alison’s free cloud-based tutorial (Moodle) of Microsoft Office videos. Online support is provided via discussion forums on the University’s Moodle platform and tutor-directed and assisted at the ICT Centre and Google E-learning laboratory. All students are required to register for the ITS course during either the first or second semester of the first year and must participate and complete it within a semester. Assessment focuses on Alison online assessment on Microsoft Office, Alison online assessment on ALISON ABC IT, Peer assessment on e-portfolio created using Google Apps/Office 365 and an End of Semester’s online assessment at the ICT Centre whenever the student was ready in the cause of the semester. This paper, therefore, focuses on the digital culture approach of hybrid teaching, learning and paperless examinations and the possible adoption by other courses or programs at the University of Cape Coast.

Keywords: assessment, blended, cloud, paperless

Procedia PDF Downloads 253
2330 Unsupervised Learning of Spatiotemporally Coherent Metrics

Authors: Ross Goroshin, Joan Bruna, Jonathan Tompson, David Eigen, Yann LeCun

Abstract:

Current state-of-the-art classification and detection algorithms rely on supervised training. In this work we study unsupervised feature learning in the context of temporally coherent video data. We focus on feature learning from unlabeled video data, using the assumption that adjacent video frames contain semantically similar information. This assumption is exploited to train a convolutional pooling auto-encoder regularized by slowness and sparsity. We establish a connection between slow feature learning to metric learning and show that the trained encoder can be used to define a more temporally and semantically coherent metric.

Keywords: machine learning, pattern clustering, pooling, classification

Procedia PDF Downloads 458
2329 The Use of Methods and Techniques of Drama Education with Kindergarten Teachers

Authors: Vladimira Hornackova, Jana Kottasova, Zuzana Vanova, Anna Jungrova

Abstract:

Present study deals with drama education in preschool education. The research made in this field brings a qualitative comparative survey with the aim to find out the use of methods and techniques of drama education in preschool education at university or secondary school graduate preschool teachers. The research uses a content analysis and an unstandardized questionnaire for preschool teachers and obtained data are processed with the help of descriptive methods and correlations. The results allow a comparison of aspects applied through drama in preschool education. The research brings impulses for education improvement in kindergartens and inspiration for university study programs of drama education in the professional training of preschool teachers.

Keywords: drama education, preschool education, preschool teacher, research

Procedia PDF Downloads 367
2328 Pharmacophore-Based Modeling of a Series of Human Glutaminyl Cyclase Inhibitors to Identify Lead Molecules by Virtual Screening, Molecular Docking and Molecular Dynamics Simulation Study

Authors: Ankur Chaudhuri, Sibani Sen Chakraborty

Abstract:

In human, glutaminyl cyclase activity is highly abundant in neuronal and secretory tissues and is preferentially restricted to hypothalamus and pituitary. The N-terminal modification of β-amyloids (Aβs) peptides by the generation of a pyro-glutamyl (pGlu) modified Aβs (pE-Aβs) is an important process in the initiation of the formation of neurotoxic plaques in Alzheimer’s disease (AD). This process is catalyzed by glutaminyl cyclase (QC). The expression of QC is characteristically up-regulated in the early stage of AD, and the hallmark of the inhibition of QC is the prevention of the formation of pE-Aβs and plaques. A computer-aided drug design (CADD) process was employed to give an idea for the designing of potentially active compounds to understand the inhibitory potency against human glutaminyl cyclase (QC). This work elaborates the ligand-based and structure-based pharmacophore exploration of glutaminyl cyclase (QC) by using the known inhibitors. Three dimensional (3D) quantitative structure-activity relationship (QSAR) methods were applied to 154 compounds with known IC50 values. All the inhibitors were divided into two sets, training-set, and test-sets. Generally, training-set was used to build the quantitative pharmacophore model based on the principle of structural diversity, whereas the test-set was employed to evaluate the predictive ability of the pharmacophore hypotheses. A chemical feature-based pharmacophore model was generated from the known 92 training-set compounds by HypoGen module implemented in Discovery Studio 2017 R2 software package. The best hypothesis was selected (Hypo1) based upon the highest correlation coefficient (0.8906), lowest total cost (463.72), and the lowest root mean square deviation (2.24Å) values. The highest correlation coefficient value indicates greater predictive activity of the hypothesis, whereas the lower root mean square deviation signifies a small deviation of experimental activity from the predicted one. The best pharmacophore model (Hypo1) of the candidate inhibitors predicted comprised four features: two hydrogen bond acceptor, one hydrogen bond donor, and one hydrophobic feature. The Hypo1 was validated by several parameters such as test set activity prediction, cost analysis, Fischer's randomization test, leave-one-out method, and heat map of ligand profiler. The predicted features were then used for virtual screening of potential compounds from NCI, ASINEX, Maybridge and Chembridge databases. More than seven million compounds were used for this purpose. The hit compounds were filtered by drug-likeness and pharmacokinetics properties. The selective hits were docked to the high-resolution three-dimensional structure of the target protein glutaminyl cyclase (PDB ID: 2AFU/2AFW) to filter these hits further. To validate the molecular docking results, the most active compound from the dataset was selected as a reference molecule. From the density functional theory (DFT) study, ten molecules were selected based on their highest HOMO (highest occupied molecular orbitals) energy and the lowest bandgap values. Molecular dynamics simulations with explicit solvation systems of the final ten hit compounds revealed that a large number of non-covalent interactions were formed with the binding site of the human glutaminyl cyclase. It was suggested that the hit compounds reported in this study could help in future designing of potent inhibitors as leads against human glutaminyl cyclase.

Keywords: glutaminyl cyclase, hit lead, pharmacophore model, simulation

Procedia PDF Downloads 134
2327 Implementing a Structured, yet Flexible Tool for Critical Information Handover

Authors: Racheli Magnezi, Inbal Gazit, Michal Rassin, Joseph Barr, Orna Tal

Abstract:

An effective process for transmitting patient critical information is essential for patient safety and for improving communication among healthcare staff. Previous studies have discussed handover tools such as SBAR (Situation, Background, Assessment, Recommendation) or SOFI (Short Observational Framework for Inspection). Yet, these formats lack flexibility, and require special training. In addition, nurses and physicians have different procedures for handing over information. The objectives of this study were to establish a universal, structured tool for handover, for both physicians and nurses, based on parameters that were defined as ‘important’ and ‘appropriate’ by the medical team, and to implement this tool in various hospital departments, with flexibility for each ward. A questionnaire, based on established procedures and on the literature, was developed to assess attitudes towards the most important information for effective handover between shifts (Cronbach's alpha 0.78). It was distributed to 150 senior physicians and nurses in 62 departments. Among senior medical staff, 12 physicians and 66 nurses responded to the questionnaire (52% response rate). Based on the responses, a handover form suitable for all hospital departments was designed and implemented. Important information for all staff included: Patient demographics (full name and age); Health information (diagnosis or patient complaint, changes in hemodynamic status, new medical treatment or equipment required); and Social Information (suspicion of violence, mental or behavioral changes, and guardianship). Additional information relevant to each unit included treatment provided, laboratory or imaging required, and change in scheduled surgery in surgical departments. ICU required information on background illnesses, Pediatrics required information on diet and food provided and Obstetrics required the number of days after cesarean section. Based on the model described, a flexible tool was developed that enables handover of both common and unique information. In addition, it includes general logistic information that must be transmitted to the next shift, such as planned disruptions in service or operations, staff training, etc. Development of a simple, clear, comprehensive, universal, yet flexible tool designed for all medical staff for transmitting critical information between shifts was challenging. Physicians and nurses found it useful and it was widely implemented. Ongoing research is needed to examine the efficiency of this tool, and whether the enthusiasm that accompanied its initial use is maintained.

Keywords: handover, nurses, hospital, critical information

Procedia PDF Downloads 251
2326 Cricket Injury Surveillence by Mobile Application Technology on Smartphones

Authors: Najeebullah Soomro, Habib Noorbhai, Mariam Soomro, Ross Sanders

Abstract:

The demands on cricketers are increasing with more matches being played in a shorter period of time with a greater intensity. A ten year report on injury incidence for Australian elite cricketers between the 2000- 2011 seasons revealed an injury incidence rate of 17.4%.1. In the 2009–10 season, 24 % of Australian fast bowlers missed matches through injury. 1 Injury rates are even higher in junior cricketers with an injury incidence of 25% or 2.9 injuries per 100 player hours reported. 2 Traditionally, injury surveillance has relied on the use of paper based forms or complex computer software. 3,4 This makes injury reporting laborious for the staff involved. The purpose of this presentation is to describe a smartphone based mobile application as a means of improving injury surveillance in cricket. Methods: The researchers developed CricPredict mobile App for the Android platforms, the world’s most widely used smartphone platform. It uses Qt SDK (Software Development Kit) as IDE (Integrated Development Environment). C++ was used as the programming language with the Qt framework, which provides us with cross-platform abilities that will allow this app to be ported to other operating systems (iOS, Mac, Windows) in the future. The wireframes (graphic user interface) were developed using Justinmind Prototyper Pro Edition Version (Ver. 6.1.0). CricPredict enables recording of injury and training status conveniently and immediately. When an injury is reported automated follow-up questions include site of injury, nature of injury, mechanism of injury, initial treatment, referral and action taken after injury. Direct communication with the player then enables assessment of severity and diagnosis. CricPredict also allows the coach to maintain and track each player’s attendance at matches and training session. Workload data can also be recorded by either the player or coach by recording the number of balls bowled or played in a day. This is helpful in formulating injury rates and time lost due to injuries. All the data are stored at a secured password protected data server. Outcomes and Significance: Use of CricPredit offers a simple, user friendly tool for the coaching or medical staff associated with teams to predict, record and report injuries. This system will assist teams to capture injury data with ease thus allowing better understanding of injuries associated with cricket and potentially optimize the performance of such cricketers.

Keywords: injury, cricket, surveillance, smartphones, mobile

Procedia PDF Downloads 462
2325 The Modification of Convolutional Neural Network in Fin Whale Identification

Authors: Jiahao Cui

Abstract:

In the past centuries, due to climate change and intense whaling, the global whale population has dramatically declined. Among the various whale species, the fin whale experienced the most drastic drop in number due to its popularity in whaling. Under this background, identifying fin whale calls could be immensely beneficial to the preservation of the species. This paper uses feature extraction to process the input audio signal, then a network based on AlexNet and three networks based on the ResNet model was constructed to classify fin whale calls. A mixture of the DOSITS database and the Watkins database was used during training. The results demonstrate that a modified ResNet network has the best performance considering precision and network complexity.

Keywords: convolutional neural network, ResNet, AlexNet, fin whale preservation, feature extraction

Procedia PDF Downloads 129
2324 Opportunities and Challenges in Midwifery Education: A Literature Review

Authors: Abeer M. Orabi

Abstract:

Midwives are being seen as a key factor in returning birth care to a normal physiologic process that is woman-centered. On the other hand, more needs to be done to increase access for every woman to professional midwifery care. Because of the nature of the midwifery specialty, the magnitude of the effect that can result from a lack of knowledge if midwives make a mistake in their care has the potential to affect a large number of the birthing population. So, the development, running, and management of midwifery educational programs should follow international standards and come after a thorough community needs assessment. At the same time, the number of accredited midwifery educational programs needs to be increased so that larger numbers of midwives will be educated and qualified, as well as access to skilled midwifery care will be increased. Indeed, the selection of promising midwives is important for the successful completion of an educational program, achievement of the program goals, and retention of graduates in the field. Further, the number of schooled midwives in midwifery education programs, their background, and their experience constitute some concerns in the higher education industry. Basically, preceptors and clinical sites are major contributors to the midwifery education process, as educational programs rely on them to provide clinical practice opportunities. In this regard, the selection of clinical training sites should be based on certain criteria to ensure their readiness for the intended training experiences. After that, communication, collaboration, and liaison between teaching faculty and field staff should be maintained. However, the shortage of clinical preceptors and the massive reduction in the number of practicing midwives, in addition to unmanageable workloads, act as significant barriers to midwifery education. Moreover, the medicalized approach inherent in the hospital setting makes it difficult to practice the midwifery model of care, such as watchful waiting, non-interference in normal processes, and judicious use of interventions. Furthermore, creating a motivating study environment is crucial for avoiding unnecessary withdrawal and retention in any educational program. It is well understood that research is an essential component of any profession for achieving its optimal goal and providing a foundation and evidence for its practices, and midwifery is no exception. Midwives have been playing an important role in generating their own research. However, the selection of novel, researchable, and sustainable topics considering community health needs is also a challenge. In conclusion, ongoing education and research are the lifeblood of the midwifery profession to offer a highly competent and qualified workforce. However, many challenges are being faced, and barriers are hindering their improvement.

Keywords: barriers, challenges, midwifery education, educational programs

Procedia PDF Downloads 118
2323 Formation of Human Resources in the Light of Sustainable Development and the Achievement of Full Employment

Authors: Kaddour Fellague Mohammed

Abstract:

The world has seen in recent years, significant developments affected various aspects of life and influenced the different types of institutions, thus was born a new world is a world of globalization, which dominated the scientific revolution and the tremendous technological developments, and that contributed to the re-formation of human resources in contemporary organizations, and made patterns new regulatory and at the same time raised and strongly values and new ideas, the organizations have become more flexible, and faster response to consumer and environmental conditions, and exceeded the problem of time and place in the framework of communication and human interaction and use of advanced information technology and adoption mainly mechanism in running its operations , focused on performance and based strategic thinking and approach in order to achieve its strategic goals high degrees of superiority and excellence, this new reality created an increasing need for a new type of human resources, quality aims to renew and aspire to be a strategic player in managing the organization and drafting of various strategies, think globally and act locally, to accommodate local variables in the international markets, which began organizations tend to strongly as well as the ability to work under different cultures. Human resources management of the most important management functions to focus on the human element, which is considered the most valuable resource of the Department and the most influential in productivity at all, that the management and development of human resources Tattabra a cornerstone in the majority of organizations which aims to strengthen the organizational capacity, and enable companies to attract and rehabilitation of the necessary competencies and are able to keep up with current and future challenges, human resources can contribute to and strongly in achieving the objectives and profit organization, and even expand more than contribute to the creation of new jobs to alleviate unemployment and achieve full operation, administration and human resources mean short optimal use of the human element is available and expected, where he was the efficiency and capabilities, and experience of this human element, and his enthusiasm for the work stop the efficiency and success in reaching their goals, so interested administration scientists developed the principles and foundations that help to make the most of each individual benefit in the organization through human resources management, these foundations start of the planning and selection, training and incentives and evaluation, which is not separate from each other, but are integrated with each other as a system systemic order to reach the efficient functioning of the human resources management and has been the organization as a whole in the context of development sustainable.

Keywords: configuration, training, development, human resources, operating

Procedia PDF Downloads 434
2322 Social Safety Net and Food Security Among Farming Household in Southwest, Nigeria

Authors: Adepoju A. A., Raufu M. O., Ganiyu M. O., Olawuyi S. O., Olalere J. O., Ogunkunle A. A.

Abstract:

This study investigated the effects of social safety nets on food security among farming households in Southwest Nigeria. The study used a multistage sampling technique, purposively selecting two states from southwest Nigeria, Oyo and Ogun as the study area with eight Agricultural Development Programme (ADP) agricultural zones. The Local Government Areas (LGAs) were stratified into urban and rural LGAs. Sixteen villages from Oyo and 12 villages from Ogun were randomly selected from the rural LGAs using a proportionate to-size sampling, resulting in 472 respondents, with 271 and 201 from Oyo and Ogun states, respectively. The data was analyzed using descriptive statistics like mean, standard deviation, frequency and percentages, while logistic regression analysis examines the association between independent variables and dependent variables. The study found that poverty reduction, social empowerment, food security palliative, microcredit, and agricultural empowerment are the most prevalent social safety nets among farming households. School feed programs are the most prevalent form of poverty reduction, while training for empowerment improves wellbeing. Food item distribution is the most beneficial for food security and wellbeing. Self-empowerment-based micro-credit support is the most effective, while Anchor Borrower's project is the most beneficial for agricultural empowerment. The study found that 62.68% of the variance in food security status is explained by independent variables. females farmers have a 56% higher likelihood of being food secure than their male counterparts. An additional increase in age decreases the likelihood of being food secure by 6%. Married individuals have a 58% lower likelihood of being food secure compared to singles, possibly due to increased financial responsibilities. A larger household size increases the likelihood of being food secure by 3.41%. Larger households may benefit from economies of scale or shared resources and social safety net programs. Engagement in farming as a primary occupation increases the likelihood of being food secure by 62%. The study further reveals that participation in poverty reduction and microcredit programs significantly increases the likelihood of food security by 30,069% and 135.48%, respectively. The study therefore recommends expanding school feed programs, improving empowerment training, strengthening food distribution, promoting micro-credit, supporting agricultural empowerment, and addressing gender disparities in social safety net programs.

Keywords: poverty reduction, food distribution, micro-credit, household well-being

Procedia PDF Downloads 18
2321 Caregivers Roles, Care Home Management, Funding and Administration in Challenged Communities: Focus in North Eastern Nigeria

Authors: Chukwuka Justus Iwegbu

Abstract:

Background: A major concern facing the world is providing senior citizens, individuals with disabilities, and other vulnerable groups with high-quality care. This issue is more serious in Nigeria's North Eastern area, where the burden of disease and disability is heavy, and access to care is constrained. This study aims to fill this gap by exploring the roles, challenges and support needs of caregivers, care home management, funding and administration in challenged communities in North Eastern Nigeria. The study will also provide a comprehensive understanding of the current situation and identify opportunities for improving the quality of care and support for caregivers and care recipients in these communities. Methods: A mixed-methods design, including both quantitative and qualitative data collection methods, will be used, and it will be guided by the stress process model of caregiving. The qualitative stage approach will comprise a survey, In-depth interviews, observations, and focus group discussion and the quantitative analysis will be used in order to comprehend the variations between caregiver's roles and care home management. A review of relevant documents, such as care home policies and funding reports, would be used to gather quantitative data on the administrative and financial aspects of care. The data collected will be analyzed using both descriptive statistics and thematic analysis. A sample size of around 200-300 participants, including caregivers, care recipients, care home managers and administrators, policymakers and health care providers, would be recruited. Findings: The study revealed that caregivers in challenged communities in North Eastern Nigeria face significant challenges, including lack of training and support, limited access to funding and resources, and high levels of burnout. Care home management and administration were also found to be inadequate, with a lack of clear policies and procedures and limited oversight and accountability. Conclusion: There is a need for increased investment in training and support for caregivers, as well as a need for improved care home management and administration in challenged communities in North Eastern Nigeria. It also highlights the importance of involving community members in decision-making and planning processes related to care homes and services. The study would contribute to the existing body of knowledge by providing a detailed understanding of the challenges faced by caregivers, care home managers and administrators.

Keywords: caregivers, care home management, funding, administration, challenge communities, North Eastern Nigeria

Procedia PDF Downloads 112
2320 Classification of Red, Green and Blue Values from Face Images Using k-NN Classifier to Predict the Skin or Non-Skin

Authors: Kemal Polat

Abstract:

In this study, it has been estimated whether there is skin by using RBG values obtained from the camera and k-nearest neighbor (k-NN) classifier. The dataset used in this study has an unbalanced distribution and a linearly non-separable structure. This problem can also be called a big data problem. The Skin dataset was taken from UCI machine learning repository. As the classifier, we have used the k-NN method to handle this big data problem. For k value of k-NN classifier, we have used as 1. To train and test the k-NN classifier, 50-50% training-testing partition has been used. As the performance metrics, TP rate, FP Rate, Precision, recall, f-measure and AUC values have been used to evaluate the performance of k-NN classifier. These obtained results are as follows: 0.999, 0.001, 0.999, 0.999, 0.999, and 1,00. As can be seen from the obtained results, this proposed method could be used to predict whether the image is skin or not.

Keywords: k-NN classifier, skin or non-skin classification, RGB values, classification

Procedia PDF Downloads 252
2319 School Counseling in Sri Lanka: Analysis of the past Recommending a Way Forward

Authors: Buddhiprabha D. D. Pathirana

Abstract:

Despite a rapid increase in the number of school counselors in the recent past; procuring the service of school counselors is a luxury that many Sri Lankan schools cannot afford. In addition, school counseling in Sri Lanka also faces new challenges in implementation due to the fact that a generally agreed consensus on training, ethical standards, role identity, counseling model, and structures for school counselors has not been reached. Therefore, this paper has several objectives. First, it reviews a brief history of school counseling in Sri Lanka and describes its current status. Second, it describes current trends/ problems specific to Sri Lankan school counseling milieu which have limited the progress of school counseling as a practice. Third, it discusses societal and cultural issues that are important to consider when implementing school counseling as a practices in Sri Lanka and provides recommendations to improve it.

Keywords: school counseling, Sri Lanka, current situation, recommendations

Procedia PDF Downloads 550
2318 Model Development for Real-Time Human Sitting Posture Detection Using a Camera

Authors: Jheanel E. Estrada, Larry A. Vea

Abstract:

This study developed model to detect proper/improper sitting posture using the built in web camera which detects the upper body points’ location and distances (chin, manubrium and acromion process). It also established relationships of human body frames and proper sitting posture. The models were developed by training some well-known classifiers such as KNN, SVM, MLP, and Decision Tree using the data collected from 60 students of different body frames. Decision Tree classifier demonstrated the most promising model performance with an accuracy of 95.35% and a kappa of 0.907 for head and shoulder posture. Results also showed that there were relationships between body frame and posture through Body Mass Index.

Keywords: posture, spinal points, gyroscope, image processing, ergonomics

Procedia PDF Downloads 333
2317 Cellular Traffic Prediction through Multi-Layer Hybrid Network

Authors: Supriya H. S., Chandrakala B. M.

Abstract:

Deep learning based models have been recently successful adoption for network traffic prediction. However, training a deep learning model for various prediction tasks is considered one of the critical tasks due to various reasons. This research work develops Multi-Layer Hybrid Network (MLHN) for network traffic prediction and analysis; MLHN comprises the three distinctive networks for handling the different inputs for custom feature extraction. Furthermore, an optimized and efficient parameter-tuning algorithm is introduced to enhance parameter learning. MLHN is evaluated considering the “Big Data Challenge” dataset considering the Mean Absolute Error, Root Mean Square Error and R^2as metrics; furthermore, MLHN efficiency is proved through comparison with a state-of-art approach.

Keywords: MLHN, network traffic prediction

Procedia PDF Downloads 94
2316 Vocational and Technical Education in Nigeria: Issues and Challenges

Authors: Maikudi Umar

Abstract:

This paper conceived Vocational and Technical Education as those aspects of educational process, in addition to general education leading to acquisition of practical skills, attitudes as well as basic scientific knowledge as it relates to occupations in various sectors of the economic and social life. The paper therefore viewed Vocational and Technical education as those aspects of educational training designed to provide the recipient with the skills abilities and understanding needed for efficient performance in chosen occupational carrier for self reliance. The paper also examined some major inhibitions to the attainment of self reliance through VTE. The paper also recommended a change of attitudes by governments in Nigeria by providing adequate equipment so as to meet up with the challenges.

Keywords: vocational education, technical education, skills and self reliance, issues and challenges

Procedia PDF Downloads 481
2315 The Influence of Work Experience on Conflict Management Styles of Organizational Members

Authors: Faris Alghamdi

Abstract:

Identifying which conflict management styles organizational members prefer, and what variables influence these selections, is an essential component of organizational conflict management as well as human resource management, particularly in training and development strategies. This study aims to examine the relationship between work experience and preferred conflict management styles. Utilizing the Rahim Organizational Conflict Inventory- II Form C, data were collected from 109 full-time employees of various organizations in the Eastern province of Saudi Arabia. The Pearson’s correlation coefficient analysis showed a statistically significant relationship between the integrating conflict management style and the length of work experience. Nevertheless, this relationship was negative, not positive as hypothesized.

Keywords: conflict management style, organizational members, work experience

Procedia PDF Downloads 416
2314 Artificial Intelligence-Aided Extended Kalman Filter for Magnetometer-Based Orbit Determination

Authors: Gilberto Goracci, Fabio Curti

Abstract:

This work presents a robust, light, and inexpensive algorithm to perform autonomous orbit determination using onboard magnetometer data in real-time. Magnetometers are low-cost and reliable sensors typically available on a spacecraft for attitude determination purposes, thus representing an interesting choice to perform real-time orbit determination without the need to add additional sensors to the spacecraft itself. Magnetic field measurements can be exploited by Extended/Unscented Kalman Filters (EKF/UKF) for orbit determination purposes to make up for GPS outages, yielding errors of a few kilometers and tens of meters per second in the position and velocity of a spacecraft, respectively. While this level of accuracy shows that Kalman filtering represents a solid baseline for autonomous orbit determination, it is not enough to provide a reliable state estimation in the absence of GPS signals. This work combines the solidity and reliability of the EKF with the versatility of a Recurrent Neural Network (RNN) architecture to further increase the precision of the state estimation. Deep learning models, in fact, can grasp nonlinear relations between the inputs, in this case, the magnetometer data and the EKF state estimations, and the targets, namely the true position, and velocity of the spacecraft. The model has been pre-trained on Sun-Synchronous orbits (SSO) up to 2126 kilometers of altitude with different initial conditions and levels of noise to cover a wide range of possible real-case scenarios. The orbits have been propagated considering J2-level dynamics, and the geomagnetic field has been modeled using the International Geomagnetic Reference Field (IGRF) coefficients up to the 13th order. The training of the module can be completed offline using the expected orbit of the spacecraft to heavily reduce the onboard computational burden. Once the spacecraft is launched, the model can use the GPS signal, if available, to fine-tune the parameters on the actual orbit onboard in real-time and work autonomously during GPS outages. In this way, the provided module shows versatility, as it can be applied to any mission operating in SSO, but at the same time, the training is completed and eventually fine-tuned, on the specific orbit, increasing performances and reliability. The results provided by this study show an increase of one order of magnitude in the precision of state estimate with respect to the use of the EKF alone. Tests on simulated and real data will be shown.

Keywords: artificial intelligence, extended Kalman filter, orbit determination, magnetic field

Procedia PDF Downloads 110
2313 Performance Evaluation of the Classic seq2seq Model versus a Proposed Semi-supervised Long Short-Term Memory Autoencoder for Time Series Data Forecasting

Authors: Aswathi Thrivikraman, S. Advaith

Abstract:

The study is aimed at designing encoders for deciphering intricacies in time series data by redescribing the dynamics operating on a lower-dimensional manifold. A semi-supervised LSTM autoencoder is devised and investigated to see if the latent representation of the time series data can better forecast the data. End-to-end training of the LSTM autoencoder, together with another LSTM network that is connected to the latent space, forces the hidden states of the encoder to represent the most meaningful latent variables relevant for forecasting. Furthermore, the study compares the predictions with those of a traditional seq2seq model.

Keywords: LSTM, autoencoder, forecasting, seq2seq model

Procedia PDF Downloads 160
2312 Examining the Role of Farmer-Centered Participatory Action Learning in Building Sustainable Communities in Rural Haiti

Authors: Charles St. Geste, Michael Neumann, Catherine Twohig

Abstract:

Our primary aim is to examine farmer-centered participatory action learning as a tool to improve agricultural production, build resilience to climate shocks and, more broadly, advance community-driven solutions for sustainable development in rural communities across Haiti. For over six years, sixty plus farmers from Deslandes, Haiti, organized in three traditional work groups called konbits, have designed and tested low-input agroecology techniques as part of the Konbit Vanyan Kapab Pwoje Agroekoloji. The project utilizes a participatory action learning approach, emphasizing social inclusion, building on local knowledge, experiential learning, active farmer participation in trial design and evaluation, and cross-community sharing. Mixed methods were used to evaluate changes in knowledge and adoption of agroecology techniques, confidence in advancing agroecology locally, and innovation among Konbit Vanyan Kapab farmers. While skill and knowledge in application of agroecology techniques varied among individual farmers, a majority of farmers successfully adopted techniques outside of the trial farms. The use of agroecology techniques on trial and individual farms has doubled crop production in many cases. Farm income has also increased, and farmers report less damage to crops and property caused by extreme weather events. Furthermore, participatory action strategies have led to greater local self-determination and greater capacity for sustainable community development. With increased self-confidence and the knowledge and skills acquired from participating in the project, farmers prioritized sharing their successful techniques with other farmers and have developed a farmer-to-farmer training program that incorporates participatory action learning. Using adult education methods, farmers, trained as agroecology educators, are currently providing training in sustainable farming practices to farmers from five villages in three departments across Haiti. Konbit Vanyan Kapab farmers have also begun testing production of value-added food products, including a dried soup mix and tea. Key factors for success include: opportunities for farmers to actively participate in all phases of the project, group diversity, resources for application of agroecology techniques, focus on group processes and overcoming local barriers to inclusive decision-making.

Keywords: agroecology, participatory action learning, rural Haiti, sustainable community development

Procedia PDF Downloads 159
2311 Practicing Inclusion for Hard of Hearing and Deaf Students in Regular Schools in Ethiopia

Authors: Mesfin Abebe Molla

Abstract:

This research aims to examine the practices of inclusion of the hard of hearing and deaf students in regular schools. It also focuses on exploring strategies for optimal benefits of students with Hard of Hearing and Deaf (HH-D) from inclusion. Concurrent mixed methods research design was used to collect quantitative and qualitative data. The instruments used to gather data for this study were questionnaire, semi- structured interview, and observations. A total of 102 HH-D students and 42 primary and High School teachers were selected using simple random sampling technique and used as participants to collect quantitative data. Non-probability sampling technique was also employed to select 14 participants (4-school principals, 6-teachers and 4-parents of HH-D students) and they were interviewed to collect qualitative data. Descriptive and inferential statistical techniques (independent sample t-test, one way ANOVA and Multiple regressions) were employed to analyze quantitative data. Qualitative data were also analyzed qualitatively by theme analysis. The findings reported that there were individual principals’, teachers’ and parents’ strong commitment and efforts for practicing inclusion of HH-D students effectively; however, most of the core values of inclusion were missing in both schools. Most of the teachers (78.6 %) and HH-D students (75.5%) had negative attitude and considerable reservations about the feasibility of inclusion of HH-D students in both schools. Furthermore, there was a statistically significant difference of attitude toward to inclusion between the two school’s teachers and the teachers’ who had taken and had not taken additional training on IE and sign language. The study also indicated that there was a statistically significant difference of attitude toward to inclusion between hard of hearing and deaf students. However, the overall contribution of the demographic variables of teachers and HH-D students on their attitude toward inclusion is not statistically significant. The finding also showed that HH-D students did not have access to modified curriculum which would maximize their abilities and help them to learn together with their hearing peers. In addition, there is no clear and adequate direction for the medium of instruction. Poor school organization and management, lack of commitment, financial resources, collaboration and teachers’ inadequate training on Inclusive Education (IE) and sign language, large class size, inappropriate assessment procedure, lack of trained deaf adult personnel who can serve as role model for HH-D students and lack of parents and community members’ involvement were some of the major factors that affect the practicing inclusion of students HH-D. Finally, recommendations are made to improve the practices of inclusion of HH-D students and to make inclusion of HH-D students an integrated part of Ethiopian education based on the findings of the study.

Keywords: deaf, hard of hearing, inclusion, regular schools

Procedia PDF Downloads 347
2310 Exploring the Current Practice of Integrating Sustainability into the Social Studies and Citizenship Education Curriculum in the Saudi Educational Context

Authors: Aiydh Aljeddani, Fran Martin

Abstract:

The study mainly aims at exploring and understanding the current practice of social studies and citizenship education curriculum contribution to sustainability literacy and competency of the ninth and tenth grade students in the Saudi general education context. This study stems from a need for conducting research in general education contexts in order to prepare future graduate students who possess fundamental elements of education for sustainable development. To the best of our knowledge, the literature on education for sustainable development reveals that little research has been conducted so far on general education contexts and this study will add new knowledge in the literature. The study is interpretive in nature and employs a qualitative case study approach, and ethnography methodologies to understand deeply this complex educational phenomenon. 167 participants took part in this study, they were from six general education schools and made up of 25 teachers, and 142 students. Document analysis, semi-structured interviews, nominal group technique, and passive participant observation were used in order to gather the data for this study. The outcomes of the study showed the keenness of the Saudi government on promoting and raising awareness education for sustainable development among its younger generation via a sustainable development promoting curriculum. However, applying this vision in a real school setting, particularly via the social studies and citizenship education curriculum in grades nine and ten, has been challenging for different reasons as revealed by this study. First, incorporating sustainability in the social studies and citizenship education curriculum in the Saudi grade ninth and tenth grade, is based on the vision of the Saudi government but the ministry of education’s rules and regulations do not support it. Moreover, the circulars issued by the ministry are also not supportive of teachers and students efforts to implement a sustainable development education curriculum. Second, teachers, as members of this community who play a significant role in achieving the objectives of incorporating sustainability, are often seen as technicians and not as professional human beings. They are confined to the curriculum, the classroom and stripped of their will power by the school management and the educational administration. The subjects, who are students here, are also not prepared nor guided to achieve the objects. In addition, the tools mediated between subjects and objects are not convenient. There were some major challenges regarding the contradictions in incorporating sustainability processes such as demanding creativity from a teacher who is overloaded with tasks irrelevant to teaching and teachers’ training programs not meeting the teachers’ training needs.

Keywords: practice, integrating sustainability, curriculum, educational context

Procedia PDF Downloads 401
2309 OSEME: A Smart Learning Environment for Music Education

Authors: Konstantinos Sofianos, Michael Stefanidakis

Abstract:

Nowadays, advances in information and communication technologies offer a range of opportunities for new approaches, methods, and tools in the field of education and training. Teacher-centered learning has changed to student-centered learning. E-learning has now matured and enables the design and construction of intelligent learning systems. A smart learning system fully adapts to a student's needs and provides them with an education based on their preferences, learning styles, and learning backgrounds. It is a wise friend and available at any time, in any place, and with any digital device. In this paper, we propose an intelligent learning system, which includes an ontology with all elements of the learning process (learning objects, learning activities) and a massive open online course (MOOC) system. This intelligent learning system can be used in music education.

Keywords: intelligent learning systems, e-learning, music education, ontology, semantic web

Procedia PDF Downloads 317
2308 Target Training on Chinese as a Tonal Language for Better Communication

Authors: Qi Wang

Abstract:

Accurate pronunciation is the first condition of communication. Compared with the alphabetic languages, Chinese is more difficult for the foreigners to study as a second language, due to the tonal language with the meaningful characters as the written system, especially speaking. This research first presents the statistics of the typical errors of the pronunciations, based on the data of our two- year program of graduate students, which shown 90% of their speaking with strong foreign accents and no obvious change of the pitches, even if they could speak Chinese fluently. Second part, analyzed the caused reasons in the learning and teaching processes. Third part, this result of this research, based the theory of Chinese prosodic words, shown that the earlier the students get trained on prosodics at the beginning and suprasegmentals at intermediate and advanced levels, the better effects for them to communicate in Chinese as a second language.

Keywords: second language, prosodic word, foot, suprasegmental

Procedia PDF Downloads 466