Search results for: development%20scale
283 Remote Sensing of Urban Land Cover Change: Trends, Driving Forces, and Indicators
Authors: Wei Ji
Abstract:
This study was conducted in the Kansas City metropolitan area of the United States, which has experienced significant urban sprawling in recent decades. The remote sensing of land cover changes in this area spanned over four decades from 1972 through 2010. The project was implemented in two stages: the first stage focused on detection of long-term trends of urban land cover change, while the second one examined how to detect the coupled effects of human impact and climate change on urban landscapes. For the first-stage study, six Landsat images were used with a time interval of about five years for the period from 1972 through 2001. Four major land cover types, built-up land, forestland, non-forest vegetation land, and surface water, were mapped using supervised image classification techniques. The study found that over the three decades the built-up lands in the study area were more than doubled, which was mainly at the expense of non-forest vegetation lands. Surprisingly and interestingly, the area also saw a significant gain in surface water coverage. This observation raised questions: How have human activities and precipitation variation jointly impacted surface water cover during recent decades? How can we detect such coupled impacts through remote sensing analysis? These questions led to the second stage of the study, in which we designed and developed approaches to detecting fine-scale surface waters and analyzing coupled effects of human impact and precipitation variation on the waters. To effectively detect urban landscape changes that might be jointly shaped by precipitation variation, our study proposed “urban wetscapes” (loosely-defined urban wetlands) as a new indicator for remote sensing detection. The study examined whether urban wetscape dynamics was a sensitive indicator of the coupled effects of the two driving forces. To better detect this indicator, a rule-based classification algorithm was developed to identify fine-scale, hidden wetlands that could not be appropriately detected based on their spectral differentiability by a traditional image classification. Three SPOT images for years 1992, 2008, and 2010, respectively were classified with this technique to generate the four types of land cover as described above. The spatial analyses of remotely-sensed wetscape changes were implemented at the scales of metropolitan, watershed, and sub-watershed, as well as based on the size of surface water bodies in order to accurately reveal urban wetscape change trends in relation to the driving forces. The study identified that urban wetscape dynamics varied in trend and magnitude from the metropolitan, watersheds, to sub-watersheds in response to human impacts at different scales. The study also found that increased precipitation in the region in the past decades swelled larger wetlands in particular while generally smaller wetlands decreased mainly due to human development activities. These results confirm that wetscape dynamics can effectively reveal the coupled effects of human impact and climate change on urban landscapes. As such, remote sensing of this indicator provides new insights into the relationships between urban land cover changes and driving forces.Keywords: urban land cover, human impact, climate change, rule-based classification, across-scale analysis
Procedia PDF Downloads 311282 Urban Heat Islands Analysis of Matera, Italy Based on the Change of Land Cover Using Satellite Landsat Images from 2000 to 2017
Authors: Giuseppina Anna Giorgio, Angela Lorusso, Maria Ragosta, Vito Telesca
Abstract:
Climate change is a major public health threat due to the effects of extreme weather events on human health and on quality of life in general. In this context, mean temperatures are increasing, in particular, extreme temperatures, with heat waves becoming more frequent, more intense, and longer lasting. In many cities, extreme heat waves have drastically increased, giving rise to so-called Urban Heat Island (UHI) phenomenon. In an urban centre, maximum temperatures may be up to 10° C warmer, due to different local atmospheric conditions. UHI occurs in the metropolitan areas as function of the population size and density of a city. It consists of a significant difference in temperature compared to the rural/suburban areas. Increasing industrialization and urbanization have increased this phenomenon and it has recently also been detected in small cities. Weather conditions and land use are one of the key parameters in the formation of UHI. In particular surface urban heat island is directly related to temperatures, to land surface types and surface modifications. The present study concern a UHI analysis of Matera city (Italy) based on the analysis of temperature, change in land use and land cover, using Corine Land Cover maps and satellite Landsat images. Matera, located in Southern Italy, has a typical Mediterranean climate with mild winters and hot and humid summers. Moreover, Matera has been awarded the international title of the 2019 European Capital of Culture. Matera represents a significant example of vernacular architecture. The structure of the city is articulated by a vertical succession of dug layers sometimes excavated or partly excavated and partly built, according to the original shape and height of the calcarenitic slope. In this study, two meteorological stations were selected: MTA (MaTera Alsia, in industrial zone) and MTCP (MaTera Civil Protection, suburban area located in a green zone). In order to evaluate the increase in temperatures (in terms of UHI occurrences) over time, and evaluating the effect of land use on weather conditions, the climate variability of temperatures for both stations was explored. Results show that UHI phenomena is growing in Matera city, with an increase of maximum temperature values at a local scale. Subsequently, spatial analysis was conducted by Landsat satellite images. Four years was selected in the summer period (27/08/2000, 27/07/2006, 11/07/2012, 02/08/2017). In Particular, Landsat 7 ETM+ for 2000, 2006 and 2012 years; Landsat 8 OLI/TIRS for 2017. In order to estimate the LST, Mono Window Algorithm was applied. Therefore, the increase of LST values spatial scale trend has been verified, in according to results obtained at local scale. Finally, the analysis of land use maps over the years by the LST and/or the maximum temperatures measured, show that the development of industrialized area produces a corresponding increase in temperatures and consequently a growth in UHI.Keywords: climate variability, land surface temperature, LANDSAT images, urban heat island
Procedia PDF Downloads 128281 Artificial Intelligence Based Method in Identifying Tumour Infiltrating Lymphocytes of Triple Negative Breast Cancer
Authors: Nurkhairul Bariyah Baharun, Afzan Adam, Reena Rahayu Md Zin
Abstract:
Tumor microenvironment (TME) in breast cancer is mainly composed of cancer cells, immune cells, and stromal cells. The interaction between cancer cells and their microenvironment plays an important role in tumor development, progression, and treatment response. The TME in breast cancer includes tumor-infiltrating lymphocytes (TILs) that are implicated in killing tumor cells. TILs can be found in tumor stroma (sTILs) and within the tumor (iTILs). TILs in triple negative breast cancer (TNBC) have been demonstrated to have prognostic and potentially predictive value. The international Immune-Oncology Biomarker Working Group (TIL-WG) had developed a guideline focus on the assessment of sTILs using hematoxylin and eosin (H&E)-stained slides. According to the guideline, the pathologists use “eye balling” method on the H&E stained- slide for sTILs assessment. This method has low precision, poor interobserver reproducibility, and is time-consuming for a comprehensive evaluation, besides only counted sTILs in their assessment. The TIL-WG has therefore recommended that any algorithm for computational assessment of TILs utilizing the guidelines provided to overcome the limitations of manual assessment, thus providing highly accurate and reliable TILs detection and classification for reproducible and quantitative measurement. This study is carried out to develop a TNBC digital whole slide image (WSI) dataset from H&E-stained slides and IHC (CD4+ and CD8+) stained slides. TNBC cases were retrieved from the database of the Department of Pathology, Hospital Canselor Tuanku Muhriz (HCTM). TNBC cases diagnosed between the year 2010 and 2021 with no history of other cancer and available block tissue were included in the study (n=58). Tissue blocks were sectioned approximately 4 µm for H&E and IHC stain. The H&E staining was performed according to a well-established protocol. Indirect IHC stain was also performed on the tissue sections using protocol from Diagnostic BioSystems PolyVue™ Plus Kit, USA. The slides were stained with rabbit monoclonal, CD8 antibody (SP16) and Rabbit monoclonal, CD4 antibody (EP204). The selected and quality-checked slides were then scanned using a high-resolution whole slide scanner (Pannoramic DESK II DW- slide scanner) to digitalize the tissue image with a pixel resolution of 20x magnification. A manual TILs (sTILs and iTILs) assessment was then carried out by the appointed pathologist (2 pathologists) for manual TILs scoring from the digital WSIs following the guideline developed by TIL-WG 2014, and the result displayed as the percentage of sTILs and iTILs per mm² stromal and tumour area on the tissue. Following this, we aimed to develop an automated digital image scoring framework that incorporates key elements of manual guidelines (including both sTILs and iTILs) using manually annotated data for robust and objective quantification of TILs in TNBC. From the study, we have developed a digital dataset of TNBC H&E and IHC (CD4+ and CD8+) stained slides. We hope that an automated based scoring method can provide quantitative and interpretable TILs scoring, which correlates with the manual pathologist-derived sTILs and iTILs scoring and thus has potential prognostic implications.Keywords: automated quantification, digital pathology, triple negative breast cancer, tumour infiltrating lymphocytes
Procedia PDF Downloads 121280 Environmentally Sustainable Transparent Wood: A Fully Green Approach from Bleaching to Impregnation for Energy-Efficient Engineered Wood Components
Authors: Francesca Gullo, Paola Palmero, Massimo Messori
Abstract:
Transparent wood is considered a promising structural material for the development of environmentally friendly, energy-efficient engineered components. To obtain transparent wood from natural wood materials two approaches can be used: i) bottom-up and ii) top-down. Through the second method, the color of natural wood samples is lightened through a chemical bleaching process that acts on chromophore groups of lignin, such as the benzene ring, quinonoid, vinyl, phenolics, and carbonyl groups. These chromophoric units form complex conjugate systems responsible for the brown color of wood. There are two strategies to remove color and increase the whiteness of wood: i) lignin removal and ii) lignin bleaching. In the lignin removal strategy, strong chemicals containing chlorine (chlorine, hypochlorite, and chlorine dioxide) and oxidizers (oxygen, ozone, and peroxide) are used to completely destroy and dissolve the lignin. In lignin bleaching methods, a moderate reductive (hydrosulfite) or oxidative (hydrogen peroxide) is commonly used to alter or remove the groups and chromophore systems of lignin, selectively discoloring the lignin while keeping the macrostructure intact. It is, therefore, essential to manipulate nanostructured wood by precisely controlling the nanopores in the cell walls by monitoring both chemical treatments and process conditions, for instance, the treatment time, the concentration of chemical solutions, the pH value, and the temperature. The elimination of wood light scattering is the second step in the fabrication of transparent wood materials, which can be achieved through two-step approaches: i) the polymer impregnation method and ii) the densification method. For the polymer impregnation method, the wood scaffold is treated with polymers having a corresponding refractive index (e.g., PMMA and epoxy resins) under vacuum to obtain the transparent composite material, which can finally be pressed to align the cellulose fibers and reduce interfacial defects in order to have a finished product with high transmittance (>90%) and excellent light-guiding. However, both the solution-based bleaching and the impregnation processes used to produce transparent wood generally consume large amounts of energy and chemicals, including some toxic or pollutant agents, and are difficult to scale up industrially. Here, we report a method to produce optically transparent wood by modifying the lignin structure with a chemical reaction at room temperature using small amounts of hydrogen peroxide in an alkaline environment. This method preserves the lignin, which results only deconjugated and acts as a binder, providing both a strong wood scaffold and suitable porosity for infiltration of biobased polymers while reducing chemical consumption, the toxicity of the reagents used, polluting waste, petroleum by-products, energy and processing time. The resulting transparent wood demonstrates high transmittance and low thermal conductivity. Through the combination of process efficiency and scalability, the obtained materials are promising candidates for application in the field of construction for modern energy-efficient buildings.Keywords: bleached wood, energy-efficient components, hydrogen peroxide, transparent wood, wood composites
Procedia PDF Downloads 59279 Investigation of Natural Resource Sufficiency for Development of a Sustainable Agriculture Strategy Based on Permaculture in Malta
Authors: Byron Baron
Abstract:
Typical of the Mediterranean region, the Maltese islands exhibit calcareous soils containing low organic carbon content and high salinity, in addition to being relatively shallow. This has lead to the common practice of applying copious amounts of artificial fertilisers as well as other chemical inputs, together with the use of ground water having high salinity. Such intensive agricultural activities, over a prolonged time period, on such land has lead further to the loss of any soil fertility, together with direct negative impacts on the quality of fresh water reserves and the local ecosystem. The aim of this study was to investigate whether the natural resources on the island would be sufficient to apply ecological intensification i.e. the use of natural processes to replace anthropological inputs without any significant loss in food production. This was implementing through a sustainable agricultural system based on permaculture practices. Ecological intensification following permaculture principles was implemented for two years in order to capture the seasonal changes in duplicate. The areas dedicated to wild plants were only trimmed back to avoid excessive seeding but never mowing. A number of local staple crops were grown throughout this period, also in duplicate. Concomitantly, a number of practices were implemented following permaculture principles such as reducing land tilling, applying only natural fertiliser, mulching, monitoring of soil parameters using sensors, no use of herbicides or pesticides, and precision irrigation linked to a desalination system. Numerous environmental parameters were measured at regular intervals so as to quantify any improvements in ecological conditions. Crop output was also measured as kilos of produce per area. The results clearly show that over the two year period, the variety of wild plant species increased, the number of visiting pollinators increased, there were no pest infestations (although an increase in the number of pests was observed), and a slight improvement in overall soil health was also observed. This was obviously limited by the short duration of the testing implementation. Dedicating slightly less than 15% of total land area to wild plants in the form of borders around plots of crops assisted pollination and provided a foraging area for gleaning bats (measured as an increased number of feeding buzzes) whilst not giving rise to any pest infestations and no apparent yield losses or ill effects to the crops. Observed increases in crop yields were not significant. The study concluded that with the right support for the initial establishment of a healthy ecosystem and controlled intervention, the available natural resources on the island can substantially improve the condition of the local agricultural land area, resulting is a more prolonged economical output with greater ecological sustainability. That being said, more comprehensive and long-term monitoring is required in order to fully validate these results and design a sustainable agriculture system that truly achieves the best outcome for the Maltese context.Keywords: ecological intensification, soil health, sustainable agriculture, permaculture
Procedia PDF Downloads 66278 Spatial Assessment of Creek Habitats of Marine Fish Stock in Sindh Province
Authors: Syed Jamil H. Kazmi, Faiza Sarwar
Abstract:
The Indus delta of Sindh Province forms the largest creeks zone of Pakistan. The Sindh coast starts from the mouth of Hab River and terminates at Sir Creek area. In this paper, we have considered the major creeks from the site of Bin Qasim Port in Karachi to Jetty of Keti Bunder in Thatta District. A general decline in the mangrove forest has been observed that within a span of last 25 years. The unprecedented human interventions damage the creeks habitat badly which includes haphazard urban development, industrial and sewage disposal, illegal cutting of mangroves forest, reduced and inconsistent fresh water flow mainly from Jhang and Indus rivers. These activities not only harm the creeks habitat but affected the fish stock substantially. Fishing is the main livelihood of coastal people but with the above-mentioned threats, it is also under enormous pressure by fish catches resulted in unchecked overutilization of the fish resources. This pressure is almost unbearable when it joins with deleterious fishing methods, uncontrolled fleet size, increase trash and by-catch of juvenile and illegal mesh size. Along with these anthropogenic interventions study area is under the red zone of tropical cyclones and active seismicity causing floods, sea intrusion, damage mangroves forests and devastation of fish stock. In order to sustain the natural resources of the Indus Creeks, this study was initiated with the support of FAO, WWF and NIO, the main purpose was to develop a Geo-Spatial dataset for fish stock assessment. The study has been spread over a year (2013-14) on monthly basis which mainly includes detailed fish stock survey, water analysis and few other environmental analyses. Environmental analysis also includes the habitat classification of study area which has done through remote sensing techniques for 22 years’ time series (1992-2014). Furthermore, out of 252 species collected, fifteen species from estuarine and marine groups were short-listed to measure the weight, health and growth of fish species at each creek under GIS data through SPSS system. Furthermore, habitat suitability analysis has been conducted by assessing the surface topographic and aspect derivation through different GIS techniques. The output variables then overlaid in GIS system to measure the creeks productivity. Which provided the results in terms of subsequent classes: extremely productive, highly productive, productive, moderately productive and less productive. This study has revealed the Geospatial tools utilization along with the evaluation of the fisheries resources and creeks habitat risk zone mapping. It has also been identified that the geo-spatial technologies are highly beneficial to identify the areas of high environmental risk in Sindh Creeks. This has been clearly discovered from this study that creeks with high rugosity are more productive than the creeks with low levels of rugosity. The study area has the immense potential to boost the economy of Pakistan in terms of fish export, if geo-spatial techniques are implemented instead of conventional techniques.Keywords: fish stock, geo-spatial, productivity analysis, risk
Procedia PDF Downloads 248277 An Integrated Approach to the Carbonate Reservoir Modeling: Case Study of the Eastern Siberia Field
Authors: Yana Snegireva
Abstract:
Carbonate reservoirs are known for their heterogeneity, resulting from various geological processes such as diagenesis and fracturing. These complexities may cause great challenges in understanding fluid flow behavior and predicting the production performance of naturally fractured reservoirs. The investigation of carbonate reservoirs is crucial, as many petroleum reservoirs are naturally fractured, which can be difficult due to the complexity of their fracture networks. This can lead to geological uncertainties, which are important for global petroleum reserves. The problem outlines the key challenges in carbonate reservoir modeling, including the accurate representation of fractures and their connectivity, as well as capturing the impact of fractures on fluid flow and production. Traditional reservoir modeling techniques often oversimplify fracture networks, leading to inaccurate predictions. Therefore, there is a need for a modern approach that can capture the complexities of carbonate reservoirs and provide reliable predictions for effective reservoir management and production optimization. The modern approach to carbonate reservoir modeling involves the utilization of the hybrid fracture modeling approach, including the discrete fracture network (DFN) method and implicit fracture network, which offer enhanced accuracy and reliability in characterizing complex fracture systems within these reservoirs. This study focuses on the application of the hybrid method in the Nepsko-Botuobinskaya anticline of the Eastern Siberia field, aiming to prove the appropriateness of this method in these geological conditions. The DFN method is adopted to model the fracture network within the carbonate reservoir. This method considers fractures as discrete entities, capturing their geometry, orientation, and connectivity. But the method has significant disadvantages since the number of fractures in the field can be very high. Due to limitations in the amount of main memory, it is very difficult to represent these fractures explicitly. By integrating data from image logs (formation micro imager), core data, and fracture density logs, a discrete fracture network (DFN) model can be constructed to represent fracture characteristics for hydraulically relevant fractures. The results obtained from the DFN modeling approaches provide valuable insights into the East Siberia field's carbonate reservoir behavior. The DFN model accurately captures the fracture system, allowing for a better understanding of fluid flow pathways, connectivity, and potential production zones. The analysis of simulation results enables the identification of zones of increased fracturing and optimization opportunities for reservoir development with the potential application of enhanced oil recovery techniques, which were considered in further simulations on the dual porosity and dual permeability models. This approach considers fractures as separate, interconnected flow paths within the reservoir matrix, allowing for the characterization of dual-porosity media. The case study of the East Siberia field demonstrates the effectiveness of the hybrid model method in accurately representing fracture systems and predicting reservoir behavior. The findings from this study contribute to improved reservoir management and production optimization in carbonate reservoirs with the use of enhanced and improved oil recovery methods.Keywords: carbonate reservoir, discrete fracture network, fracture modeling, dual porosity, enhanced oil recovery, implicit fracture model, hybrid fracture model
Procedia PDF Downloads 82276 Formulation of a Submicron Delivery System including a Platelet Lysate to Be Administered in Damaged Skin
Authors: Sergio A. Bernal-Chavez, Sergio Alcalá-Alcalá, Doris A. Cerecedo-Mercado, Adriana Ganem-Rondero
Abstract:
The prevalence of people with chronic wounds has increased dramatically by many factors including smoking, obesity and chronic diseases, such as diabetes, that can slow the healing process and increase the risk of becoming chronic. Because of this situation, the improvement of chronic wound treatments is a necessity, which has led to the scientific community to focus on improving the effectiveness of current therapies and the development of new treatments. The wound formation is a physiological complex process, which is characterized by an inflammatory stage with the presence of proinflammatory cells that create a proteolytic microenvironment during the healing process, which includes the degradation of important growth factors and cytokines. This decrease of growth factors and cytokines provides an interesting strategy for wound healing if they are administered externally. The use of nanometric drug delivery systems, such as polymer nanoparticles (NP), also offers an interesting alternative around dermal systems. An interesting strategy would be to propose a formulation based on a thermosensitive hydrogel loaded with polymeric nanoparticles that allows the inclusion and application of a platelet lysate (PL) on damaged skin, with the aim of promoting wound healing. In this work, NP were prepared by a double emulsion-solvent evaporation technique, using polylactic-co-glycolic acid (PLGA) as biodegradable polymer. Firstly, an aqueous solution of PL was emulsified into a PLGA organic solution, previously prepared in dichloromethane (DCM). Then, this disperse system (W/O) was poured into a polyvinyl alcohol (PVA) solution to get the double emulsion (W/O/W), finally the DCM was evaporated by magnetic stirring resulting in the NP formation containing PL. Once the NP were obtained, these systems were characterized by morphology, particle size, Z-potential, encapsulation efficiency (%EE), physical stability, infrared spectrum, calorimetric studies (DSC) and in vitro release profile. The optimized nanoparticles were included in a thermosensitive gel formulation of Pluronic® F-127. The gel was prepared by the cold method at 4 °C and 20% of polymer concentration. Viscosity, sol-gel phase transition, time of no flow solid-gel at wound temperature, changes in particle size by temperature-effect using dynamic light scattering (DLS), occlusive effect, gel degradation, infrared spectrum and micellar point by DSC were evaluated in all gel formulations. PLGA NP of 267 ± 10.5 nm and Z-potential of -29.1 ± 1 mV were obtained. TEM micrographs verified the size of NP and evidenced their spherical shape. The %EE for the system was around 99%. Thermograms and in infrared spectra mark the presence of PL in NP. The systems did not show significant changes in the parameters mentioned above, during the stability studies. Regarding the gel formulation, the transition sol-gel occurred at 28 °C with a time of no flow solid-gel of 7 min at 33°C (common wound temperature). Calorimetric, DLS and infrared studies corroborated the physical properties of a thermosensitive gel, such as the micellar point. In conclusion, the thermosensitive gel described in this work, contains therapeutic amounts of PL and fulfills the technological properties to be used in damaged skin, with potential application in wound healing and tissue regeneration.Keywords: growth factors, polymeric nanoparticles, thermosensitive hydrogels, tissue regeneration
Procedia PDF Downloads 175275 Wind Direction and Its Linkage with Vibrio cholerae Dissemination
Authors: Shlomit Paz, Meir Broza
Abstract:
Cholera is an acute intestinal infection caused by ingestion of food or water contaminated with the bacterium Vibrio cholerae. It has a short incubation period and produces an enterotoxin that causes copious, painless, watery diarrhoea that can quickly lead to severe dehydration and death if treatment is not promptly given. In an epidemic, the source of the contamination is usually the feces of an infected person. The disease can spread rapidly in areas with poor treatment of sewage and drinking water. Cholera remains a global threat and is one of the key indicators of social development. An estimated 3-5 million cases and over 100,000 deaths occur each year around the world. The relevance of climatic events as causative factors for cholera epidemics is well known. However, the examination of the involvement of winds in intra-continental disease distribution is new. The study explore the hypothesis that the spreading of cholera epidemics may be related to the dominant wind direction over land by presenting the influence of the wind direction on windborn dissemination by flying insects, which may serve as vectors. Chironomids ("non-biting midges“) exist in the majority of freshwater aquatic habitats, especially in estuarine and organic-rich water bodies typical to Vibrio cholerae. Chironomid adults emerge into the air for mating and dispersion. They are highly mobile, huge in number and found frequently in the air at various elevations. The huge number of chironomid egg masses attached to hard substrate on the water surface, serve as a reservoir for the free-living Vibrio bacteria. Both male and female, while emerging from the water, may carry the cholera bacteria. In experimental simulation, it was demonstrated that the cholera-bearing adult midges are carried by the wind, and transmit the bacteria from one body of water to another. In our previous study, the geographic diffusions of three cholera outbreaks were examined through their linkage with the wind direction: a) the progress of Vibrio cholerae O1 biotype El Tor in Africa during 1970–1971 and b) again in 2005–2006; and c) the rapid spread of Vibrio cholerae O139 over India during 1992–1993. Using data and map of cholera dissemination (WHO database) and mean monthly SLP and geopotential data (NOAA NCEP-NCAR database), analysis of air pressure data at sea level and at several altitudes over Africa, India and Bangladesh show a correspondence between the dominant wind direction and the intra-continental spread of cholera. The results support the hypothesis that aeroplankton (the tiny life forms that float in the air and that may be caught and carried upward by the wind, landing far from their origin) carry the cholera bacteria from one body of water to an adjacent one. In addition to these findings, the current follow-up study will present new results regarding the possible involvement of winds in the spreading of cholera in recent outbreaks (2010-2013). The findings may improve the understanding of how climatic factors are involved in the rapid distribution of new strains throughout a vast continental area. Awareness of the aerial transfer of Vibrio cholerae may assist health authorities by improving the prediction of the disease’s geographic dissemination.Keywords: cholera, Vibrio cholerae, wind direction, Vibrio cholerae dissemination
Procedia PDF Downloads 370274 Regional Response of Crop Productivity to Global Warming - A Case Study of the Heat Stress and Cold Stress on UK Rapeseed Crop Over 1961-2020
Authors: Biao Hu, Mark E. J. Cutler, Alexandra C. Morel
Abstract:
Global climate change introduces both opportunities and challenges for crop productivity, with differences in temperature stress across latitudes and crop types, one of the most important meteorological factors impacting crop productivity. The development and productivity of crops are particularly impacted when temperatures occur outwith their preferred ranges, which has implications for global agri-food sector. This study investigated the spatiotemporal dynamics of heat stress and cold stress on UK arable lands for rapeseed cropping between 1961 and 2020, using a 1 km spatial resolution temperature dataset. Stress indices, including heat stress index (fHS) defined as the ratio of “Tmax - Tcrit_h” to “Tlimit_h - Tcrit_h” where Tmax, Tcrit_h and Tlimit_h represent the daily maximum temperature (°C), critical high temperature threshold (°C) and limiting high temperature threshold (°C) of rapeseed crop respectively; cold degree days (CDD) as the difference between daily Tmin (minimum temperature) and Tcrit_l (critical low temperature threshold); and a normalized rapeseed production loss index (fRPL) as the product of fHS and attainable rapeseed yield in the same land pixel were established. The values of fHS and CDD, percentages of days experiencing each stress and fRPL were investigated. Results found increasing fHS and the areas impacted by heat stress during flowering (from April to May) and reproductive (from April to July) stages over time, with the mean fHS being negatively correlated with latitude. This pattern of increased heat stress agrees with previous research on rapeseed cropping, which have been noted at global scale in response to changes in climate. The decreasing number of CDD and frequency of cold stress suggest cold stress decreased during flowering, vegetative (from September to March next year) and reproductive stages, and the magnitude of cold stress in the south of the UK was smaller to that compared to northern regions over the studied periods. The decreasing CDD matches observed declining cold stress of global rapeseed and of other crops such as rice in the northern hemisphere. Notably, compared with previous studies which mainly tracked the trends of heat stress and cold stress individually, this study conducted a comparative analysis of the rate of their changes and found heat stress of rapeseed crops in the UK was increasing at a faster rate than cold stress, which was seen to decrease during flowering. The increasing values of fRPL, with statistically significant differences (p < 0.05) between regions of the UK, suggested an increasing loss in rapeseed due to heat stress in the studied period. The largest increasing trend in heat stress was observed in South-eastern England, where a decreasing cold stress was taking place. While the present study observed a relatively slowly increasing heat stress, there is a worrying trend of increasing heat stress for rapeseed cropping into the future, as the cases of other main rapeseed cropping systems in the northern hemisphere including China, European counties, the US, and Canada. This study demonstrates the negative impact of global warming on rapeseed cropping, highlighting the adaptation and mitigations strategies for sustainable rapeseed cultivation across the globe.Keywords: rapeseed, UK, heat stress, cold stress, global climate change, spatiotemporal analysis, production loss index
Procedia PDF Downloads 69273 OpenFOAM Based Simulation of High Reynolds Number Separated Flows Using Bridging Method of Turbulence
Authors: Sagar Saroha, Sawan S. Sinha, Sunil Lakshmipathy
Abstract:
Reynolds averaged Navier-Stokes (RANS) model is the popular computational tool for prediction of turbulent flows. Being computationally less expensive as compared to direct numerical simulation (DNS), RANS has received wide acceptance in industry and research community as well. However, for high Reynolds number flows, the traditional RANS approach based on the Boussinesq hypothesis is incapacitated to capture all the essential flow characteristics, and thus, its performance is restricted in high Reynolds number flows of practical interest. RANS performance turns out to be inadequate in regimes like flow over curved surfaces, flows with rapid changes in the mean strain rate, duct flows involving secondary streamlines and three-dimensional separated flows. In the recent decade, partially averaged Navier-Stokes (PANS) methodology has gained acceptability among seamless bridging methods of turbulence- placed between DNS and RANS. PANS methodology, being a scale resolving bridging method, is inherently more suitable than RANS for simulating turbulent flows. The superior ability of PANS method has been demonstrated for some cases like swirling flows, high-speed mixing environment, and high Reynolds number turbulent flows. In our work, we intend to evaluate PANS in case of separated turbulent flows past bluff bodies -which is of broad aerodynamic research and industrial application. PANS equations, being derived from base RANS, continue to inherit the inadequacies from the parent RANS model based on linear eddy-viscosity model (LEVM) closure. To enhance PANS’ capabilities for simulating separated flows, the shortcomings of the LEVM closure need to be addressed. Inabilities of the LEVMs have inspired the development of non-linear eddy viscosity models (NLEVM). To explore the potential improvement in PANS performance, in our study we evaluate the PANS behavior in conjugation with NLEVM. Our work can be categorized into three significant steps: (i) Extraction of PANS version of NLEVM from RANS model, (ii) testing the model in the homogeneous turbulence environment and (iii) application and evaluation of the model in the canonical case of separated non-homogeneous flow field (flow past prismatic bodies and bodies of revolution at high Reynolds number). PANS version of NLEVM shall be derived and implemented in OpenFOAM -an open source solver. Homogeneous flows evaluation will comprise the study of the influence of the PANS’ filter-width control parameter on the turbulent stresses; the homogeneous analysis performed over typical velocity fields and asymptotic analysis of Reynolds stress tensor. Non-homogeneous flow case will include the study of mean integrated quantities and various instantaneous flow field features including wake structures. Performance of PANS + NLEVM shall be compared against the LEVM based PANS and LEVM based RANS. This assessment will contribute to significant improvement of the predictive ability of the computational fluid dynamics (CFD) tools in massively separated turbulent flows past bluff bodies.Keywords: bridging methods of turbulence, high Re-CFD, non-linear PANS, separated turbulent flows
Procedia PDF Downloads 150272 Signature Bridge Design for the Port of Montreal
Authors: Juan Manuel Macia
Abstract:
The Montreal Port Authority (MPA) wanted to build a new road link via Souligny Avenue to increase the fluidity of goods transported by truck in the Viau Street area of Montreal and to mitigate the current traffic problems on Notre-Dame Street. With the purpose of having a better integration and acceptance of this project with the neighboring residential surroundings, this project needed to include an architectural integration, bringing some artistic components to the bridge design along with some landscaping components. The MPA is required primarily to provide direct truck access to Port of Montreal with a direct connection to the future Assomption Boulevard planned by the City of Montreal and, thus, direct access to Souligny Avenue. The MPA also required other key aspects to be considered for the proposal and development of the project, such as the layout of road and rail configurations, the reconstruction of underground structures, the relocation of power lines, the installation of lighting systems, the traffic signage and communication systems improvement, the construction of new access ramps, the pavement reconstruction and a summary assessment of the structural capacity of an existing service tunnel. The identification of the various possible scenarios began by identifying all the constraints related to the numerous infrastructures located in the area of the future link between the port and the future extension of Souligny Avenue, involving interaction with several disciplines and technical specialties. Several viaduct- and tunnel-type geometries were studied to link the port road to the right-of-way north of Notre-Dame Street and to improve traffic flow at the railway corridor. The proposed design took into account the existing access points to Port of Montreal, the built environment of the MPA site, the provincial and municipal rights-of-way, and the future Notre-Dame Street layout planned by the City of Montreal. These considerations required the installation of an engineering structure with a span of over 60 m to free up a corridor for the future urban fabric of Notre-Dame Street. The best option for crossing this span length was identified by the design and construction of a curved bridge over Notre-Dame Street, which is essentially a structure with a deck formed by a reinforced concrete slab on steel box girders with a single span of 63.5m. The foundation units were defined as pier-cap type abutments on drilled shafts to bedrock with rock sockets, with MSE-type walls at the approaches. The configuration of a single-span curved structure posed significant design and construction challenges, considering the major constraints of the project site, a design for durability approach, and the need to guarantee optimum performance over a 75-year service life in accordance with the client's needs and the recommendations and requirements defined by the standards used for the project. These aspects and the need to include architectural and artistic components in this project made it possible to design, build, and integrate a signature infrastructure project with a sustainable approach, from which the MPA, the commuters, and the city of Montreal and its residents will benefit.Keywords: curved bridge, steel box girder, medium span, simply supported, industrial and urban environment, architectural integration, design for durability
Procedia PDF Downloads 73271 Overlaps and Intersections: An Alternative Look at Choreography
Authors: Ashlie Latiolais
Abstract:
Architecture, as a discipline, is on a trajectory of extension beyond the boundaries of buildings and, more increasingly, is coupled with research that connects to alternative and typically disjointed disciplines. A “both/and” approach and (expanded) definition of architecture, as depicted here, expands the margins that contain the profession. Figuratively, architecture is a series of edges, events, and occurrences that establishes a choreography or stage by which humanity exists. The way in which architecture controls and suggests the movement through these spaces, being within a landscape, city, or building, can be viewed as a datum by which the “dance” of everyday life occurs. This submission views the realm of architecture through the lens of movement and dance as a cross-fertilizer of collaboration, tectonic, and spatial geometry investigations. “Designing on digital programs puts architects at a distance from the spaces they imagine. While this has obvious advantages, it also means that they lose the lived, embodied experience of feeling what is needed in space—meaning that some design ideas that work in theory ultimately fail in practice.” By studying the body in motion through real-time performance, a more holistic understanding of architectural space surfaces and new prospects for theoretical teaching pedagogies emerge. The atypical intersection rethinks how architecture is considered, created, and tested, similar to how “dance artists often do this by thinking through the body, opening pathways and possibilities that might not otherwise be accessible” –this is the essence of this poster submission as explained through unFOLDED, a creative performance work. A new languageismaterialized through unFOLDED, a dynamic occupiable installation by which architecture is investigated through dance, movement, and body analysis. The entry unfolds a collaboration of an architect, dance choreographer, musicians, video artist, and lighting designers to re-create one of the first documented avant-garde performing arts collaborations (Matisse, Satie, Massine, Picasso) from the Ballet Russes in 1917, entitled Parade. Architecturally, this interdisciplinary project orients and suggests motion through structure, tectonic, lightness, darkness, and shadow as it questions the navigation of the dark space (stage) surrounding the installation. Artificial light via theatrical lighting and video graphics brought the blank canvas to life – where the sensitive mix of musicality coordinated with the structure’s movement sequencing was certainly a challenge. The upstage light from the video projections created both flickered contextual imagery and shadowed figures. When the dancers were either upstage or downstage of the structure, both silhouetted figures and revealed bodies are experienced as dancer-controlled installation manipulations occurred throughout the performance. The experimental performance, through structure, prompted moving (dancing) bodies in space, where the architecture served as a key component to the choreography itself. The tectonic of the delicate steel structure allowed for the dancers to interact with the installation, which created a variety of spatial conditions – the contained box of three-dimensional space, to a wall, and various abstracted geometries in between. The development of this research unveils the new role of an Architect as a Choreographer of the built environment.Keywords: dance, architecture, choreography, installation, architect, choreographer, space
Procedia PDF Downloads 97270 Advancing Early Intervention Strategies for United States Adolescents and Young Adults with Schizophrenia in the Post-COVID-19 Era
Authors: Peggy M. Randon, Lisa Randon
Abstract:
Introduction: The post-COVID-19 era has presented unique challenges for addressing complex mental health issues, particularly due to exacerbated stress, increased social isolation, and disrupted continuity of care. This article outlines relevant health disparities and policy implications within the context of the United States while maintaining international relevance. Methods: A comprehensive literature review (including studies, reports, and policy documents) was conducted to examine concerns related to childhood-onset schizophrenia and the impact on patients and their families. Qualitative and quantitative data were synthesized to provide insights into the complex etiology of schizophrenia, the effects of the pandemic, and the challenges faced by socioeconomically disadvantaged populations. Case studies were employed to illustrate real-world examples and areas requiring policy reform. Results: Early intervention in childhood is crucial for preventing or mitigating the long-term impact of complex psychotic disorders, particularly schizophrenia. A comprehensive understanding of the genetic, environmental, and physiological factors contributing to the development of schizophrenia is essential. The COVID-19 pandemic worsened symptoms and disrupted treatment for many adolescent patients with schizophrenia, emphasizing the need for adaptive interventions and the utilization of virtual platforms. Health disparities, including stigma, financial constraints, and language or cultural barriers, further limit access to care, especially for socioeconomically disadvantaged populations. Policy implications: Current US health policies inadequately support patients with schizophrenia. The limited availability of longitudinal care, insufficient resources for families, and stigmatization represent ongoing policy challenges. Addressing these issues necessitates increased research funding, improved access to affordable treatment plans, and cultural competency training for healthcare providers. Public awareness campaigns are crucial to promote knowledge, awareness, and acceptance of mental health disorders. Conclusion: The unique challenges faced by children and families in the US affected by schizophrenia and other psychotic disorders have yet to be adequately addressed on institutional and systemic levels. The relevance of findings to an international audience is emphasized by examining the complex factors contributing to the onset of psychotic disorders and their global policy implications. The broad impact of the COVID-19 pandemic on mental health underscores the need for adaptive interventions and global responses. Addressing policy challenges, improving access to care, and reducing the stigma associated with mental health disorders are crucial steps toward enhancing the lives of adolescents and young adults with schizophrenia and their family members. The implementation of virtual platforms can help overcome barriers and ensure equitable access to support and resources for all patients, enabling them to lead healthy and fulfilling lives.Keywords: childhood, schizophrenia, policy, United, States, health, disparities
Procedia PDF Downloads 83269 The Effects of Circadian Rhythms Change in High Latitudes
Authors: Ekaterina Zvorykina
Abstract:
Nowadays, Arctic and Antarctic regions are distinguished to be one of the most important strategic resources for global development. Nonetheless, living conditions in Arctic regions still demand certain improvements. As soon as the region is rarely populated, one of the main points of interest is health accommodation of the people, who migrate to Arctic region for permanent and shift work. At Arctic and Antarctic latitudes, personnel face polar day and polar night conditions during the time of the year. It means that they are deprived of natural sunlight in winter season and have continuous daylight in summer. Firstly, the change in light intensity during 24-hours period due to migration affects circadian rhythms. Moreover, the controlled artificial light in winter is also an issue. The results of the recent studies on night shift medical professionals, who were exposed to permanent artificial light, have already demonstrated higher risks in cancer, depression, Alzheimer disease. Moreover, people exposed to frequent time zones change are also subjected to higher risks of heart attack and cancer. Thus, our main goals are to understand how high latitude work and living conditions can affect human health and how it can be prevented. In our study, we analyze molecular and cellular factors, which play important role in circadian rhythm change and distinguish main risk groups in people, migrating to high latitudes. The main well-studied index of circadian timing is melatonin or its metabolite 6-sulfatoxymelatonin. In low light intensity melatonin synthesis is disturbed and as a result human organism requires more time for sleep, which is still disregarded when it comes to working time organization. Lack of melatonin also causes shortage in serotonin production, which leads to higher depression risk. Melatonin is also known to inhibit oncogenes and increase apoptosis level in cells, the main factors for tumor growth, as well as circadian clock genes (for example Per2). Thus, people who work in high latitudes can be distinguished as a risk group for cancer diseases and demand more attention. Clock/Clock genes, known to be one of the main circadian clock regulators, decrease sensitivity of hypothalamus to estrogen and decrease glucose sensibility, which leads to premature aging and oestrous cycle disruption. Permanent light exposure also leads to accumulation superoxide dismutase and oxidative stress, which is one of the main factors for early dementia and Alzheimer disease. We propose a new screening system adjusted for people, migrating from middle to high latitudes and accommodation therapy. Screening is focused on melatonin and estrogen levels, sleep deprivation and neural disorders, depression level, cancer risks and heart and vascular disorders. Accommodation therapy includes different types artificial light exposure, additional melatonin and neuroprotectors. Preventive procedures can lead to increase of migration intensity to high latitudes and, as a result, the prosperity of Arctic region.Keywords: circadian rhythm, high latitudes, melatonin, neuroprotectors
Procedia PDF Downloads 161268 Challenges and Proposals for Public Policies Aimed At Increasing Energy Efficiency in Low-Income Communities in Brazil: A Multi-Criteria Approach
Authors: Anna Carolina De Paula Sermarini, Rodrigo Flora Calili
Abstract:
Energy Efficiency (EE) needs investments, new technologies, greater awareness and management on the side of citizens and organizations, and more planning. However, this issue is usually remembered and discussed only in moments of energy crises, and opportunities are missed to take better advantage of the potential of EE in the various sectors of the economy. In addition, there is little concern about the subject among the less favored classes, especially in low-income communities. Accordingly, this article presents suggestions for public policies that aim to increase EE for low-income housing and communities based on international and national experiences. After reviewing the literature, eight policies were listed, and to evaluate them; a multicriteria decision model was developed using the AHP (Analytical Hierarchy Process) and TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) methods, combined with fuzzy logic. Nine experts analyzed the policies according to 9 criteria: economic impact, social impact, environmental impact, previous experience, the difficulty of implementation, possibility/ease of monitoring and evaluating the policies, expected impact, political risks, and public governance and sustainability of the sector. The results found in order of preference are (i) Incentive program for equipment replacement; (ii) Community awareness program; (iii) EE Program with a greater focus on low income; (iv) Staggered and compulsory certification of social interest buildings; (v) Programs for the expansion of smart metering, energy monitoring and digitalization; (vi) Financing program for construction and retrofitting of houses with the emphasis on EE; (vii) Income tax deduction for investment in EE projects in low-income households made by companies; (viii) White certificates of energy for low-income. First, the policy of equipment substitution has been employed in Brazil and the world and has proven effective in promoting EE. For implementation, efforts are needed from the federal and state governments, which can encourage companies to reduce prices, and provide some type of aid for the purchase of such equipment. In second place is the community awareness program, promoting socio-educational actions on EE concepts and with energy conservation tips. This policy is simple to implement and has already been used by many distribution utilities in Brazil. It can be carried out through bids defined by the government in specific areas, being executed by third sector companies with public and private resources. Third on the list is the proposal to continue the Energy Efficiency Program (which obliges electric energy companies to allocate resources for research in the area) by suggesting the return of the mandatory investment of 60% of the resources in projects for low income. It is also relatively simple to implement, requiring efforts by the federal government to make it mandatory, and on the part of the distributors, compliance is needed. The success of the suggestions depends on changes in the established rules and efforts from the interested parties. For future work, we suggest the development of pilot projects in low-income communities in Brazil and the application of other multicriteria decision support methods to compare the results obtained in this study.Keywords: energy efficiency, low-income community, public policy, multicriteria decision making
Procedia PDF Downloads 123267 Superhydrophobic Materials: A Promising Way to Enhance Resilience of Electric System
Authors: M. Balordi, G. Santucci de Magistris, F. Pini, P. Marcacci
Abstract:
The increasing of extreme meteorological events represents the most important causes of damages and blackouts of the whole electric system. In particular, the icing on ground-wires and overheads lines, due to snowstorms or harsh winter conditions, very often gives rise to the collapse of cables and towers both in cold and warm climates. On the other hand, the high concentration of contaminants in the air, due to natural and/or antropic causes, is reflected in high levels of pollutants layered on glass and ceramic insulators, causing frequent and unpredictable flashover events. Overheads line and insulator failures lead to blackouts, dangerous and expensive maintenances and serious inefficiencies in the distribution service. Inducing superhydrophobic (SHP) properties to conductors, ground-wires and insulators, is one of the ways to face all these problems. Indeed, in some cases, the SHP surface can delay the ice nucleation time and decrease the ice nucleation temperature, preventing ice formation. Besides, thanks to the low surface energy, the adhesion force between ice and a superhydrophobic material are low and the ice can be easily detached from the surface. Moreover, it is well known that superhydrophobic surfaces can have self-cleaning properties: these hinder the deposition of pollution and decrease the probability of flashover phenomena. Here this study presents three different studies to impart superhydrophobicity to aluminum, zinc and glass specimens, which represent the main constituent materials of conductors, ground-wires and insulators, respectively. The route to impart the superhydrophobicity to the metallic surfaces can be summarized in a three-step process: 1) sandblasting treatment, 2) chemical-hydrothermal treatment and 3) coating deposition. The first step is required to create a micro-roughness. In the chemical-hydrothermal treatment a nano-scale metallic oxide (Al or Zn) is grown and, together with the sandblasting treatment, bring about a hierarchical micro-nano structure. By coating an alchilated or fluorinated siloxane coating, the surface energy decreases and gives rise to superhydrophobic surfaces. In order to functionalize the glass, different superhydrophobic powders, obtained by a sol-gel synthesis, were prepared. Further, the specimens were covered with a commercial primer and the powders were deposed on them. All the resulting metallic and glass surfaces showed a noticeable superhydrophobic behavior with a very high water contact angles (>150°) and a very low roll-off angles (<5°). The three optimized processes are fast, cheap and safe, and can be easily replicated on industrial scales. The anti-icing and self-cleaning properties of the surfaces were assessed with several indoor lab-tests that evidenced remarkable anti-icing properties and self-cleaning behavior with respect to the bare materials. Finally, to evaluate the anti-snow properties of the samples, some SHP specimens were exposed under real snow-fall events in the RSE outdoor test-facility located in Vinadio, western Alps: the coated samples delay the formation of the snow-sleeves and facilitate the detachment of the snow. The good results for both indoor and outdoor tests make these materials promising for further development in large scale applications.Keywords: superhydrophobic coatings, anti-icing, self-cleaning, anti-snow, overheads lines
Procedia PDF Downloads 186266 Predictive Analytics for Theory Building
Authors: Ho-Won Jung, Donghun Lee, Hyung-Jin Kim
Abstract:
Predictive analytics (data analysis) uses a subset of measurements (the features, predictor, or independent variable) to predict another measurement (the outcome, target, or dependent variable) on a single person or unit. It applies empirical methods in statistics, operations research, and machine learning to predict the future, or otherwise unknown events or outcome on a single or person or unit, based on patterns in data. Most analyses of metabolic syndrome are not predictive analytics but statistical explanatory studies that build a proposed model (theory building) and then validate metabolic syndrome predictors hypothesized (theory testing). A proposed theoretical model forms with causal hypotheses that specify how and why certain empirical phenomena occur. Predictive analytics and explanatory modeling have their own territories in analysis. However, predictive analytics can perform vital roles in explanatory studies, i.e., scientific activities such as theory building, theory testing, and relevance assessment. In the context, this study is to demonstrate how to use our predictive analytics to support theory building (i.e., hypothesis generation). For the purpose, this study utilized a big data predictive analytics platform TM based on a co-occurrence graph. The co-occurrence graph is depicted with nodes (e.g., items in a basket) and arcs (direct connections between two nodes), where items in a basket are fully connected. A cluster is a collection of fully connected items, where the specific group of items has co-occurred in several rows in a data set. Clusters can be ranked using importance metrics, such as node size (number of items), frequency, surprise (observed frequency vs. expected), among others. The size of a graph can be represented by the numbers of nodes and arcs. Since the size of a co-occurrence graph does not depend directly on the number of observations (transactions), huge amounts of transactions can be represented and processed efficiently. For a demonstration, a total of 13,254 metabolic syndrome training data is plugged into the analytics platform to generate rules (potential hypotheses). Each observation includes 31 predictors, for example, associated with sociodemographic, habits, and activities. Some are intentionally included to get predictive analytics insights on variable selection such as cancer examination, house type, and vaccination. The platform automatically generates plausible hypotheses (rules) without statistical modeling. Then the rules are validated with an external testing dataset including 4,090 observations. Results as a kind of inductive reasoning show potential hypotheses extracted as a set of association rules. Most statistical models generate just one estimated equation. On the other hand, a set of rules (many estimated equations from a statistical perspective) in this study may imply heterogeneity in a population (i.e., different subpopulations with unique features are aggregated). Next step of theory development, i.e., theory testing, statistically tests whether a proposed theoretical model is a plausible explanation of a phenomenon interested in. If hypotheses generated are tested statistically with several thousand observations, most of the variables will become significant as the p-values approach zero. Thus, theory validation needs statistical methods utilizing a part of observations such as bootstrap resampling with an appropriate sample size.Keywords: explanatory modeling, metabolic syndrome, predictive analytics, theory building
Procedia PDF Downloads 283265 Best Practices and Recommendations for CFD Simulation of Hydraulic Spool Valves
Authors: Jérémy Philippe, Lucien Baldas, Batoul Attar, Jean-Charles Mare
Abstract:
The proposed communication deals with the research and development of a rotary direct-drive servo valve for aerospace applications. A key challenge of the project is to downsize the electromagnetic torque motor by reducing the torque required to drive the rotary spool. It is intended to optimize the spool and the sleeve geometries by combining a Computational Fluid Dynamics (CFD) approach with commercial optimization software. The present communication addresses an important phase of the project, which consists firstly of gaining confidence in the simulation results. It is well known that the force needed to pilot a sliding spool valve comes from several physical effects: hydraulic forces, friction and inertia/mass of the moving assembly. Among them, the flow force is usually a major contributor to the steady-state (or Root Mean Square) driving torque. In recent decades, CFD has gradually become a standard simulation tool for studying fluid-structure interactions. However, in the particular case of high-pressure valve design, the authors have experienced that the calculated overall hydraulic force depends on the parameterization and options used to build and run the CFD model. To solve this issue, the authors have selected the standard case of the linear spool valve, which is addressed in detail in numerous scientific references (analytical models, experiments, CFD simulations). The first CFD simulations run by the authors have shown that the evolution of the equivalent discharge coefficient vs. Reynolds number at the metering orifice corresponds well to the values that can be predicted by the classical analytical models. Oppositely, the simulated flow force was found to be quite different from the value calculated analytically. This drove the authors to investigate minutely the influence of the studied domain and the setting of the CFD simulation. It was firstly shown that the flow recirculates in the inlet and outlet channels if their length is not sufficient regarding their hydraulic diameter. The dead volume on the uncontrolled orifice side also plays a significant role. These examples highlight the influence of the geometry of the fluid domain considered. The second action was to investigate the influence of the type of mesh, the turbulence models and near-wall approaches, and the numerical solver and discretization scheme order. Two approaches were used to determine the overall hydraulic force acting on the moving spool. First, the force was deduced from the momentum balance on a control domain delimited by the valve inlet and outlet and the spool walls. Second, the overall hydraulic force was calculated from the integral of pressure and shear forces acting at the boundaries of the fluid domain. This underlined the significant contribution of the viscous forces acting on the spool between the inlet and outlet orifices, which are generally not considered in the literature. This also emphasized the influence of the choices made for the implementation of CFD calculation and results analysis. With the step-by-step process adopted to increase confidence in the CFD simulations, the authors propose a set of best practices and recommendations for the efficient use of CFD to design high-pressure spool valves.Keywords: computational fluid dynamics, hydraulic forces, servovalve, rotary servovalve
Procedia PDF Downloads 55264 Using Participatory Action Research with Episodic Volunteers: Learning from Urban Agriculture Initiatives
Authors: Rebecca Laycock
Abstract:
Many Urban Agriculture (UA) initiatives, including community/allotment gardens, Community Supported Agriculture, and community/social farms, depend on volunteers. However, initiatives supported or run by volunteers are often faced with a high turnover of labour as a result of the involvement of episodic volunteers (a term describing ad hoc, one-time, and seasonal volunteers), leading to challenges with maintaining project continuity and retaining skills/knowledge within the initiative. This is a notable challenge given that food growing is a knowledge intensive activity where the fruits of labour appear months or sometimes years after investment. Participatory Action Research (PAR) is increasingly advocated for in the field of UA as a solution-oriented approach to research, providing concrete results in addition to advancing theory. PAR is a cyclical methodological approach involving researchers and stakeholders collaboratively 'identifying' and 'theorising' an issue, 'planning' an action to address said issue, 'taking action', and 'reflecting' on the process. Through iterative cycles and prolonged engagement, the theory is developed and actions become better tailored to the issue. The demand for PAR in UA research means that understanding how to use PAR with episodic volunteers is of critical importance. The aim of this paper is to explore (1) the challenges of doing PAR in UA initiatives with episodic volunteers, and (2) how PAR can be harnessed to advance sustainable development of UA through theoretically-informed action. A 2.5 year qualitative PAR study on three English case study student-led food growing initiatives took place between 2014 and 2016. University UA initiatives were chosen as exemplars because most of their volunteers were episodic. Data were collected through 13 interviews, 6 workshops, and a research diary. The results were thematically analysed through eclectic coding using Computer-Assisted Qualitative Data Analysis Software (NVivo). It was found that the challenges of doing PAR with transient participants were (1) a superficial understanding of issues by volunteers because of short term engagement, resulting in difficulties ‘identifying’/‘theorising’ issues to research; (2) difficulties implementing ‘actions’ given those involved in the ‘planning’ phase often left by the ‘action’ phase; (3) a lack of capacity of participants to engage in research given the ongoing challenge of maintaining participation; and (4) that the introduction of the researcher acted as an ‘intervention’. The involvement of a long-term stakeholder (the researcher) changed the group dynamics, prompted critical reflections that had not previously taken place, and improved continuity. This posed challenges for providing a genuine understanding the episodic volunteering PAR initiatives, and also challenged the notion of what constitutes an ‘intervention’ or ‘action’ in PAR. It is recommended that researchers working with episodic volunteers using PAR should (1) adopt a first-person approach by inquiring into the researcher’s own experience to enable depth in theoretical analysis to manage the potentially superficial understandings by short-term participants; and (2) establish safety mechanisms to address the potential for the research to impose artificial project continuity and knowledge retention that will end when the research does. Through these means, we can more effectively use PAR to conduct solution-oriented research about UA.Keywords: community garden, continuity, first-person research, higher education, knowledge retention, project management, transience, university
Procedia PDF Downloads 253263 Prospective Analytical Cohort Study to Investigate a Physically Active Classroom-Based Wellness Programme to Propose a Mechanism to Meet Societal Need for Increased Physical Activity Participation and Positive Subjective Well-Being amongst Adolescent
Authors: Aileen O'loughlin
Abstract:
‘Is Everybody Going WeLL?’ (IEGW?) is a 33-hour classroom-based initiative created to a) explore values and how they impact on well-being, b) encourage adolescents to connect with their community, and c) provide them with the education to encourage and maintain a lifetime love of physical activity (PA) to ensure beneficial effects on their personal well-being. This initiative is also aimed at achieving sustainable education and aligning with the United Nation’s Sustainable Development Goals numbers 3 and 4. The classroom is a unique setting in which adolescents’ PA participation can be positively influenced through fun PA policies and initiatives. The primary purpose of this research is to evaluate a range of psychosocial and PA outcomes following the 33-hour education programme. This research examined the impact of a PA and well-being programme consisting of either a 60minute or 80minute class, depending on the timetable structure of the school, delivered once a week. Participant outcomes were measured using validated questionnaires regarding Self-esteem, Mental Health Literacy (MHL) and Daily Physical Activity Participation. These questionnaires were administered at three separate time points; baseline, mid-intervention, and post intervention. Semi-structured interviews with participating teachers regarding adherence and participants’ attitudes were completed post-intervention. These teachers were randomly selected for interview. This perspective analytical cohort study included 235 post-primary school students between 11-13 years of age (100 boys and 135 girls) from five public Irish post-primary schools. Three schools received the intervention only; a 33hour interactive well-being learning unit, one school formed a control group and one school had participants in both the intervention and control group. Participating schools were a convenience sample. Data presented outlines baseline data collected pre-participation (0 hours completed). N = 18 junior certificate students returned all three questionnaires fully completed for a 56.3% return rate from 1 school, Intervention School #3. 94.4% (n = 17) of participants enjoy taking part in some form of PA, however only 5.5% (n = 1) of the participants took part in PA every day of the previous 7 days and only 5.5% (n = 1) of those surveyed participated in PA every day during a normal week. 55% (n = 11) had a low level of self-esteem, 50% (n = 9) fall within the normal range of self-esteem, and n = 0 surveyed demonstrated a high level of self-esteem. Female participants’ Mean score was higher than their male counterparts when MHL was compared. Correlation analyses revealed a small association between Self-esteem and Happiness (r = 0.549). Positive correlations were also revealed between MHL and Happiness, MHL and Self-esteem and Self-esteem and 60+ minutes of PA completed daily. IEGW? is a classroom-based with simple methods easy to implement, replicate and financially viable to both public and private schools. It’s unique dataset will allow for the evaluation of a societal approach to the psycho-social well-being and PA participation levels of adolescents. This research is a work in progress and future work is required to learn how to best support the implementation of ‘Is Everybody Going WeLL?’ as part of the school curriculum.Keywords: education, life-long learning, physical activity, psychosocial well-being
Procedia PDF Downloads 120262 Production Factor Coefficients Transition through the Lens of State Space Model
Authors: Kanokwan Chancharoenchai
Abstract:
Economic growth can be considered as an important element of countries’ development process. For developing countries, like Thailand, to ensure the continuous growth of the economy, the Thai government usually implements various policies to stimulate economic growth. They may take the form of fiscal, monetary, trade, and other policies. Because of these different aspects, understanding factors relating to economic growth could allow the government to introduce the proper plan for the future economic stimulating scheme. Consequently, this issue has caught interest of not only policymakers but also academics. This study, therefore, investigates explanatory variables for economic growth in Thailand from 2005 to 2017 with a total of 52 quarters. The findings would contribute to the field of economic growth and become helpful information to policymakers. The investigation is estimated throughout the production function with non-linear Cobb-Douglas equation. The rate of growth is indicated by the change of GDP in the natural logarithmic form. The relevant factors included in the estimation cover three traditional means of production and implicit effects, such as human capital, international activity and technological transfer from developed countries. Besides, this investigation takes the internal and external instabilities into account as proxied by the unobserved inflation estimation and the real effective exchange rate (REER) of the Thai baht, respectively. The unobserved inflation series are obtained from the AR(1)-ARCH(1) model, while the unobserved REER of Thai baht is gathered from naive OLS-GARCH(1,1) model. According to empirical results, the AR(|2|) equation which includes seven significant variables, namely capital stock, labor, the imports of capital goods, trade openness, the REER of Thai baht uncertainty, one previous GDP, and the world financial crisis in 2009 dummy, presents the most suitable model. The autoregressive model is assumed constant estimator that would somehow cause the unbias. However, this is not the case of the recursive coefficient model from the state space model that allows the transition of coefficients. With the powerful state space model, it provides the productivity or effect of each significant factor more in detail. The state coefficients are estimated based on the AR(|2|) with the exception of the one previous GDP and the 2009 world financial crisis dummy. The findings shed the light that those factors seem to be stable through time since the occurrence of the world financial crisis together with the political situation in Thailand. These two events could lower the confidence in the Thai economy. Moreover, state coefficients highlight the sluggish rate of machinery replacement and quite low technology of capital goods imported from abroad. The Thai government should apply proactive policies via taxation and specific credit policy to improve technological advancement, for instance. Another interesting evidence is the issue of trade openness which shows the negative transition effect along the sample period. This could be explained by the loss of price competitiveness to imported goods, especially under the widespread implementation of free trade agreement. The Thai government should carefully handle with regulations and the investment incentive policy by focusing on strengthening small and medium enterprises.Keywords: autoregressive model, economic growth, state space model, Thailand
Procedia PDF Downloads 153261 The Dark History of American Psychiatry: Racism and Ethical Provider Responsibility
Authors: Mary Katherine Hoth
Abstract:
Despite racial and ethnic disparities in American psychiatry being well-documented, there remains an apathetic attitude among nurses and providers within the field to engage in active antiracism and provide equitable, recovery-oriented care. It is insufficient to be a “colorblind” nurse or provider and state that call care provided is identical for every patient. Maintaining an attitude of “colorblindness” perpetuates the racism prevalent throughout healthcare and leads to negative patient outcomes. The purpose of this literature review is to highlight the how the historical beginnings of psychiatry have evolved into the disparities seen in today’s practice, as well as to provide some insight on methods that providers and nurses can employ to actively participate in challenging these racial disparities. Background The application of psychiatric medicine to White people versus Black, Indigenous, and other People of Color has been distinctly different as a direct result of chattel slavery and the development of pseudoscience “diagnoses” in the 19th century. This weaponization of the mental health of Black people continues to this day. Population The populations discussed are Black, Indigenous, and other People of Color, with a primary focus on Black people’s experiences with their mental health and the field of psychiatry. Methods A literature review was conducted using CINAHL, EBSCO, MEDLINE, and PubMed databases with the following terms: psychiatry, mental health, racism, substance use, suicide, trauma-informed care, disparities and recovery-oriented care. Articles were further filtered based on meeting the criteria of peer-reviewed, full-text availability, written in English, and published between 2018 and 2023. Findings Black patients are more likely to be diagnosed with psychotic disorders and prescribed antipsychotic medications compared to White patients who were more often diagnosed with mood disorders and prescribed antidepressants. This same disparity is also seen in children and adolescents, where Black children are more likely to be diagnosed with behavior problems such as Oppositional Defiant Disorder (ODD) and White children with the same presentation are more likely to be diagnosed with Attention Hyperactivity Disorder. Medications advertisements for antipsychotics like Haldol as recent as 1974 portrayed a Black man, labeled as “agitated” and “aggressive”, a trope we still see today in police violence cases. The majority of nursing and medical school programs do not provide education on racism and how to actively combat it in practice, leaving many healthcare professionals acutely uneducated and unaware of their own biases and racism, as well as structural and institutional racism. Conclusions Racism will continue to grow wherever it is given time, space, and energy. Providers and nurses have an ethical obligation to educate themselves, actively deconstruct their personal racism and bias, and continuously engage in active antiracism by dismantling racism wherever it is encountered, be it structural, institutional, or scientific racism. Agents of change at the patient care level not only improve the outcomes of Black patients, but it will also lead the way in ensuring Black, Indigenous, and other People of Color are included in research of methods and medications in psychiatry in the future.Keywords: disparities, psychiatry, racism, recovery-oriented care, trauma-informed care
Procedia PDF Downloads 134260 Intercultural Initiatives and Canadian Bilingualism
Authors: Muna Shafiq
Abstract:
Growth in international immigration is a reflection of increased migration patterns in Canada and in other parts of the world. Canada continues to promote itself as a bilingual country, yet the bilingual French and English population numbers do not reflect this platform. Each province’s integration policies focus only on second language learning of either English or French. Moreover, since English Canadians outnumber French Canadians, maintaining, much less increasing, English-French bilingualism appears unrealistic. One solution to increasing Canadian bilingualism requires creating intercultural communication initiatives between youth in Quebec and the rest of Canada. Specifically, the focus is on active, experiential learning, where intercultural competencies develop outside traditional classroom settings. The target groups are Generation Y Millennials and Generation Z Linksters, the next generations in the career and parenthood lines. Today, Canada’s education system, like many others, must continually renegotiate lines between programs it offers its immigrant and native communities. While some purists or right-wing nationalists would disagree, the survival of bilingualism in Canada has little to do with reducing immigration. Children and youth immigrants play a valuable role in increasing Canada’s French and English speaking communities. For instance, a focus on more immersion, over core French education programs for immigrant children and youth would not only increase bilingual rates; it would develop meaningful intercultural attachments between Canadians. Moreover, a vigilant increase of funding in French immersion programs is critical, as are new initiatives that focus on experiential language learning for students in French and English language programs. A favorable argument supports the premise that other than French-speaking students in Québec and elsewhere in Canada, second and third generation immigrant students are excellent ambassadors to promote bilingualism in Canada. Most already speak another language at home and understand the value of speaking more than one language in their adopted communities. Their dialogue and participation in experiential language exchange workshops are necessary. If the proposed exchanges take place inter-provincially, the momentum to increase collective regional voices increases. This regional collectivity can unite Canadians differently than nation-targeted initiatives. The results from an experiential youth exchange organized in 2017 between students at the crossroads of Generation Y and Generation Z in Vancouver and Quebec City respectively offer a promising starting point in assessing the strength of bringing together different regional voices to promote bilingualism. Code-switching between standard, international French Vancouver students, learn in the classroom versus more regional forms of Quebec French spoken locally created regional connectivity between students. The exchange was equally rewarding for both groups. Increasing their appreciation for each other’s regional differences allowed them to contribute actively to their social and emotional development. Within a sociolinguistic frame, this proposed model of experiential learning does not focus on hands-on work experience. However, the benefits of such exchanges are as valuable as work experience initiatives developed in experiential education. Students who actively code switch between French and English in real, not simulated contexts appreciate bilingualism more meaningfully and experience its value in concrete terms.Keywords: experiential learning, intercultural communication, social and emotional learning, sociolinguistic code-switching
Procedia PDF Downloads 143259 Community Strengths and Indigenous Resilience as Drivers for Health Reform Change
Authors: Shana Malio-Satele, Lemalu Silao Vaisola Sefo
Abstract:
Introductory Statement: South Seas Healthcare is Ōtara’s largest Pacific health provider in South Auckland, New Zealand. Our vision is excellent health and well-being for Pacific people and all communities through strong Pacific values. During the DELTA and Omicron outbreak of COVID-19, our Pacific people, indigenous Māori, and the community of South Auckland were disproportionately affected and faced significant hardship with existing inequities magnified. This study highlights the community-based learnings of harnessing community-based strengths such as indigenous resilience, family-informed experiences and stories that provide critical insights that inform health reform changes that will be sustainable and equitable for all indigenous populations. This study is based on critical learnings acquired during COVID-19 that challenge the deficit narrative common in healthcare about indigenous populations. This study shares case studies of marginalised groups and religious groups and the successful application of indigenous cultural strengths, such as collectivism, positive protective factors, and using trusted relationships to create meaningful change in the way healthcare is delivered. The significance of this study highlights the critical conditions needed to adopt a community-informed way of creating integrated healthcare that works and the role that the community can play in being part of the solution. Methodologies: Key methodologies utilised are indigenous and Pacific-informed. To achieve critical learnings from the community, Pacific research methodologies, heavily informed by the Polynesian practice, were applied. Specifically, this includes; Teu Le Va (Understanding the importance of trusted relationships as a way of creating positive health solutions); The Fonofale Methodology (A way of understanding how health incorporates culture, family, the physical, spiritual, mental and other dimensions of health, as well as time, context and environment; The Fonua Methodology – Understanding the overall wellbeing and health of communities, families and individuals and their holistic needs and environmental factors and the Talanoa methodology (Researching through conversation, where understanding the individual and community is through understanding their history and future through stories). Major Findings: Key findings in the study included: 1. The collectivist approach in the community is a strengths-based response specific to populations, which highlights the importance of trusted relationships and cultural values to achieve meaningful outcomes. 2. The development of a “village model” which identified critical components to achieving health reform change; system navigation, a sense of service that was culturally responsive, critical leadership roles, culturally appropriate support, and the ability to influence the system enablers to support an alternative way of working. Concluding Statement: There is a strong connection between community-based strengths being implemented into healthcare strategies and reforms and the sustainable success of indigenous populations and marginalised communities accessing services that are cohesive, equitably resourced, accessible and meaningful for families. This study highlights the successful community-informed approaches and practices used during the COVID-19 response in New Zealand that are now being implemented in the current health reform.Keywords: indigenous voice, community voice, health reform, New Zealand
Procedia PDF Downloads 95258 Understanding the Perceived Barriers and Facilitators to Exercise Participation in the Workplace
Authors: Jayden R. Hunter, Brett A. Gordon, Stephen R. Bird, Amanda C. Benson
Abstract:
The World Health Organisation recognises the workplace as an important setting for exercise promotion, with potential benefits including improved employee health and fitness, and reduced worker absenteeism and presenteeism. Despite these potential benefits to both employee and employer, there is a lack of evidence supporting the long-term effectiveness of workplace exercise programs. There is, therefore, a need for better-informed programs that cater to employee exercise preferences. Specifically, workplace exercise programs should address any time, motivation, internal and external barriers to participation reported by sub-groups of employees. This study sought to compare exercise participation to perceived barriers and facilitators to workplace exercise engagement of university employees. This information is needed to design and implement wider-reaching programs aiming to maximise long-term employee exercise adherence and subsequent health, fitness and productivity benefits. An online survey was advertised at an Australian university with the potential to reach 3,104 full-time employees. Along with exercise participation (International physical activity questionnaire) and behaviour (stage of behaviour change in relation to physical activity questionnaire), perceived barriers (corporate exercise barriers scale) and facilitators to workplace exercise participation were identified. The survey response rate was 8.1% (252 full-time employees; 95% white-collar; 60% female; 79.4% aged 30–59 years; 57% professional and 38% academic). Most employees reported meeting (43.7%) or exceeding (42.9%) exercise guidelines over the previous week (i.e. ⩾30 min of moderate-intensity exercise on most days or ⩾ 25 min of vigorous-intensity exercise on at least three days per week). Reported exercise behaviour over the previous six months showed that 64.7% of employees were in maintenance, 8.3% were in action, 10.9% were in preparation, 12.4% were in contemplation, and 3.8% were in the pre-contemplation stage of change. Perceived barriers towards workplace exercise participation were significantly higher in employees not attaining weekly exercise guidelines compared to employees meeting or exceeding guidelines, including a lack of time or reduced motivation (p < 0.001; partial eta squared = 0.24 (large effect)), exercise attitude (p < 0.05; partial eta squared = 0.04 (small effect)), internal (p < 0.01; partial eta squared = 0.10 (moderate effect)) and external (p < 0.01; partial eta squared = 0.06 (moderate effect)) barriers. The most frequently reported exercise facilitators were personal training (particularly for insufficiently active employees; 33%) and group exercise classes (20%). The most frequently cited preferred modes of exercise were walking (70%), swimming (50%), gym (48%), and cycling (45%). In conclusion, providing additional means of support such as individualised gym, swimming and cycling programs with personal supervision and guidance may be particularly useful for employees not meeting recommended moderate-vigorous volumes of exercise, to help overcome reported exercise barriers in order to improve participation, health, and fitness. While individual biopsychosocial factors should be considered when making recommendations for interventions, the specific barriers and facilitators to workplace exercise participation identified by this study can inform the development of workplace exercise programs aiming to broaden employee engagement and promote greater ongoing exercise adherence. This is especially important for the uptake of less active employees who perceive greater barriers to workplace exercise participation than their more active colleagues.Keywords: exercise barriers, exercise facilitators, physical activity, workplace health
Procedia PDF Downloads 152257 Delicate Balance between Cardiac Stress and Protection: Role of Mitochondrial Proteins
Authors: Zuzana Tatarkova, Ivana Pilchova, Michal Cibulka, Martin Kolisek, Peter Racay, Peter Kaplan
Abstract:
Introduction: Normal functioning of mitochondria is crucial for cardiac performance. Mitochondria undergo mitophagy and biogenesis, and mitochondrial proteins are subject to extensive post-translational modifications. The state of mitochondrial homeostasis reflects overall cellular fitness and longevity. Perturbed mitochondria produce less ATP, release greater amounts of reactive molecules, and are more prone to apoptosis. Therefore mitochondrial turnover is an integral aspect of quality control in which dysfunctional mitochondria are selectively eliminated through mitophagy. Currently, the progressive deterioration of physiological functions is seen as accumulation of modified/damaged proteins with limiting regenerative ability and disturbance of such affected protein-protein communication throughout aging in myocardial cells. Methodologies: For our study was used immunohistochemistry, biochemical methods: spectrophotometry, western blotting, immunodetection as well as more sophisticated 2D electrophoresis and mass spectrometry for evaluation protein-protein interactions and specific post-translational modification. Results and Discussion: Mitochondrial stress response to reactive species was evaluated as electron transport chain (ETC) complexes, redox-active molecules, and their possible communication. Protein-protein interactions revealed a strong linkage between age and ETC protein subunits. Redox state was strongly affected in senescent mitochondria with shift in favor of more pro-oxidizing condition within cardiomyocytes. Acute myocardial ischemia and ischemia-reperfusion (IR) injury affected ETC complexes I, II and IV with no change in complex III. Ischemia induced decrease in total antioxidant capacity, MnSOD, GSH and catalase activity with recovery in some extent during reperfusion. While MnSOD protein content was higher in IR group, activity returned to 95% of control. Nitric oxide is one of the biological molecules that can out compete MnSOD for superoxide and produce peroxynitrite. This process is faster than dismutation and led to the 10-fold higher production of nitrotyrosine after IR injury in adult with higher protection in senescent ones. 2D protein profiling revealed 140 mitochondrial proteins, 12 of them with significant changes after IR injury and 36 individual nitrotyrosine-modified proteins further identified by mass spectrometry. Linking these two groups, 5 proteins were altered after IR as well as nitrated, but only one showed massive nitration per lowering content of protein after IR injury in adult. Conclusions: Senescent cells have greater proportion of protein content, which might be modulated by several post-translational modifications. If these protein modifications are connected to functional consequences and protein-protein interactions are revealed, link may lead to the solution. Assume all together, dysfunctional proteostasis can play a causative role and restoration of protein homeostasis machinery is protective against aging and possibly age-related disorders. This work was supported by the project VEGA 1/0018/18 and by project 'Competence Center for Research and Development in the field of Diagnostics and Therapy of Oncological diseases', ITMS: 26220220153, co-financed from EU sources.Keywords: aging heart, mitochondria, proteomics, redox state
Procedia PDF Downloads 175256 When It Wasn’t There: Understanding the Importance of High School Sports
Authors: Karen Chad, Louise Humbert, Kenzie Friesen, Dave Sandomirsky
Abstract:
Background: The pandemic of COVID-19 presented many historical challenges to the sporting community. For organizations and individuals, sport was put on hold resulting in social, economic, physical, and mental health consequences for all involved. High school sports are seen as an effective and accessible pathway for students to receive health, social, and academic benefits. Studies examining sport cessation due to COVID-19 found substantial negative outcomes on the physical and mental well-being of participants in the high school setting. However, the pandemic afforded an opportunity to examine sport participation and the value people place upon their engagement in high school sport. Study objectives: (1) Examine the experiences of students, parents, administrators, officials, and coaches during a year without high school sports; (2) Understand why participants are involved in high school sports; and (3) Learn what supports are needed for future involvement. Methodology: A mixed method design was used, including semi-structured interviews and a survey (SurveyMonkey software), which was disseminated electronically to high school students, coaches, school administrators, parents, and officials. Results: 1222 respondents completed the survey. Findings showed: (1) 100% of students participate in high school sports to improve their mental health, with >95% said it keeps them active and healthy, helps them make friends and teaches teamwork, builds confidence and positive self-perceptions, teaches resiliency, enhances connectivity to their school, and supports academic learning; (2) Top three reasons teachers coach is their desire to make a difference in the lives of students, enjoyment, and love of the sport, and to give back. Teachers said what they enjoy most is contributing to and watching athletes develop, direct involvement with student sport success, and the competitiveatmosphere; (3) 90% of parents believe playing sports is a valuable experience for their child, 95% said it enriches student academic learning and educational experiences, and 97% encouraged their child to play school sports; (4) Officials participate because of their enjoyment and love of the sport, experience, and expertise, desire to make a difference in the lives of children, the competitive/sporting atmosphere and growing the sport. 4% of officials said it was financially motivated; (5) 100% of administrators said high school sports are important for everyone. 80% believed the pandemic will decrease teachers coaching and increase student mental health and well-being. When there was no sport, many athletes got a part-time job and tried to stay active, with limited success. Coaches, officials, and parents spent more time with family. All participants did little physical activity, were bored; and struggled with mental health and poor physical health. Respondents recommended better communication, promotion, and branding of high school sport benefits, equitable funding for all sports, athlete development, compensation and recognition for coaching, and simple processes to strengthen the high school sport model. Conclusions: High school sport is an effective vehicle for athletes, parents, coaches, administrators, and officials to derive many positive outcomes. When it is taken away, serious consequences prevail. Paying attention to important success factors will be important for the effectiveness of high school sports.Keywords: physical activity, high school, sports, pandemic
Procedia PDF Downloads 153255 Developing a Machine Learning-based Cost Prediction Model for Construction Projects using Particle Swarm Optimization
Authors: Soheila Sadeghi
Abstract:
Accurate cost prediction is essential for effective project management and decision-making in the construction industry. This study aims to develop a cost prediction model for construction projects using Machine Learning techniques and Particle Swarm Optimization (PSO). The research utilizes a comprehensive dataset containing project cost estimates, actual costs, resource details, and project performance metrics from a road reconstruction project. The methodology involves data preprocessing, feature selection, and the development of an Artificial Neural Network (ANN) model optimized using PSO. The study investigates the impact of various input features, including cost estimates, resource allocation, and project progress, on the accuracy of cost predictions. The performance of the optimized ANN model is evaluated using metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared. The results demonstrate the effectiveness of the proposed approach in predicting project costs, outperforming traditional benchmark models. The feature selection process identifies the most influential variables contributing to cost variations, providing valuable insights for project managers. However, this study has several limitations. Firstly, the model's performance may be influenced by the quality and quantity of the dataset used. A larger and more diverse dataset covering different types of construction projects would enhance the model's generalizability. Secondly, the study focuses on a specific optimization technique (PSO) and a single Machine Learning algorithm (ANN). Exploring other optimization methods and comparing the performance of various ML algorithms could provide a more comprehensive understanding of the cost prediction problem. Future research should focus on several key areas. Firstly, expanding the dataset to include a wider range of construction projects, such as residential buildings, commercial complexes, and infrastructure projects, would improve the model's applicability. Secondly, investigating the integration of additional data sources, such as economic indicators, weather data, and supplier information, could enhance the predictive power of the model. Thirdly, exploring the potential of ensemble learning techniques, which combine multiple ML algorithms, may further improve cost prediction accuracy. Additionally, developing user-friendly interfaces and tools to facilitate the adoption of the proposed cost prediction model in real-world construction projects would be a valuable contribution to the industry. The findings of this study have significant implications for construction project management, enabling proactive cost estimation, resource allocation, budget planning, and risk assessment, ultimately leading to improved project performance and cost control. This research contributes to the advancement of cost prediction techniques in the construction industry and highlights the potential of Machine Learning and PSO in addressing this critical challenge. However, further research is needed to address the limitations and explore the identified future research directions to fully realize the potential of ML-based cost prediction models in the construction domain.Keywords: cost prediction, construction projects, machine learning, artificial neural networks, particle swarm optimization, project management, feature selection, road reconstruction
Procedia PDF Downloads 65254 Effectiveness of an Intervention to Increase Physics Students' STEM Self-Efficacy: Results of a Quasi-Experimental Study
Authors: Stephanie J. Sedberry, William J. Gerace, Ian D. Beatty, Michael J. Kane
Abstract:
Increasing the number of US university students who attain degrees in STEM and enter the STEM workforce is a national priority. Demographic groups vary in their rates of participation in STEM, and the US produces just 10% of the world’s science and engineering degrees (2014 figures). To address these gaps, we have developed and tested a practical, 30-minute, single-session classroom-based intervention to improve students’ self-efficacy and academic performance in University STEM courses. Self-efficacy is a psychosocial construct that strongly correlates with academic success. Self-efficacy is a construct that is internal and relates to the social, emotional, and psychological aspects of student motivation and performance. A compelling body of research demonstrates that university students’ self-efficacy beliefs are strongly related to their selection of STEM as a major, aspirations for STEM-related careers, and persistence in science. The development of an intervention to increase students’ self-efficacy is motivated by research showing that short, social-psychological interventions in education can lead to large gains in student achievement. Our intervention addresses STEM self-efficacy via two strong, but previously separate, lines of research into attitudinal/affect variables that influence student success. The first is ‘attributional retraining,’ in which students learn to attribute their successes and failures to internal rather than external factors. The second is ‘mindset’ about fixed vs. growable intelligence, in which students learn that the brain remains plastic throughout life and that they can, with conscious effort and attention to thinking skills and strategies, become smarter. Extant interventions for both of these constructs have significantly increased academic performance in the classroom. We developed a 34-item questionnaire (Likert scale) to measure STEM Self-efficacy, Perceived Academic Control, and Growth Mindset in a University STEM context, and validated it with exploratory factor analysis, Rasch analysis, and multi-trait multi-method comparison to coded interviews. Four iterations of our 42-week research protocol were conducted across two academic years (2017-2018) at three different Universities in North Carolina, USA (UNC-G, NC A&T SU, and NCSU) with varied student demographics. We utilized a quasi-experimental prospective multiple-group time series research design with both experimental and control groups, and we are employing linear modeling to estimate the impact of the intervention on Self-Efficacy,wth-Mindset, Perceived Academic Control, and final course grades (performance measure). Preliminary results indicate statistically significant effects of treatment vs. control on Self-Efficacy, Growth-Mindset, Perceived Academic Control. Analyses are ongoing and final results pending. This intervention may have the potential to increase student success in the STEM classroom—and ownership of that success—to continue in a STEM career. Additionally, we have learned a great deal about the complex components and dynamics of self-efficacy, their link to performance, and the ways they can be impacted to improve students’ academic performance.Keywords: academic performance, affect variables, growth mindset, intervention, perceived academic control, psycho-social variables, self-efficacy, STEM, university classrooms
Procedia PDF Downloads 130