Search results for: health data standards
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31588

Search results for: health data standards

29998 Data Mining Practices: Practical Studies on the Telecommunication Companies in Jordan

Authors: Dina Ahmad Alkhodary

Abstract:

This study aimed to investigate the practices of Data Mining on the telecommunication companies in Jordan, from the viewpoint of the respondents. In order to achieve the goal of the study, and test the validity of hypotheses, the researcher has designed a questionnaire to collect data from managers and staff members from main department in the researched companies. The results shows improvements stages of the telecommunications companies towered Data Mining.

Keywords: data, mining, development, business

Procedia PDF Downloads 498
29997 Cut-Off of CMV Cobas® Taqman® (CAP/CTM Roche®) for Introduction of Ganciclovir Pre-Emptive Therapy in Allogeneic Hematopoietic Stem Cell Transplant Recipients

Authors: B. B. S. Pereira, M. O. Souza, L. P. Zanetti, L. C. S. Oliveira, J. R. P. Moreno, M. P. Souza, V. R. Colturato, C. M. Machado

Abstract:

Background: The introduction of prophylactic or preemptive therapies has effectively decreased the CMV mortality rates after hematopoietic stem cell transplantation (HSCT). CMV antigenemia (pp65) or quantitative PCR are methods currently approved for CMV surveillance in pre-emptive strategies. Commercial assays are preferred as cut-off levels defined by in-house assays may vary among different protocols and in general show low reproducibility. Moreover, comparison of published data among different centers is only possible if international standards of quantification are included in the assays. Recently, the World Health Organization (WHO) established the first international standard for CMV detection. The real time PCR COBAS Ampliprep/ CobasTaqMan (CAP/CTM) (Roche®) was developed using the WHO standard for CMV quantification. However, the cut-off for the introduction of antiviral has not been determined yet. Methods: We conducted a retrospective study to determine: 1) the sensitivity and specificity of the new CMV CAP/CTM test in comparison with pp65 antigenemia to detect episodes of CMV infection/reactivation, and 2) the cut-off of viral load for introduction of ganciclovir (GCV). Pp65 antigenemia was performed and the corresponding plasma samples were stored at -20°C for further CMV detection by CAP/CTM. Comparison of tests was performed by kappa index. The appearance of positive antigenemia was considered the state variable to determine the cut-off of CMV viral load by ROC curve. Statistical analysis was performed using SPSS software version 19 (SPSS, Chicago, IL, USA.). Results: Thirty-eight patients were included and followed from August 2014 through May 2015. The antigenemia test detected 53 episodes of CMV infection in 34 patients (89.5%), while CAP/CTM detected 37 episodes in 33 patients (86.8%). AG and PCR results were compared in 431 samples and Kappa index was 30.9%. The median time for first AG detection was 42 (28-140) days, while CAP/CTM detected at a median of 7 days earlier (34 days, ranging from 7 to 110 days). The optimum cut-off value of CMV DNA was 34.25 IU/mL to detect positive antigenemia with 88.2% of sensibility, 100% of specificity and AUC of 0.91. This cut-off value is below the limit of detection and quantification of the equipment which is 56 IU/mL. According to CMV recurrence definition, 16 episodes of CMV recurrence were detected by antigenemia (47.1%) and 4 (12.1%) by CAP/CTM. The duration of viremia as detected by antigenemia was shorter (60.5% of the episodes lasted ≤ 7 days) in comparison to CAP/CTM (57.9% of the episodes lasting 15 days or more). This data suggests that the use of antigenemia to define the duration of GCV therapy might prompt early interruption of antiviral, which may favor CMV reactivation. The CAP/CTM PCR could possibly provide a safer information concerning the duration of GCV therapy. As prolonged treatment may increase the risk of toxicity, this hypothesis should be confirmed in prospective trials. Conclusions: Even though CAP/CTM by ROCHE showed great qualitative correlation with the antigenemia technique, the fully automated CAP/CTM did not demonstrate increased sensitivity. The cut-off value below the limit of detection and quantification may result in delayed introduction of pre-emptive therapy.

Keywords: antigenemia, CMV COBAS/TAQMAN, cytomegalovirus, antiviral cut-off

Procedia PDF Downloads 191
29996 Criterion-Referenced Test Reliability through Threshold Loss Agreement: Fuzzy Logic Analysis Approach

Authors: Mohammad Ali Alavidoost, Hossein Bozorgian

Abstract:

Criterion-referenced tests (CRTs) are designed to measure student performance against a fixed set of predetermined criteria or learning standards. The reliability of such tests cannot be based on internal reliability. Threshold loss agreement is one way to calculate the reliability of CRTs. However, the selection of master and non-master in such agreement is determined by the threshold point. The problem is if the threshold point witnesses a minute change, the selection of master and non-master may have a drastic change, leading to the change in reliability results. Therefore, in this study, the Fuzzy logic approach is employed as a remedial procedure for data analysis to obviate the threshold point problem. Forty-one Iranian students were selected; the participants were all between 20 and 30 years old. A quantitative approach was used to address the research questions. In doing so, a quasi-experimental design was utilized since the selection of the participants was not randomized. Based on the Fuzzy logic approach, the threshold point would be more stable during the analysis, resulting in rather constant reliability results and more precise assessment.

Keywords: criterion-referenced tests, threshold loss agreement, threshold point, fuzzy logic approach

Procedia PDF Downloads 369
29995 Remaining Useful Life Estimation of Bearings Based on Nonlinear Dimensional Reduction Combined with Timing Signals

Authors: Zhongmin Wang, Wudong Fan, Hengshan Zhang, Yimin Zhou

Abstract:

In data-driven prognostic methods, the prediction accuracy of the estimation for remaining useful life of bearings mainly depends on the performance of health indicators, which are usually fused some statistical features extracted from vibrating signals. However, the existing health indicators have the following two drawbacks: (1) The differnet ranges of the statistical features have the different contributions to construct the health indicators, the expert knowledge is required to extract the features. (2) When convolutional neural networks are utilized to tackle time-frequency features of signals, the time-series of signals are not considered. To overcome these drawbacks, in this study, the method combining convolutional neural network with gated recurrent unit is proposed to extract the time-frequency image features. The extracted features are utilized to construct health indicator and predict remaining useful life of bearings. First, original signals are converted into time-frequency images by using continuous wavelet transform so as to form the original feature sets. Second, with convolutional and pooling layers of convolutional neural networks, the most sensitive features of time-frequency images are selected from the original feature sets. Finally, these selected features are fed into the gated recurrent unit to construct the health indicator. The results state that the proposed method shows the enhance performance than the related studies which have used the same bearing dataset provided by PRONOSTIA.

Keywords: continuous wavelet transform, convolution neural net-work, gated recurrent unit, health indicators, remaining useful life

Procedia PDF Downloads 133
29994 Cross-Sectional Study Investigating the Prevalence of Uncorrected Refractive Error and Visual Acuity through Mobile Vision Screening in the Homeless in Wales

Authors: Pakinee Pooprasert, Wanxin Wang, Tina Parmar, Dana Ahnood, Tafadzwa Young-Zvandasara, James Morgan

Abstract:

Homelessness has been shown to be correlated to poor health outcomes, including increased visual health morbidity. Despite this, there are relatively few studies regarding visual health in the homeless population, especially in the UK. This research aims to investigate visual disability and access barriers prevalent in the homeless population in Cardiff, South Wales. Data was collected from 100 homeless participants in three different shelters. Visual outcomes included near and distance visual acuity as well as non-cycloplegic refraction. Qualitative data was collected via a questionnaire and included socio-demographic profile, ocular history, subjective visual acuity and level of access to healthcare facilities. Based on the participants’ presenting visual acuity, the total prevalence of myopia and hyperopia was 17.0% and 19.0% respectively based on spherical equivalent from the eye with the greatest absolute value. The prevalence of astigmatism was 8.0%. The mean absolute spherical equivalent was 0.841D and 0.853D for right and left eye respectively. The number of participants with sight loss (as defined by VA= 6/12-6/60 in the better-seeing eye) was 27.0% in comparison to 0.89% and 1.1% in the general Cardiff and Wales population respectively (p-value is < 0.05). Additionally, 1.0% of the homeless subjects were registered blind (VA less than 3/60), in comparison to 0.17% for the national consensus after age standardization. Most participants had good knowledge regarding access to prescription glasses and eye examination services. Despite this, 85.0% never had their eyes examined by a doctor and 73.0% had their last optometrist appointment in more than 5 years. These findings suggested that there was a significant disparity in ocular health, including visual acuity and refractive error amongst the homeless in comparison to the general population. Further, the homeless were less likely to receive the same level of support and continued care in the community due to access barriers. These included a number of socio-economic factors such as travel expenses and regional availability of services, as well as administrative shortcomings. In conclusion, this research demonstrated unmet visual health needs within the homeless, and that inclusive policy changes may need to be implemented for better healthcare outcomes within this marginalized community.

Keywords: homelessness, refractive error, visual disability, Wales

Procedia PDF Downloads 172
29993 The Effect of Evil Eye in the Individuals' Journey for Personhood within a Christian Orthodox Society

Authors: Nikolaos Souvlakis

Abstract:

The present paper negotiates the effect of 'the evil eye' on individuals' mental health while at the same time poses the problem of how the evil eye fits into the anthropological arena as a key question that forges a fundamental link between religion, anthropology and mental health professions. It is the argument of the paper that the evil eye is an essential and fundamental human phenomenon and therefore any scholarly field involved in its study must consider the insight it provides into the development of personhood. The study was an anthropological study in the geographical area of Corfu, a Greek Orthodox society uninfluenced by the Ottoman Islamic Culture. The paper aims to deepen our understanding of the evil eye as it analyses the interaction between the evil eye and gaze and how they affect the development of personhood; based on the empirical data collected from the fieldwork. Therefore, the paper adopts a psychoanalytic anthropology approach to facilitate a better understanding of the evil eye through the accounts of individuals’ journeys in the process of their development of personhood. Finally, the paper aims to offer a detailed analysis of the particular element of eye (‘I’) and, more specifically, of ‘the others’, as they relate to the phenomenon of the evil eye.

Keywords: gaze, evil eye, mental health, personhood

Procedia PDF Downloads 129
29992 The Impact of System and Data Quality on Organizational Success in the Kingdom of Bahrain

Authors: Amal M. Alrayes

Abstract:

Data and system quality play a central role in organizational success, and the quality of any existing information system has a major influence on the effectiveness of overall system performance.Given the importance of system and data quality to an organization, it is relevant to highlight their importance on organizational performance in the Kingdom of Bahrain. This research aims to discover whether system quality and data quality are related, and to study the impact of system and data quality on organizational success. A theoretical model based on previous research is used to show the relationship between data and system quality, and organizational impact. We hypothesize, first, that system quality is positively associated with organizational impact, secondly that system quality is positively associated with data quality, and finally that data quality is positively associated with organizational impact. A questionnaire was conducted among public and private organizations in the Kingdom of Bahrain. The results show that there is a strong association between data and system quality, that affects organizational success.

Keywords: data quality, performance, system quality, Kingdom of Bahrain

Procedia PDF Downloads 493
29991 Environmental Problems (with Examples from Georgia)

Authors: Ana Asratashvili

Abstract:

One of the main issues of state’s economic policy is the environmental problems. The development of society is implementing by the connection with nature. A human being needs different material resources which must be got by the influence on the nature. This relationship between nature and society is complicated and controversial and it was changing from time to time according to human’s evolution. The imprudent and unreasonable usage of natural resources, scientific-technological revolution and the hard pollution of nature related to it caused the disruption of environmental balance between nature and society which has been made for ages and destructively acted on society and environment. Environmental protection is one of the major issues of the European Union all over the world. The aim of EU environmental policy is to improve ecological conditions. Besides, it aims encouraging of careful and rational usage of natural resources. At the same time, the union tries to raise problems related to environmental protection at the international level. After that when scientists concluded anthropogenic impact of human on the nature causes climate changes, the special attention was paid to the environmental protection by developed countries. Global warming will cause floods, storms, draughts and desertification and to solve these results presumably will cost 20% of World GDP by 2050 for developed countries, if, of course, it does not make strict environmental policy. EU member countries have pretty strict environmental standards. Their defense is observed by different state institutions. According to impacts on nature throughout the world the most polluted fumes are made by electricity facilities (44%), transport (20%), industry (18%), domestic and service sector (17%). The special concern to the issues related to the importance of environment by environmentalists is caused by low self-esteem of population about the problems of environment. According to their mind, population is engaged with daily difficulties so that they don’t react much on environmental problems. Correspondingly, the main task for environmental organizations is to inform population and raise self-esteem about environmental issues.

Keywords: economic policy, environment, technological revolution, pollution, environmental, standards, self-esteem

Procedia PDF Downloads 297
29990 The Best Prediction Data Mining Model for Breast Cancer Probability in Women Residents in Kabul

Authors: Mina Jafari, Kobra Hamraee, Saied Hossein Hosseini

Abstract:

The prediction of breast cancer disease is one of the challenges in medicine. In this paper we collected 528 records of women’s information who live in Kabul including demographic, life style, diet and pregnancy data. There are many classification algorithm in breast cancer prediction and tried to find the best model with most accurate result and lowest error rate. We evaluated some other common supervised algorithms in data mining to find the best model in prediction of breast cancer disease among afghan women living in Kabul regarding to momography result as target variable. For evaluating these algorithms we used Cross Validation which is an assured method for measuring the performance of models. After comparing error rate and accuracy of three models: Decision Tree, Naive Bays and Rule Induction, Decision Tree with accuracy of 94.06% and error rate of %15 is found the best model to predicting breast cancer disease based on the health care records.

Keywords: decision tree, breast cancer, probability, data mining

Procedia PDF Downloads 138
29989 Between AACR2 and RDA What Changes Occurs in Them

Authors: Ibrahim Abdullahi Mohammad

Abstract:

A library catalogue exists not only as an inventory of the collections of the particular library, but also as a retrieval device. It is provided to assist the library user in finding whatever information or information resources they may be looking for. The paper proposes that this location objective of the library catalogue can only be fulfilled, if the library catalogue is constructed, bearing in mind the information needs and searching behavior of the library user. Comparing AACR2 and RDA viz-a-viz the changes RDA has introduced into bibliographic standards, the paper tries to establish the level of viability of RDA in relation to AACR2.

Keywords: library catalogue, information retrieval, AACR2, RDA

Procedia PDF Downloads 54
29988 Time, Uncertainty, and Technological Innovation

Authors: Xavier Everaert

Abstract:

Ever since the publication of “The Problem of Social” cost, Coasean insights on externalities, transaction costs, and the reciprocal nature of harms, have been widely debated. What has been largely neglected however, is the role of technological innovation in the mitigation of negative externalities or transaction costs. Incorporating future uncertainty about negligence standards or expected restitution costs and the profit opportunities these uncertainties reveal to entrepreneurs, allow us to frame problems regarding social costs within the reality of rapid technological evolution.

Keywords: environmental law and economics, entrepreneurship, commons, pollution, wildlife

Procedia PDF Downloads 421
29987 Cloud Computing in Data Mining: A Technical Survey

Authors: Ghaemi Reza, Abdollahi Hamid, Dashti Elham

Abstract:

Cloud computing poses a diversity of challenges in data mining operation arising out of the dynamic structure of data distribution as against the use of typical database scenarios in conventional architecture. Due to immense number of users seeking data on daily basis, there is a serious security concerns to cloud providers as well as data providers who put their data on the cloud computing environment. Big data analytics use compute intensive data mining algorithms (Hidden markov, MapReduce parallel programming, Mahot Project, Hadoop distributed file system, K-Means and KMediod, Apriori) that require efficient high performance processors to produce timely results. Data mining algorithms to solve or optimize the model parameters. The challenges that operation has to encounter is the successful transactions to be established with the existing virtual machine environment and the databases to be kept under the control. Several factors have led to the distributed data mining from normal or centralized mining. The approach is as a SaaS which uses multi-agent systems for implementing the different tasks of system. There are still some problems of data mining based on cloud computing, including design and selection of data mining algorithms.

Keywords: cloud computing, data mining, computing models, cloud services

Procedia PDF Downloads 479
29986 Quality is the Matter of All

Authors: Mohamed Hamza, Alex Ohoussou

Abstract:

At JAWDA, our primary focus is on ensuring the satisfaction of our clients worldwide. We are committed to delivering new features on our SaaS platform as quickly as possible while maintaining high-quality standards. In this paper, we highlight two key aspects of testing that represent an evolution of current methods and a potential trend for the future, which have enabled us to uphold our commitment effectively. These aspects are: "One Sandbox per Pull Request" (dynamic test environments instead of static ones) and "QA for All.".

Keywords: QA for all, dynamic sandboxes, QAOPS, CICD, continuous testing, all testers, QA matters for all, 1 sandbox per PR, utilization rate, coverage rate

Procedia PDF Downloads 31
29985 Cross-border Data Transfers to and from South Africa

Authors: Amy Gooden, Meshandren Naidoo

Abstract:

Genetic research and transfers of big data are not confined to a particular jurisdiction, but there is a lack of clarity regarding the legal requirements for importing and exporting such data. Using direct-to-consumer genetic testing (DTC-GT) as an example, this research assesses the status of data sharing into and out of South Africa (SA). While SA laws cover the sending of genetic data out of SA, prohibiting such transfer unless a legal ground exists, the position where genetic data comes into the country depends on the laws of the country from where it is sent – making the legal position less clear.

Keywords: cross-border, data, genetic testing, law, regulation, research, sharing, South Africa

Procedia PDF Downloads 125
29984 Innovations in International Trauma Education: An Evaluation of Learning Outcomes and Community Impact of a Guyanese trauma Training Graduate Program

Authors: Jeffrey Ansloos

Abstract:

International trauma education in low and emerging economies requires innovative methods for capacity building in existing social service infrastructures. This study details the findings of a program evaluation used to assess the learning outcomes and community impact of an international trauma-focused graduate degree program in Guyana. Through a collaborative partnership between Lesley University, the Government of Guyana, and UNICEF, a 2-year low-residency masters degree graduate program in trauma-focused assessment, intervention, and treatment was piloted with a cohort of Guyanese mental health professionals. Through an analytical review of the program development, as well as qualitative data analysis of participant interviews and focus-groups, this study will address the efficacy of the programming in terms of preparedness of professionals to understand, evaluate and implement trauma-informed practices across various child, youth, and family mental health service settings. Strengths and limitations of this international trauma-education delivery model will be discussed with particular emphasis on the role of capacity-building interventions, community-based participatory curriculum development, innovative technological delivery platforms, and interdisciplinary education. Implications for further research and subsequent program development will be discussed.

Keywords: mental health promotion, global health promotion, trauma education, innovations in education, child, youth, mental health education

Procedia PDF Downloads 367
29983 A Qualitative Study to Analyze Clinical Coders’ Decision Making Process of Adverse Drug Event Admissions

Authors: Nisa Mohan

Abstract:

Clinical coding is a feasible method for estimating the national prevalence of adverse drug event (ADE) admissions. However, under-coding of ADE admissions is a limitation of this method. Whilst the under-coding will impact the accurate estimation of the actual burden of ADEs, the feasibility of the coded data in estimating the adverse drug event admissions goes much further compared to the other methods. Therefore, it is necessary to know the reasons for the under-coding in order to improve the clinical coding of ADE admissions. The ability to identify the reasons for the under-coding of ADE admissions rests on understanding the decision-making process of coding ADE admissions. Hence, the current study aimed to explore the decision-making process of clinical coders when coding cases of ADE admissions. Clinical coders from different levels of coding job such as trainee, intermediate and advanced level coders were purposefully selected for the interviews. Thirteen clinical coders were recruited from two Auckland region District Health Board hospitals for the interview study. Semi-structured, one-on-one, face-to-face interviews using open-ended questions were conducted with the selected clinical coders. Interviews were about 20 to 30 minutes long and were audio-recorded with the approval of the participants. The interview data were analysed using a general inductive approach. The interviews with the clinical coders revealed that the coders have targets to meet, and they sometimes hesitate to adhere to the coding standards. Coders deviate from the standard coding processes to make a decision. Coders avoid contacting the doctors for clarifying small doubts such as ADEs and the name of the medications because of the delay in getting a reply from the doctors. They prefer to do some research themselves or take help from their seniors and colleagues for making a decision because they can avoid a long wait to get a reply from the doctors. Coders think of ADE as a small thing. Lack of time for searching for information to confirm an ADE admission, inadequate communication with clinicians, along with coders’ belief that an ADE is a small thing may contribute to the under-coding of the ADE admissions. These findings suggest that further work is needed on interventions to improve the clinical coding of ADE admissions. Providing education to coders about the importance of ADEs, educating clinicians about the importance of clear and confirmed medical records entries, availing pharmacists’ services to improve the detection and clear documentation of ADE admissions, and including a mandatory field in the discharge summary about external causes of diseases may be useful for improving the clinical coding of ADE admissions. The findings of the research will help the policymakers to make informed decisions about the improvements. This study urges the coding policymakers, auditors, and trainers to engage with the unconscious cognitive biases and short-cuts of the clinical coders. This country-specific research conducted in New Zealand may also benefit other countries by providing insight into the clinical coding of ADE admissions and will offer guidance about where to focus changes and improvement initiatives.

Keywords: adverse drug events, clinical coders, decision making, hospital admissions

Procedia PDF Downloads 120
29982 Self‑reported Auditory Problems Are Associated with Adverse Mental Health Outcomes and Alcohol Misuse in the UK Armed Forces

Authors: Fred N. H. Parker, Nicola T. Fear, S. A. M. Stevelink, L. Rafferty

Abstract:

Purpose Auditory problems, such as hearing loss and tinnitus, have been associated with mental health problems and alcohol misuse in the UK general population and in the US Armed Forces; however, few studies have examined these associations within the UK Armed Forces. The present study examined the association between auditory problems and probable common mental disorders, post-traumatic stress disorder and alcohol misuse. Methods 5474 serving and ex-service personnel from the UK Armed Forces were examined, selected from those who responded to phase two (data collection 2007–09) and phase three (2014–16) of a military cohort study. Multivariable logistic regression was used to examine the association between auditory problems at phase two and mental health problems at phase three. Results 9.7% of participants reported ever experiencing hearing problems alone, 7.9% reported tinnitus within the last month alone, and 7.8% reported hearing problems with tinnitus. After adjustment, hearing problems with tinnitus at phase two was associated with increased odds of probable common mental disorders (AOR = 1.50, 95% CI 1.09–2.08), post-traumatic stress disorder (AOR = 2.30, 95% CI 1.41–3.76), and alcohol misuse (AOR = 1.94, 95% CI 1.28–2.96) at phase three. Tinnitus alone was associated with probable post-traumatic stress disorder (AOR = 1.80, 95% CI 1.03–3.15); however, hearing problems alone were not associated with any outcomes of interest. Conclusions The association between auditory problems and mental health problems emphasizes the importance of the prevention of auditory problems in the Armed Forces: through enhanced audiometric screening, improved hearing protection equipment, and greater levels of utilization of such equipment.

Keywords: armed forces, hearing problems, tinnitus, mental health, alcohol misuse

Procedia PDF Downloads 166
29981 PsyVBot: Chatbot for Accurate Depression Diagnosis using Long Short-Term Memory and NLP

Authors: Thaveesha Dheerasekera, Dileeka Sandamali Alwis

Abstract:

The escalating prevalence of mental health issues, such as depression and suicidal ideation, is a matter of significant global concern. It is plausible that a variety of factors, such as life events, social isolation, and preexisting physiological or psychological health conditions, could instigate or exacerbate these conditions. Traditional approaches to diagnosing depression entail a considerable amount of time and necessitate the involvement of adept practitioners. This underscores the necessity for automated systems capable of promptly detecting and diagnosing symptoms of depression. The PsyVBot system employs sophisticated natural language processing and machine learning methodologies, including the use of the NLTK toolkit for dataset preprocessing and the utilization of a Long Short-Term Memory (LSTM) model. The PsyVBot exhibits a remarkable ability to diagnose depression with a 94% accuracy rate through the analysis of user input. Consequently, this resource proves to be efficacious for individuals, particularly those enrolled in academic institutions, who may encounter challenges pertaining to their psychological well-being. The PsyVBot employs a Long Short-Term Memory (LSTM) model that comprises a total of three layers, namely an embedding layer, an LSTM layer, and a dense layer. The stratification of these layers facilitates a precise examination of linguistic patterns that are associated with the condition of depression. The PsyVBot has the capability to accurately assess an individual's level of depression through the identification of linguistic and contextual cues. The task is achieved via a rigorous training regimen, which is executed by utilizing a dataset comprising information sourced from the subreddit r/SuicideWatch. The diverse data present in the dataset ensures precise and delicate identification of symptoms linked with depression, thereby guaranteeing accuracy. PsyVBot not only possesses diagnostic capabilities but also enhances the user experience through the utilization of audio outputs. This feature enables users to engage in more captivating and interactive interactions. The PsyVBot platform offers individuals the opportunity to conveniently diagnose mental health challenges through a confidential and user-friendly interface. Regarding the advancement of PsyVBot, maintaining user confidentiality and upholding ethical principles are of paramount significance. It is imperative to note that diligent efforts are undertaken to adhere to ethical standards, thereby safeguarding the confidentiality of user information and ensuring its security. Moreover, the chatbot fosters a conducive atmosphere that is supportive and compassionate, thereby promoting psychological welfare. In brief, PsyVBot is an automated conversational agent that utilizes an LSTM model to assess the level of depression in accordance with the input provided by the user. The demonstrated accuracy rate of 94% serves as a promising indication of the potential efficacy of employing natural language processing and machine learning techniques in tackling challenges associated with mental health. The reliability of PsyVBot is further improved by the fact that it makes use of the Reddit dataset and incorporates Natural Language Toolkit (NLTK) for preprocessing. PsyVBot represents a pioneering and user-centric solution that furnishes an easily accessible and confidential medium for seeking assistance. The present platform is offered as a modality to tackle the pervasive issue of depression and the contemplation of suicide.

Keywords: chatbot, depression diagnosis, LSTM model, natural language process

Procedia PDF Downloads 69
29980 Spatial Planning of Community Green Infrastructure Based on Public Health Considerations: A Case Study of Kunhou Community

Authors: Shengdan Yang

Abstract:

The outbreak of the COVID-19 pandemic in early 2020 has made public health issues to be re-examined. The value of green space configuration is an important measure of community health quality. By combining quantitative and qualitative methods, the structure and function of community green space can be better evaluated. This study selects Wuhan Kunhou Community as the site and proposes to analyze the daily health service function of the community's green infrastructure. Through GIS-based spatial analysis, case study, and field investigation, this study evaluates the accessibility of green infrastructure and discusses the ideal green space form based on health indicators. The findings show that Kunhou Community lacks access to green infrastructure and public space for daily activities. The research findings provide a bridge between public health indicators and community space planning and propose design suggestions for green infrastructure planning.

Keywords: accessibility, community health, GIS, green infrastructure

Procedia PDF Downloads 112
29979 Assessing the Current State of Wheelchair Accessibility in Shopping Centers and Stores in Saudi Arabia

Authors: Majed M. Mustafa, Abdulrahman A. Altassan

Abstract:

In recent years, ensuring accessibility for all individuals, particularly those with mobility impairments, has gained significant attention in Saudi Arabia. This research aims to evaluate wheelchair accessibility in shopping centers, malls, and stores across the kingdom, highlighting its critical role in promoting inclusivity and equal access. The study will focus on the availability and quality of ramps, automatic doors, lifts, accessible restrooms, and overall ease of navigation for wheelchair users. Utilizing a mixed-methods approach, the research will employ site assessments, user surveys, and interviews with facility managers to gather comprehensive data. Preliminary findings indicate that while some facilities have made strides in accessibility, there are still numerous areas requiring improvement. The study will provide targeted recommendations to enhance accessibility, ensuring that all users can navigate shopping environments with ease and dignity. Conclusively, this research underscores the need for continuous efforts and policy enhancements to achieve universal design standards in public spaces within Saudi Arabia.

Keywords: automatic doors, equal access, ramp quality, wheelchair accessibility

Procedia PDF Downloads 36
29978 Artificial Intelligence Based Abnormality Detection System and Real Valuᵀᴹ Product Design

Authors: Junbeom Lee, Jaehyuck Cho, Wookyeong Jeong, Jonghan Won, Jungmin Hwang, Youngseok Song, Taikyeong Jeong

Abstract:

This paper investigates and analyzes meta-learning technologies that use multiple-cameras to monitor and check abnormal behavior in people in real-time in the area of healthcare fields. Advances in artificial intelligence and computer vision technologies have confirmed that cameras can be useful for individual health monitoring and abnormal behavior detection. Through this, it is possible to establish a system that can respond early by automatically detecting abnormal behavior of the elderly, such as patients and the elderly. In this paper, we use a technique called meta-learning to analyze image data collected from cameras and develop a commercial product to determine abnormal behavior. Meta-learning applies machine learning algorithms to help systems learn and adapt quickly to new real data. Through this, the accuracy and reliability of the abnormal behavior discrimination system can be improved. In addition, this study proposes a meta-learning-based abnormal behavior detection system that includes steps such as data collection and preprocessing, feature extraction and selection, and classification model development. Various healthcare scenarios and experiments analyze the performance of the proposed system and demonstrate excellence compared to other existing methods. Through this study, we present the possibility that camera-based meta-learning technology can be useful for monitoring and testing abnormal behavior in the healthcare area.

Keywords: artificial intelligence, abnormal behavior, early detection, health monitoring

Procedia PDF Downloads 87
29977 Maternal and Newborn Health Care Program Implementation and Integration by Maternal Community Health Workers, Africa: An Integrative Review

Authors: Nishimwe Clemence, Mchunu Gugu, Mukamusoni Dariya

Abstract:

Background: Community health workers and extension workers can play an important role in supporting families to adopt health practices, encourage delivery in a health care facility, and ensure time referral of mothers and newborns if needed. Saving the lives of neonates should, therefore, be a significant health outcome in any maternal and newborn health program that is being implemented. Furthermore, about half of a million mothers die from pregnancy-related causes. Maternal and newborn deaths related to the period of postnatal care are neglected. Some authors emphasized that in developing countries, newborn mortality rates have been reduced much more slowly because of the lack of many necessary facility-based and outreach service. The aim of this review was to critically analyze the implementation and integration process of the maternal and newborn health care program by maternal community health workers, into the health care system, in Africa. Furthermore, it aims to reduce maternal and newborn mortality. We addressed the following review question: (1) what process is involved in the implementation and integration of the maternal and newborn health care program by maternal community health workers during antenatal, delivery and postnatal care into health system care in Africa? Methods: The database searched was from Health Source: Nursing/Academic Edition through academic search complete via EBSCO Host. An iterative approach was used to go through Google scholarly papers. The reviewers considered adapted Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidance, and the Mixed Methods Appraisal Tool (MMAT) was used. Synthesis method in integrative review following elements of noting patterns and themes, seeing plausibility, clustering, counting, making contrasts and comparisons, discerning commons and unusual patterns, subsuming particulars into general, noting relations between variability, finding intervening factors and building a logical chain of evidence, using data–based convergent synthesis design. Results: From the seventeen of studies included, results focused on three dimensions inspired by the literature on antenatal, delivery, and postnatal interventions. From this, further conceptual framework was elaborated. The conceptual framework process of implementation and integration of maternal and newborn health care program by maternal community health workers was elaborated in order to ensure the sustainability of community based intervention. Conclusions: the review revealed that the implementation and integration of maternal and newborn health care program require planning. We call upon governments, non-government organizations, the global health community, all stakeholders including policy makers, program managers, evaluators, educators, and providers to be involved in implementation and integration of maternal and newborn health program in updated policy and community-based intervention. Furthermore, emphasis should be placed on competence, responsibility, and accountability of maternal community health workers, their training and payment, collaboration with health professionals in health facilities, and reinforcement of outreach service. However, the review was limited in focus to the African context, where the process of maternal and newborn health care program has been poorly implemented.

Keywords: Africa, implementation of integration, maternal, newborn

Procedia PDF Downloads 162
29976 The Role of Lifetime Stress in the Relation between Socioeconomic Status and Health-Risk Behaviors

Authors: Teresa Smith, Farrah Jacquez

Abstract:

Health-risk behaviors (e.g., smoking, poor diet) directly increase the risk for chronic disease and morbidity. There is substantial evidence of a negative association between socioeconomic status (SES) and engagement in health-risk behaviors. However, due to the complexity of SES, researchers have suggested looking beyond this factor to fully understand the mechanisms that underlie engagement in health-risk behaviors. Stress is one plausible mechanism through which SES impacts health-risk behaviors. Currently, it remains unclear how stress occurring across the life course might impact health behaviors and explain the association between SES and these behaviors. To address the gaps in the literature, 172 adults between the ages of 18-49 were surveyed about their lifetime stress exposure, sociodemographic variables, and health-risk behaviors via an online recruitment portal, Prolific. Five major findings emerged from the current study. First, SES was negatively associated with engagement in health-risk behaviors and lifetime stress above and beyond current stress and other relevant demographics. Second, lifetime stress was significantly associated with health-risk behaviors above and beyond current stress and relevant demographic variables. Third, lifetime stress fully mediated the association between SES and health-risk behaviors above and beyond current stress and other demographics. Fourth, the severity of stress experienced emerged as the most significant lifetime stress variable that explains the relation between SES and health-risk behaviors. Fifth and finally, lower SES and experiencing financial and legal/crime stressors increased the likelihood of engaging in health-risk behaviors. The current study results align with previous research and suggest that stress occurring over the lifespan impacts the relation between SES and health-risk behaviors, which are in turn known to impact health outcomes. However, our findings move the current literature forward by providing a more nuanced understanding of the specific aspects of stress that influence this association. Specifically, the severity of stress experienced across the entire lifespan was the most important aspect of stress when examining the association between SES and health-risk behaviors. Further, individuals most at risk for engaging in health-risk behaviors are those of the lowest SES and experience financial and legal/crime stressors. These findings have the potential to inform interventions and policies aimed at addressing health-risk behaviors by providing a more sophisticated understanding of the impact of stress.

Keywords: stress, health behaviors, socioeconomic status, health

Procedia PDF Downloads 146
29975 The Study of Security Techniques on Information System for Decision Making

Authors: Tejinder Singh

Abstract:

Information system is the flow of data from different levels to different directions for decision making and data operations in information system (IS). Data can be violated by different manner like manual or technical errors, data tampering or loss of integrity. Security system called firewall of IS is effected by such type of violations. The flow of data among various levels of Information System is done by networking system. The flow of data on network is in form of packets or frames. To protect these packets from unauthorized access, virus attacks, and to maintain the integrity level, network security is an important factor. To protect the data to get pirated, various security techniques are used. This paper represents the various security techniques and signifies different harmful attacks with the help of detailed data analysis. This paper will be beneficial for the organizations to make the system more secure, effective, and beneficial for future decisions making.

Keywords: information systems, data integrity, TCP/IP network, vulnerability, decision, data

Procedia PDF Downloads 307
29974 Data Integration with Geographic Information System Tools for Rural Environmental Monitoring

Authors: Tamas Jancso, Andrea Podor, Eva Nagyne Hajnal, Peter Udvardy, Gabor Nagy, Attila Varga, Meng Qingyan

Abstract:

The paper deals with the conditions and circumstances of integration of remotely sensed data for rural environmental monitoring purposes. The main task is to make decisions during the integration process when we have data sources with different resolution, location, spectral channels, and dimension. In order to have exact knowledge about the integration and data fusion possibilities, it is necessary to know the properties (metadata) that characterize the data. The paper explains the joining of these data sources using their attribute data through a sample project. The resulted product will be used for rural environmental analysis.

Keywords: remote sensing, GIS, metadata, integration, environmental analysis

Procedia PDF Downloads 120
29973 A Survey on Intelligent Traffic Management with Cooperative Driving in Urban Roads

Authors: B. Karabuluter, O. Karaduman

Abstract:

Traffic management and traffic planning are important issues, especially in big cities. Due to the increase of personal vehicles and the physical constraints of urban roads, the problem of transportation especially in crowded cities over time is revealed. This situation reduces the living standards, and it can put human life at risk because the vehicles such as ambulance, fire department are prevented from reaching their targets. Even if the city planners take these problems into account, emergency planning and traffic management are needed to avoid cases such as traffic congestion, intersections, traffic jams caused by traffic accidents or roadworks. In this study, in smart traffic management issues, proposed solutions using intelligent vehicles acting in cooperation with urban roads are examined. Traffic management is becoming more difficult due to factors such as fatigue, carelessness, sleeplessness, social behavior patterns, and lack of education. However, autonomous vehicles, which remove the problems caused by human weaknesses by providing driving control, are increasing the success of practicing the algorithms developed in city traffic management. Such intelligent vehicles have become an important solution in urban life by using 'swarm intelligence' algorithms and cooperative driving methods to provide traffic flow, prevent traffic accidents, and increase living standards. In this study, studies conducted in this area have been dealt with in terms of traffic jam, intersections, regulation of traffic flow, signaling, prevention of traffic accidents, cooperation and communication techniques of vehicles, fleet management, transportation of emergency vehicles. From these concepts, some taxonomies were made out of the way. This work helps to develop new solutions and algorithms for cities where intelligent vehicles that can perform cooperative driving can take place, and at the same time emphasize the trend in this area.

Keywords: intelligent traffic management, cooperative driving, smart driving, urban road, swarm intelligence, connected vehicles

Procedia PDF Downloads 332
29972 Analysis of Genomics Big Data in Cloud Computing Using Fuzzy Logic

Authors: Mohammad Vahed, Ana Sadeghitohidi, Majid Vahed, Hiroki Takahashi

Abstract:

In the genomics field, the huge amounts of data have produced by the next-generation sequencers (NGS). Data volumes are very rapidly growing, as it is postulated that more than one billion bases will be produced per year in 2020. The growth rate of produced data is much faster than Moore's law in computer technology. This makes it more difficult to deal with genomics data, such as storing data, searching information, and finding the hidden information. It is required to develop the analysis platform for genomics big data. Cloud computing newly developed enables us to deal with big data more efficiently. Hadoop is one of the frameworks distributed computing and relies upon the core of a Big Data as a Service (BDaaS). Although many services have adopted this technology, e.g. amazon, there are a few applications in the biology field. Here, we propose a new algorithm to more efficiently deal with the genomics big data, e.g. sequencing data. Our algorithm consists of two parts: First is that BDaaS is applied for handling the data more efficiently. Second is that the hybrid method of MapReduce and Fuzzy logic is applied for data processing. This step can be parallelized in implementation. Our algorithm has great potential in computational analysis of genomics big data, e.g. de novo genome assembly and sequence similarity search. We will discuss our algorithm and its feasibility.

Keywords: big data, fuzzy logic, MapReduce, Hadoop, cloud computing

Procedia PDF Downloads 299
29971 Forthcoming Big Data on Smart Buildings and Cities: An Experimental Study on Correlations among Urban Data

Authors: Yu-Mi Song, Sung-Ah Kim, Dongyoun Shin

Abstract:

Cities are complex systems of diverse and inter-tangled activities. These activities and their complex interrelationships create diverse urban phenomena. And such urban phenomena have considerable influences on the lives of citizens. This research aimed to develop a method to reveal the causes and effects among diverse urban elements in order to enable better understanding of urban activities and, therefrom, to make better urban planning strategies. Specifically, this study was conducted to solve a data-recommendation problem found on a Korean public data homepage. First, a correlation analysis was conducted to find the correlations among random urban data. Then, based on the results of that correlation analysis, the weighted data network of each urban data was provided to people. It is expected that the weights of urban data thereby obtained will provide us with insights into cities and show us how diverse urban activities influence each other and induce feedback.

Keywords: big data, machine learning, ontology model, urban data model

Procedia PDF Downloads 418
29970 Assessment of Health and Safety Item on Construction Site in Ondo State

Authors: Ikumapayi Catherine Mayowa

Abstract:

The well-being of humans on a construction site is critical; abundant manpower had been lost through accidents which kill or make workers physically unfit to carry out construction activities, these, in turn, have multiple effects on the whole economy. Thus, it is necessary to put all safety items and regulations in place before construction activities can commence. This study was carried out in the Ondo state of Nigeria to investigate and analyze the state of health and safety of construction workers in the state. The study was done using first-hand observations, 50 construction project sites were visited in ten major towns of Ondo state, questionnaires were distributed, and the results were analyzed. The result shows that construction workers are being exposed to many construction site hazards due to lack of inadequate safety programs and lack of appropriate safety equipment for workers on site. From the data gotten from each site visited and the statistical analysis, it can be concluded that occurrences of an accident on construction sites depend significantly on the available safety facilities on the sites. The result of the regression statistics shows that the dependence of the frequency of occurrence of an accident on the availability of safety items on the site is 0.0362 which is less than 0.05 maximum significant level allowed. Therefore, a vital way of sustaining our building strategy is given a detail attention to the provision of adequate health and safety items on construction sites which will reduce the occurrence of accident, loss of manpower and death of skilled workers.

Keywords: construction sites, health, safety, welfare

Procedia PDF Downloads 329
29969 Data-driven Decision-Making in Digital Entrepreneurship

Authors: Abeba Nigussie Turi, Xiangming Samuel Li

Abstract:

Data-driven business models are more typical for established businesses than early-stage startups that strive to penetrate a market. This paper provided an extensive discussion on the principles of data analytics for early-stage digital entrepreneurial businesses. Here, we developed data-driven decision-making (DDDM) framework that applies to startups prone to multifaceted barriers in the form of poor data access, technical and financial constraints, to state some. The startup DDDM framework proposed in this paper is novel in its form encompassing startup data analytics enablers and metrics aligning with startups' business models ranging from customer-centric product development to servitization which is the future of modern digital entrepreneurship.

Keywords: startup data analytics, data-driven decision-making, data acquisition, data generation, digital entrepreneurship

Procedia PDF Downloads 329