Search results for: robust regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4629

Search results for: robust regression

3069 Market Illiquidity and Pricing Errors in the Term Structure of CDS

Authors: Lidia Sanchis-Marco, Antonio Rubia, Pedro Serrano

Abstract:

This paper studies the informational content of pricing errors in the term structure of sovereign CDS spreads. The residuals from a non-arbitrage model are employed to construct a Price discrepancy estimate, or noise measure. The noise estimate is understood as an indicator of market distress and reflects frictions such as illiquidity. Empirically, the noise measure is computed for an extensive panel of CDS spreads. Our results reveal an important fraction of systematic risk is not priced in default swap contracts. When projecting the noise measure onto a set of financial variables, the panel-data estimates show that greater price discrepancies are systematically related to a higher level of offsetting transactions of CDS contracts. This evidence suggests that arbitrage capital flows exit the marketplace during time of distress, and this consistent with a market segmentation among investors and arbitrageurs where professional arbitrageurs are particularly ineffective at bringing prices to their fundamental values during turbulent periods. Our empirical findings are robust for the most common CDS pricing models employed in the industry.

Keywords: credit default swaps, noise measure, illiquidity, capital arbitrage

Procedia PDF Downloads 569
3068 Real Activities Manipulation vs. Accrual Earnings Management: The Effect of Political Risk

Authors: Heba Abdelmotaal, Magdy Abdel-Kader

Abstract:

Purpose: This study explores whether a firm’s effective political risk management is preventing real and accrual earnings management . Design/methodology/approach: Based on a sample of 130 firms operating in Egypt during the period 2008-2013, two hypotheses are tested using the panel data regression models. Findings: The empirical findings indicate a significant relation between real and accrual earnings management and political risk. Originality/value: This paper provides a statistically evidence on the effects of the political risk management failure on the mangers’ engagement in the real and accrual earnings management practices, and its impact on the firm’s performance.

Keywords: political risk, risk management failure, real activities manipulation, accrual earnings management

Procedia PDF Downloads 440
3067 MSIpred: A Python 2 Package for the Classification of Tumor Microsatellite Instability from Tumor Mutation Annotation Data Using a Support Vector Machine

Authors: Chen Wang, Chun Liang

Abstract:

Microsatellite instability (MSI) is characterized by high degree of polymorphism in microsatellite (MS) length due to a deficiency in mismatch repair (MMR) system. MSI is associated with several tumor types and its status can be considered as an important indicator for tumor prognostic. Conventional clinical diagnosis of MSI examines PCR products of a panel of MS markers using electrophoresis (MSI-PCR) which is laborious, time consuming, and less reliable. MSIpred, a python 2 package for automatic classification of MSI was released by this study. It computes important somatic mutation features from files in mutation annotation format (MAF) generated from paired tumor-normal exome sequencing data, subsequently using these to predict tumor MSI status with a support vector machine (SVM) classifier trained by MAF files of 1074 tumors belonging to four types. Evaluation of MSIpred on an independent 358-tumor test set achieved overall accuracy of over 98% and area under receiver operating characteristic (ROC) curve of 0.967. These results indicated that MSIpred is a robust pan-cancer MSI classification tool and can serve as a complementary diagnostic to MSI-PCR in MSI diagnosis.

Keywords: microsatellite instability, pan-cancer classification, somatic mutation, support vector machine

Procedia PDF Downloads 174
3066 A Multilevel Analysis of Predictors of Early Antenatal Care Visits among Women of Reproductive Age in Benin: 2017/2018 Benin Demographic and Health Survey

Authors: Ebenezer Kwesi Armah-Ansah, Kenneth Fosu Oteng, Esther Selasi Avinu, Eugene Budu, Edward Kwabena Ameyaw

Abstract:

Background: Maternal mortality, particularly in Benin, is a major public health concern in Sub-Saharan Africa. To provide a positive pregnancy experience and reduce maternal morbidities, all pregnant women must get appropriate and timely prenatal support. However, many pregnant women in developing countries, including Benin, begin antenatal care late. There is a paucity of empirical literature on the prevalence and predictors of early antenatal care visits in Benin. As a result, the purpose of this study is to investigate the prevalence and predictors of early antenatal care visits among women of productive age in Benin. Methods: This is a secondary analysis of the 2017/2018 Benin Demographic and Health Survey (BDHS) data. The study involved 6,919 eligible women. Data analysis was conducted using Stata version 14.2 for Mac OS. We adopted a multilevel logistic regression to examine the predictors of early ANC visits in Benin. The results were presented as odds ratios (ORs) associated with 95% confidence intervals (CIs) and p-value <0.05 to determine the significant associations. Results: The prevalence of early ANC visits among pregnant women in Benin was 57.03% [95% CI: 55.41-58.64]. In the final multilevel logistic regression, early ANC visit was higher among women aged 30-34 [aOR=1.60, 95% CI=1.17-2.18] compared to those aged 15-19, women with primary education [aOR=1.22, 95% CI=1.06-142] compared to the non-educated women, women who were covered by health insurance [aOR=3.03, 95% CI=1.35-6.76], women without a big problem in getting the money needed for treatment [aOR=1.31, 95% CI=1.16-1.49], distance to the health facility, not a big problem [aOR=1.23, 95% CI=1.08-1.41], and women whose partners had secondary/higher education [aOR=1.35, 95% CI=1.15-1.57] compared with those who were not covered by health insurance, had big problem in getting money needed for treatment, distance to health facility is a big problem and whose partners had no education respectively. However, women who had four or more births [aOR=0.60, 95% CI=0.48-0.74] and those in Atacora Region [aOR=0.50, 95% CI=0.37-0.68] had lower odds of early ANC visit. Conclusion: This study revealed a relatively high prevalence of early ANC visits among women of reproductive age in Benin. Women's age, educational status of women and their partners, parity, health insurance coverage, distance to health facilities, and region were all associated with early ANC visits among women of reproductive in Benin. These factors ought to be taken into account when developing ANC policies and strategies in order to boost early ANC visits among women in Benin. This will significantly reduce maternal and newborn mortality and help achieve the World Health Organization’s recommendation that all pregnant women should initiate early ANC visits within the first three months of pregnancy.

Keywords: antenatal care, Benin, maternal health, pregnancy, DHS, public health

Procedia PDF Downloads 67
3065 A Study of the Influence of College Students’ Exercise and Leisure Motivations on the Leisure Benefits: Using Leisure Involvement as a Moderator

Authors: Chiung-En Huang, Cheng-Yu Tsai, Shane-Chung Lee

Abstract:

This study aim at the influence of college students’ exercise and leisure motivations on the leisure benefits while using the leisure involvement as a moderator. Whereby, the research tools used in this study included the application of leisure motivation scale, leisure involvement scale and leisure benefits scale, and a hierarchical regression analysis was performed by using a questionnaire-based survey, in which, a total of 1,500 copies of questionnaires were administered and 917 valid questionnaires were obtained, achieving a response rate of 61.13%. Research findings explore that leisure involvement has a moderating effect on the relationship between the leisure motivation and leisure benefits.

Keywords: leisure motivation, leisure involvement, leisure benefits, moderator

Procedia PDF Downloads 369
3064 Functionalized Ultra-Soft Rubber for Soft Robotics Application

Authors: Shib Shankar Banerjeea, Andreas Ferya, Gert Heinricha, Amit Das

Abstract:

Recently, the growing need for the development of soft robots consisting of highly deformable and compliance materials emerge from the serious limitations of conventional service robots. However, one of the main challenges of soft robotics is to develop such compliance materials, which facilitates the design of soft robotic structures and, simultaneously, controls the soft-body systems, like soft artificial muscles. Generally, silicone or acrylic-based elastomer composites are used for soft robotics. However, mechanical performance and long-term reliabilities of the functional parts (sensors, actuators, main body) of the robot made from these composite materials are inferior. This work will present the development and characterization of robust super-soft programmable elastomeric materials from crosslinked natural rubber that can serve as touch and strain sensors for soft robotic arms with very high elastic properties and strain, while the modulus is altered in the kilopascal range. Our results suggest that such soft natural programmable elastomers can be promising materials and can replace conventional silicone-based elastomer for soft robotics applications.

Keywords: elastomers, soft materials, natural rubber, sensors

Procedia PDF Downloads 156
3063 Refractory Visceral Leishmaniasis Responding to Second-Line Therapy

Authors: Preet Shah, Om Shrivastav

Abstract:

Introduction : In India, Leishmania donovani is the only parasite causing Leishmaniasis. The parasite infects the reticuloendothelial system and is found in the bone marrow, spleen and liver. Treatment of choice is amphotericin-B with sodium stibogluconate being an alternative. Miltefosine is useful in refractory cases. In our case, Leishmaniasis occurred in a person residing in western India (which is quite rare) and it failed to respond to two different drugs (again an uncommon feature) before it finally responded to a third one. Description: A 50 year old lady, a resident of western India, with no history of recent travel, presented with an ulcer on the left side of the nose since 8 months. She was apparently alright 8 months back, when she noticed a small ulcerated lesion on the left ala of the nose which was immediately biopsied. The biopsy revealed amastigotes of Leishmania for which she was administered intra-lesional sodium stibogluconate for 1 month (4 doses every 8 days).Despite this, there was no regression of the ulcer and hence she presented to us for further management. On examination, her vital parameters were normal. Barring an ulcer on the left side of the nose, rest of the examination findings were unremarkable. Complete blood count was normal. Ultrasound abdomen showed hepatomegaly. PET-CT scan showed increased metabolic activity in left ala of nose, hepatosplenomegaly and increased metabolic activity in spleen and bone marrow. Bone marrow biopsy was done which showed hypercellular marrow with erythroid preponderance. Considering a diagnosis of leishmaniasis which had so far been unresponsive to sodium stibogluconate, she was started on liposomal amphotericin-B. At the time of admission, her creatinine level was normal, but it started rising with the administration of liposomal amphotericin-B, hence the dose was reduced. Despite this, creatinine levels did not improve, and she started developing hypokalemia and hypomagnesemia as side effects of the drug, hence further reductions in the dosage were made. Despite a total of 3 weeks of liposomal amphotericin-B, there was no improvement in the ulcer. As had so far failed to respond to sodium stibogluconate and liposomal amphotericin-B, it was decided to start her on miltefosine. She received the miltefosine for a total of 12 weeks. At the end of this duration, there was a marked regression of the cutaneous lesion. Conclusion: Refractoriness to amphotericin-B in leishmaniasis may be seen in up to 5 % cases. Here, an alternative drug such as miltefosine is useful and hence we decided to use it, to which she responded adequately. Furthermore, although leishmaniasis is common in the eastern part of India, it is a relatively unknown entity in the western part of the country with the occurrence being very rare. Because of these 2 reasons, we consider our case to be a unique one.

Keywords: amphotericin-b, leishmaniasis, miltefosine, tropical diseases

Procedia PDF Downloads 139
3062 Novel GPU Approach in Predicting the Directional Trend of the S&P500

Authors: A. J. Regan, F. J. Lidgey, M. Betteridge, P. Georgiou, C. Toumazou, K. Hayatleh, J. R. Dibble

Abstract:

Our goal is development of an algorithm capable of predicting the directional trend of the Standard and Poor’s 500 index (S&P 500). Extensive research has been published attempting to predict different financial markets using historical data testing on an in-sample and trend basis, with many authors employing excessively complex mathematical techniques. In reviewing and evaluating these in-sample methodologies, it became evident that this approach was unable to achieve sufficiently reliable prediction performance for commercial exploitation. For these reasons, we moved to an out-of-sample strategy based on linear regression analysis of an extensive set of financial data correlated with historical closing prices of the S&P 500. We are pleased to report a directional trend accuracy of greater than 55% for tomorrow (t+1) in predicting the S&P 500.

Keywords: financial algorithm, GPU, S&P 500, stock market prediction

Procedia PDF Downloads 350
3061 Modeling of Anode Catalyst against CO in Fuel Cell Using Material Informatics

Authors: M. Khorshed Alam, H. Takaba

Abstract:

The catalytic properties of metal usually change by intermixturing with another metal in polymer electrolyte fuel cells. Pt-Ru alloy is one of the much-talked used alloy to enhance the CO oxidation. In this work, we have investigated the CO coverage on the Pt2Ru3 nanoparticle with different atomic conformation of Pt and Ru using a combination of material informatics with computational chemistry. Density functional theory (DFT) calculations used to describe the adsorption strength of CO and H with different conformation of Pt Ru ratio in the Pt2Ru3 slab surface. Then through the Monte Carlo (MC) simulations we examined the segregation behaviour of Pt as a function of surface atom ratio, subsurface atom ratio, particle size of the Pt2Ru3 nanoparticle. We have constructed a regression equation so as to reproduce the results of DFT only from the structural descriptors. Descriptors were selected for the regression equation; xa-b indicates the number of bonds between targeted atom a and neighboring atom b in the same layer (a,b = Pt or Ru). Terms of xa-H2 and xa-CO represent the number of atoms a binding H2 and CO molecules, respectively. xa-S is the number of atom a on the surface. xa-b- is the number of bonds between atom a and neighboring atom b located outside the layer. The surface segregation in the alloying nanoparticles is influenced by their component elements, composition, crystal lattice, shape, size, nature of the adsorbents and its pressure, temperature etc. Simulations were performed on different size (2.0 nm, 3.0 nm) of nanoparticle that were mixing of Pt and Ru atoms in different conformation considering of temperature range 333K. In addition to the Pt2Ru3 alloy we also considered pure Pt and Ru nanoparticle to make comparison of surface coverage by adsorbates (H2, CO). Hence, we assumed the pure and Pt-Ru alloy nanoparticles have an fcc crystal structures as well as a cubo-octahedron shape, which is bounded by (111) and (100) facets. Simulations were performed up to 50 million MC steps. From the results of MC, in the presence of gases (H2, CO), the surfaces are occupied by the gas molecules. In the equilibrium structure the coverage of H and CO as a function of the nature of surface atoms. In the initial structure, the Pt/Ru ratios on the surfaces for different cluster sizes were in range of 0.50 - 0.95. MC simulation was employed when the partial pressure of H2 (PH2) and CO (PCO) were 70 kPa and 100-500 ppm, respectively. The Pt/Ru ratios decrease as the increase in the CO concentration, without little exception only for small nanoparticle. The adsorption strength of CO on the Ru site is higher than the Pt site that would be one of the reason for decreasing the Pt/Ru ratio on the surface. Therefore, our study identifies that controlling the nanoparticle size, composition, conformation of alloying atoms, concentration and chemical potential of adsorbates have impact on the steadiness of nanoparticle alloys which ultimately and also overall catalytic performance during the operations.

Keywords: anode catalysts, fuel cells, material informatics, Monte Carlo

Procedia PDF Downloads 193
3060 Application of Liquid Chromatographic Method for the in vitro Determination of Gastric and Intestinal Stability of Pure Andrographolide in the Extract of Andrographis paniculata

Authors: Vijay R. Patil, Sathiyanarayanan Lohidasan, K. R. Mahadik

Abstract:

Gastrointestinal stability of andrographolide was evaluated in vitro in simulated gastric (SGF) and intestinal (SIF) fluids using a validated HPLC-PDA method. The method was validated using a 5μm ThermoHypersil GOLD C18column (250 mm × 4.0 mm) and mobile phase consisting of water: acetonitrile; 70: 30 (v/v) delivered isocratically at a flow rate of 1 mL/min with UV detection at 228 nm. Andrographolide in pure form and extract Andrographis paniculata was incubated at 37°C in an incubator shaker in USP simulated gastric and intestinal fluids with and without enzymes. Systematic protocol as per FDA Guidance System was followed for stability study and samples were assayed at 0, 15, 30 and 60 min intervals for gastric and at 0, 15, 30, 60 min, 1, 2 and 3 h for intestinal stability study. Also, the stability study was performed up to 24 h to see the degradation pattern in SGF and SIF (with enzyme and without enzyme). The developed method was found to be accurate, precise and robust. Andrographolide was found to be stable in SGF (pH ∼ 1.2) for 1h and SIF (pH 6.8) up to 3 h. The relative difference (RD) of amount of drug added and found at all time points was found to be < 3%. The present study suggests that drug loss in the gastrointestinal tract takes place may be by membrane permeation rather than a degradation process.

Keywords: andrographolide, Andrographis paniculata, in vitro, stability, gastric, Intestinal HPLC-PDA

Procedia PDF Downloads 243
3059 Optimization of Electric Vehicle (EV) Charging Station Allocation Based on Multiple Data - Taking Nanjing (China) as an Example

Authors: Yue Huang, Yiheng Feng

Abstract:

Due to the global pressure on climate and energy, many countries are vigorously promoting electric vehicles and building charging (public) charging facilities. Faced with the supply-demand gap of existing electric vehicle charging stations and unreasonable space usage in China, this paper takes the central city of Nanjing as an example, establishes a site selection model through multivariate data integration, conducts multiple linear regression SPSS analysis, gives quantitative site selection results, and provides optimization models and suggestions for charging station layout planning.

Keywords: electric vehicle, charging station, allocation optimization, urban mobility, urban infrastructure, nanjing

Procedia PDF Downloads 93
3058 A Comparative Assessment of Membrane Bioscrubber and Classical Bioscrubber for Biogas Purification

Authors: Ebrahim Tilahun, Erkan Sahinkaya, Bariş Calli̇

Abstract:

Raw biogas is a valuable renewable energy source however it usually needs removal of the impurities. The presence of hydrogen sulfide (H2S) in the biogas has detrimental corrosion effects on the cogeneration units. Removal of H2S from the biogas can therefore significantly improve the biogas quality. In this work, a conventional bioscrubber (CBS), and a dense membrane bioscrubber (DMBS) were comparatively evaluated in terms of H2S removal efficiency (RE), CH4 enrichment and alkaline consumption at gas residence times ranging from 5 to 20 min. Both bioscrubbers were fed with a synthetic biogas containing H2S (1%), CO2 (39%) and CH4 (60%). The results show that high RE (98%) was obtained in the DMBS when gas residence time was 20 min, whereas slightly lower CO2 RE was observed. While in CBS system the outlet H2S concentration was always lower than 250 ppmv, and its H2S RE remained higher than 98% regardless of the gas residence time, although the high alkaline consumption and frequent absorbent replacement limited its cost-effectiveness. The result also indicates that in DMBS when the gas residence time increased to 20 min, the CH4 content in the treated biogas enriched upto 80%. However, while operating the CBS unit the CH4 content of the raw biogas (60%) decreased by three fold. The lower CH4 content in CBS was probably caused by extreme dilution of biogas with air (N2 and O2). According to the results obtained here the DMBS system is a robust and effective biotechnology in comparison with CBS. Hence, DMBS has a better potential for real scale applications.

Keywords: biogas, bioscrubber, desulfurization, PDMS membrane

Procedia PDF Downloads 227
3057 Low SPOP Expression and High MDM2 expression Are Associated with Tumor Progression and Predict Poor Prognosis in Hepatocellular Carcinoma

Authors: Chang Liang, Weizhi Gong, Yan Zhang

Abstract:

Purpose: Hepatocellular carcinoma (HCC) is a malignant tumor with a high mortality rate and poor prognosis worldwide. Murine double minute 2 (MDM2) regulates the tumor suppressor p53, increasing cancer risk and accelerating tumor progression. Speckle-type POX virus and zinc finger protein (SPOP), a key of subunit of Cullin-Ring E3 ligase, inhibits tumor genesis and progression by the ubiquitination of its downstream substrates. This study aimed to clarify whether SPOP and MDM2 are mutually regulated in HCC and the correlation between SPOP and MDM2 and the prognosis of HCC patients. Methods: First, the expression of SPOP and MDM2 in HCC tissues were detected by TCGA database. Then, 53 paired samples of HCC tumor and adjacent tissues were collected to evaluate the expression of SPOP and MDM2 using immunohistochemistry. Chi-square test or Fisher’s exact test were used to analyze the relationship between clinicopathological features and the expression levels of SPOP and MDM2. In addition, Kaplan‒Meier curve analysis and log-rank test were used to investigate the effects of SPOP and MDM2 on the survival of HCC patients. Last, the Multivariate Cox proportional risk regression model analyzed whether the different expression levels of SPOP and MDM2 were independent risk factors for the prognosis of HCC patients. Results: Bioinformatics analysis revealed the low expression of SPOP and high expression of MDM2 were related to worse prognosis of HCC patients. The relationship between the expression of SPOP and MDM2 and tumor stem-like features showed an opposite trend. The immunohistochemistry showed the expression of SPOP protein was significantly downregulated while MDM2 protein significantly upregulated in HCC tissue compared to that in para-cancerous tissue. Tumors with low SPOP expression were related to worse T stage and Barcelona Clinic Liver Cancer (BCLC) stage, but tumors with high MDM2 expression were related to worse T stage, M stage, and BCLC stage. Kaplan–Meier curves showed HCC patients with high SPOP expression and low MDM2 expression had better survival than those with low SPOP expression and high MDM2 expression (P < 0.05). A multivariate Cox proportional risk regression model confirmed that a high MDM2 expression level was an independent risk factor for poor prognosis in HCC patients (P <0.05). Conclusion: The expression of SPOP protein was significantly downregulated, while the expression of MDM2 significantly upregulated in HCC. The low expression of SPOP and high expression. of MDM2 were associated with malignant progression and poor prognosis of HCC patients, indicating a potential therapeutic target for HCC patients.

Keywords: hepatocellular carcinoma, murine double minute 2, speckle-type POX virus and zinc finger protein, ubiquitination

Procedia PDF Downloads 145
3056 Deep Graph Embeddings for the Analysis of Short Heartbeat Interval Time Series

Authors: Tamas Madl

Abstract:

Sudden cardiac death (SCD) constitutes a large proportion of cardiovascular mortalities, provides little advance warning, and the risk is difficult to recognize based on ubiquitous, low cost medical equipment such as the standard, 12-lead, ten second ECG. Autonomic abnormalities have been shown to be strongly predictive of SCD risk; yet current methods are not trivially applicable to the brevity and low temporal and electrical resolution of standard ECGs. Here, we build horizontal visibility graph representations of very short inter-beat interval time series, and perform unsuper- vised representation learning in order to convert these variable size objects into fixed-length vectors preserving similarity rela- tions. We show that such representations facilitate classification into healthy vs. at-risk patients on two different datasets, the Mul- tiparameter Intelligent Monitoring in Intensive Care II and the PhysioNet Sudden Cardiac Death Holter Database. Our results suggest that graph representation learning of heartbeat interval time series facilitates robust classification even in sequences as short as ten seconds.

Keywords: sudden cardiac death, heart rate variability, ECG analysis, time series classification

Procedia PDF Downloads 236
3055 Robust Fractional Order Controllers for Minimum and Non-Minimum Phase Systems – Studies on Design and Development

Authors: Anand Kishore Kola, G. Uday Bhaskar Babu, Kotturi Ajay Kumar

Abstract:

The modern dynamic systems used in industries are complex in nature and hence the fractional order controllers have been contemplated as a fresh approach to control system design that takes the complexity into account. Traditional integer order controllers use integer derivatives and integrals to control systems, whereas fractional order controllers use fractional derivatives and integrals to regulate memory and non-local behavior. This study provides a method based on the maximumsensitivity (Ms) methodology to discover all resilient fractional filter Internal Model Control - proportional integral derivative (IMC-PID) controllers that stabilize the closed-loop system and deliver the highest performance for a time delay system with a Smith predictor configuration. Additionally, it helps to enhance the range of PID controllers that are used to stabilize the system. This study also evaluates the effectiveness of the suggested controller approach for minimum phase system in comparison to those currently in use which are based on Integral of Absolute Error (IAE) and Total Variation (TV).

Keywords: modern dynamic systems, fractional order controllers, maximum-sensitivity, IMC-PID controllers, Smith predictor, IAE and TV

Procedia PDF Downloads 66
3054 Optimization of Heat Source Assisted Combustion on Solid Rocket Motors

Authors: Minal Jain, Vinayak Malhotra

Abstract:

Solid Propellant ignition consists of rapid and complex events comprising of heat generation and transfer of heat with spreading of flames over the entire burning surface area. Proper combustion and thus propulsion depends heavily on the modes of heat transfer characteristics and cavity volume. Fire safety is an integral component of a successful rocket flight failing to which may lead to overall failure of the rocket. This leads to enormous forfeiture in resources viz., money, time, and labor involved. When the propellant is ignited, thrust is generated and the casing gets heated up. This heat adds on to the propellant heat and the casing, if not at proper orientation starts burning as well, leading to the whole rocket being completely destroyed. This has necessitated active research efforts emphasizing a comprehensive study on the inter-energy relations involved for effective utilization of the solid rocket motors for better space missions. Present work is focused on one of the major influential aspects of this detrimental burning which is the presence of an external heat source, in addition to a potential heat source which is already ignited. The study is motivated by the need to ensure better combustion and fire safety presented experimentally as a simplified small-scale mode of a rocket carrying a solid propellant inside a cavity. The experimental setup comprises of a paraffin wax candle as the pilot fuel and incense stick as the external heat source. The candle is fixed and the incense stick position and location is varied to investigate the find the influence of the pilot heat source. Different configurations of the external heat source presence with separation distance are tested upon. Regression rates of the pilot thin solid fuel are noted to fundamentally understand the non-linear heat and mass transfer which is the governing phenomenon. An attempt is made to understand the phenomenon fundamentally and the mechanism governing it. Results till now indicate non-linear heat transfer assisted with the occurrence of flaming transition at selected critical distances. With an increase in separation distance, the effect is noted to drop in a non-monotonic trend. The parametric study results are likely to provide useful physical insight about the governing physics and utilization in proper testing, validation, material selection, and designing of solid rocket motors with enhanced safety.

Keywords: combustion, propellant, regression, safety

Procedia PDF Downloads 162
3053 Currency Exchange Rate Forecasts Using Quantile Regression

Authors: Yuzhi Cai

Abstract:

In this paper, we discuss a Bayesian approach to quantile autoregressive (QAR) time series model estimation and forecasting. Together with a combining forecasts technique, we then predict USD to GBP currency exchange rates. Combined forecasts contain all the information captured by the fitted QAR models at different quantile levels and are therefore better than those obtained from individual models. Our results show that an unequally weighted combining method performs better than other forecasting methodology. We found that a median AR model can perform well in point forecasting when the predictive density functions are symmetric. However, in practice, using the median AR model alone may involve the loss of information about the data captured by other QAR models. We recommend that combined forecasts should be used whenever possible.

Keywords: combining forecasts, MCMC, predictive density functions, quantile forecasting, quantile modelling

Procedia PDF Downloads 256
3052 Regulatory and Economic Challenges of AI Integration in Cyber Insurance

Authors: Shreyas Kumar, Mili Shangari

Abstract:

Integrating artificial intelligence (AI) in the cyber insurance sector represents a significant advancement, offering the potential to revolutionize risk assessment, fraud detection, and claims processing. However, this integration introduces a range of regulatory and economic challenges that must be addressed to ensure responsible and effective deployment of AI technologies. This paper examines the multifaceted regulatory landscape governing AI in cyber insurance and explores the economic implications of compliance, innovation, and market dynamics. AI's capabilities in processing vast amounts of data and identifying patterns make it an invaluable tool for insurers in managing cyber risks. Yet, the application of AI in this domain is subject to stringent regulatory scrutiny aimed at safeguarding data privacy, ensuring algorithmic transparency, and preventing biases. Regulatory bodies, such as the European Union with its General Data Protection Regulation (GDPR), mandate strict compliance requirements that can significantly impact the deployment of AI systems. These regulations necessitate robust data protection measures, ethical AI practices, and clear accountability frameworks, all of which entail substantial compliance costs for insurers. The economic implications of these regulatory requirements are profound. Insurers must invest heavily in upgrading their IT infrastructure, implementing robust data governance frameworks, and training personnel to handle AI systems ethically and effectively. These investments, while essential for regulatory compliance, can strain financial resources, particularly for smaller insurers, potentially leading to market consolidation. Furthermore, the cost of regulatory compliance can translate into higher premiums for policyholders, affecting the overall affordability and accessibility of cyber insurance. Despite these challenges, the potential economic benefits of AI integration in cyber insurance are significant. AI-enhanced risk assessment models can provide more accurate pricing, reduce the incidence of fraudulent claims, and expedite claims processing, leading to overall cost savings and increased efficiency. These efficiencies can improve the competitiveness of insurers and drive innovation in product offerings. However, balancing these benefits with regulatory compliance is crucial to avoid legal penalties and reputational damage. The paper also explores the potential risks associated with AI integration, such as algorithmic biases that could lead to unfair discrimination in policy underwriting and claims adjudication. Regulatory frameworks need to evolve to address these issues, promoting fairness and transparency in AI applications. Policymakers play a critical role in creating a balanced regulatory environment that fosters innovation while protecting consumer rights and ensuring market stability. In conclusion, the integration of AI in cyber insurance presents both regulatory and economic challenges that require a coordinated approach involving regulators, insurers, and other stakeholders. By navigating these challenges effectively, the industry can harness the transformative potential of AI, driving advancements in risk management and enhancing the resilience of the cyber insurance market. This paper provides insights and recommendations for policymakers and industry leaders to achieve a balanced and sustainable integration of AI technologies in cyber insurance.

Keywords: artificial intelligence (AI), cyber insurance, regulatory compliance, economic impact, risk assessment, fraud detection, cyber liability insurance, risk management, ransomware

Procedia PDF Downloads 34
3051 Deep Learning and Accurate Performance Measure Processes for Cyber Attack Detection among Web Logs

Authors: Noureddine Mohtaram, Jeremy Patrix, Jerome Verny

Abstract:

As an enormous number of online services have been developed into web applications, security problems based on web applications are becoming more serious now. Most intrusion detection systems rely on each request to find the cyber-attack rather than on user behavior, and these systems can only protect web applications against known vulnerabilities rather than certain zero-day attacks. In order to detect new attacks, we analyze the HTTP protocols of web servers to divide them into two categories: normal attacks and malicious attacks. On the other hand, the quality of the results obtained by deep learning (DL) in various areas of big data has given an important motivation to apply it to cybersecurity. Deep learning for attack detection in cybersecurity has the potential to be a robust tool from small transformations to new attacks due to its capability to extract more high-level features. This research aims to take a new approach, deep learning to cybersecurity, to classify these two categories to eliminate attacks and protect web servers of the defense sector which encounters different web traffic compared to other sectors (such as e-commerce, web app, etc.). The result shows that by using a machine learning method, a higher accuracy rate, and a lower false alarm detection rate can be achieved.

Keywords: anomaly detection, HTTP protocol, logs, cyber attack, deep learning

Procedia PDF Downloads 213
3050 Epidemiology, Knowledge, Attitude, and Practices among Patients of Stroke

Authors: Vijay nandmer, Ajay Nandmer

Abstract:

Stigmatized psycho-social perception poses a serious challenge and source of discrimination which impedes stroke patients from attaining a satisfactory quality of life. The present study was aimed to obtain information on knowledge, attitudes and practices (KAP) of stroke patients in the institute. We included 1000 people in our random sampling survey. Demographic details and responses to a questionnaire assessing the knowledge, attitude and practices were recorded. Although the majority of the patients belonged to low socioeconomic strata, the literacy rate was reasonably high (96.3%). A large majority (91.3%) of people had heard about stroke and (85.2%) knew that stroke can be treated with modern drugs. However, a negative attitude was reflected in the belief that stroke happens due to supernatural powers (hawa lagne se) (50.6%). Analysis of the data revealed regional differences in KAP which could be attributed to local Factors, such as literacy, awareness about stroke, and practice of different systems of medicine. Some of the differences can also be attributed to a category of study population whether it included patients or non-stroke individuals since the former are likely to have less negative attitudes than the public. There is a need to create awareness about stroke on a nation-wide basis to dispel the misconceptions and stigma through effective and robust programs with the aim to lessen the disease burden.

Keywords: epidemiology, sroke, literacy, stroke

Procedia PDF Downloads 390
3049 Cognitive Performance and Everyday Functionality in Healthy Greek Seniors

Authors: George Pavlidis, Ana Vivas

Abstract:

The demographic change into an aging population has stimulated the examination of seniors’ mental health and ability to live independently. The corresponding literature depicts the relation between cognitive decline and everyday functionality with aging, focusing largely in individuals that are reaching or have bridged the threshold of various forms of neuropathology and disability. In this context, recent meta-analysis depicts a moderate relation between cognitive performance and everyday functionality in AD sufferers. However, there has not been an analogous effort for the examination of this relation in the healthy spectrum of aging (i.e, in samples that are not challenged from a neurodegenerative disease). There is a consensus that the assessment tools designed to detect neuropathology with those that assess cognitive performance in healthy adults are distinct, thus their universal use in cognitively challenged and in healthy adults is not always valid. The same accounts for the assessment of everyday functionality. In addition, it is argued that everyday functionality should be examined with cultural adjusted assessment tools, since many vital everyday tasks are heterotypical among distinct cultures. Therefore, this study was set out to examine the relation between cognitive performance and everyday functionality a) in the healthy spectrum of aging and b) by adjusting the everyday functionality tools EPT and OTDL-R in the Greek cultural context. In Greece, 107 cognitively healthy seniors ( Mage = 62.24) completed a battery of neuropsychological tests and everyday functionality tests. Both were carefully chosen to be sensitive in fluctuations of performance in the healthy spectrum of cognitive performance and everyday functionality. The everyday functionality assessment tools were modified to reflect the local cultural context (i.e., EPT-G and OTDL-G). The results depicted that performance in all everyday functionality measures decline with age (.197 < r > .509). Statistically significant correlations emerged between cognitive performance and everyday functionality assessments that range from r =0.202 to r=0.510. A series of independent regression analysis including the scores of cognitive assessments has yield statistical significant models that explained 20.9 < AR2 > 32.4 of the variance in everyday functionality scored indexes. All everyday functionality measures were independently predicted by the TMT B-A index, and indicator of executive function. Stepwise regression analyses depicted that TMT B-A and age were statistically significant independent predictors of EPT-G and OTDL-G. It was concluded that everyday functionality is declining with age and that cognitive performance and everyday functional may be related in the healthy spectrum of aging. Age seems not to be the sole contributing factor in everyday functionality decline, rather executive control as well. Moreover, it was concluded that the EPT-G and OTDL-G are valuable tools to assess everyday functionality in Greek seniors that are not cognitively challenged, especially for research purposes. Future research should examine the contributing factors of a better cognitive vitality especially in executive control, as vital for the maintenance of independent living capacity with aging.

Keywords: cognition, everyday functionality, aging, cognitive decline, healthy aging, Greece

Procedia PDF Downloads 526
3048 The Impact of Sports Employees' of Perceptions of Organizational Climate and Organizational Trust on Work Motivation

Authors: Bilal Okudan, Omur F. Karakullukcu, Yusuf Can

Abstract:

Work motivation is one of the fundamental elements that determine the attitudes and performance of employees towards work. In this sense, work motivation depends not only on individual and occupational factors but also on employees' perception of organizational climate and organizational trust. Organizations that are aware of this have begun to do more research on work motivation in recent years to ensure that employees have the highest possible performance. In this framework of the purpose of this study is to examine the effect of sports employees' perceptions of organizational climate and organizational trust on work motivation. In the study, it has also been analyzed if there is any significant difference in the department of sports services’ employees’ organizational climate and organizational trust perception, and work motivation levels in terms of gender, age, duty status, year of service and level of education. 278 sports managers, who work in the department of sports service’s central and field organization at least as a chief in the manager position, have been chosen with random sampling method and they have voluntarily participated in the study. In the study, the organizational climate scale which was developed by Bilir (2005), organizational trusts scale developed by koksal (2012) and work motivation scale developed by Mottaz J. Clifford (1985) have been used as a data collection tool. The questionnaire form used as a data collection tool in the study includes a personal information form consisting of 5 questions; questioning gender, age, duty status, years of service and level of education. In the study, Pearson Correlation Analysis has been used for defining the correlation among organizational climate, organizational trust perceptions and work motivation levels in sports managers and regression analysis has been used to identify the effect of organizational climate and organizational trust on work motivation. T-test for binary grouping and ANOVA analysis have been used for more than binary groups in order to determine if there is any significant difference in the level of organizational climate, organizational trust perceptions and work motivations in terms of the participants’ duty status, year of service and level of education. According to the research results, it has been found that there is a positive correlation between the department of sports services’ employees’ organizational climate, organizational trust perceptions and work motivation levels. According to the results of the regression analysis; it is understood that the sports employees’ perception of organizational climate and organizational trust are two main factors which affects the perception of work motivation. Also, the results show that there is a significant difference in the level of organizational climate and organizational trust perceptions and work motivations of the department of sports services’ employees in terms of duty status, year of service, and level of education; however, the results reveal that there is no significant difference in terms of age groups and gender.

Keywords: sports manager, organizational climate, organizational trust, work motivation

Procedia PDF Downloads 243
3047 Application of Neuro-Fuzzy Technique for Optimizing the PVC Membrane Sensor

Authors: Majid Rezayi, Sh. Shahaboddin, HNM E. Mahmud, A. Yadollah, A. Saeid, A. Yatimah

Abstract:

In this study, the adaptive neuro-fuzzy inference system (ANFIS) was applied to obtain the membrane composition model affecting the potential response of our reported polymeric PVC sensor for determining the titanium (III) ions. The performance statistics of the artificial neural network (ANN) and linear regression models for potential slope prediction of membrane composition of titanium (III) ion selective electrode were compared with ANFIS technique. The results show that the ANFIS model can be used as a practical tool for obtaining the Nerntian slope of the proposed sensor in this study.

Keywords: adaptive neuro fuzzy inference, PVC sensor, titanium (III) ions, Nerntian slope

Procedia PDF Downloads 290
3046 Accuracy Improvement of Traffic Participant Classification Using Millimeter-Wave Radar by Leveraging Simulator Based on Domain Adaptation

Authors: Tokihiko Akita, Seiichi Mita

Abstract:

A millimeter-wave radar is the most robust against adverse environments, making it an essential environment recognition sensor for automated driving. However, the reflection signal is sparse and unstable, so it is difficult to obtain the high recognition accuracy. Deep learning provides high accuracy even for them in recognition, but requires large scale datasets with ground truth. Specially, it takes a lot of cost to annotate for a millimeter-wave radar. For the solution, utilizing a simulator that can generate an annotated huge dataset is effective. Simulation of the radar is more difficult to match with real world data than camera image, and recognition by deep learning with higher-order features using the simulator causes further deviation. We have challenged to improve the accuracy of traffic participant classification by fusing simulator and real-world data with domain adaptation technique. Experimental results with the domain adaptation network created by us show that classification accuracy can be improved even with a few real-world data.

Keywords: millimeter-wave radar, object classification, deep learning, simulation, domain adaptation

Procedia PDF Downloads 95
3045 ArcGIS as a Tool for Infrastructure Documentation and Asset Management: Establishing a GIS for Computer Network Documentation

Authors: John Segars

Abstract:

Built out of a real-world need to have better, more detailed, asset and infrastructure documentation, this project will lay out the case for using the database functionality of ArcGIS as a tool to track and maintain infrastructure location, status, maintenance and serviceability. Workflows and processes will be presented and detailed which may be applied to an organizations’ infrastructure needs that might allow them to make use of the robust tools which surround the ArcGIS platform. The end result is a value-added information system framework with a geographic component e.g., the spatial location of various I.T. assets, a detailed set of records which not only documents location but also captures the maintenance history for assets along with photographs and documentation of these various assets as attachments to the numerous feature class items. In addition to the asset location and documentation benefits, the staff will be able to log into the devices and pull SNMP (Simple Network Management Protocol) based query information from within the user interface. The entire collection of information may be displayed in ArcGIS, via a JavaScript based web application or via queries to the back-end database. The project is applicable to all organizations which maintain an IT infrastructure but specifically targets post-secondary educational institutions where access to ESRI resources is generally already available in house.

Keywords: ESRI, GIS, infrastructure, network documentation, PostgreSQL

Procedia PDF Downloads 181
3044 Multi-Objective Electric Vehicle Charge Coordination for Economic Network Management under Uncertainty

Authors: Ridoy Das, Myriam Neaimeh, Yue Wang, Ghanim Putrus

Abstract:

Electric vehicles are a popular transportation medium renowned for potential environmental benefits. However, large and uncontrolled charging volumes can impact distribution networks negatively. Smart charging is widely recognized as an efficient solution to achieve both improved renewable energy integration and grid relief. Nevertheless, different decision-makers may pursue diverse and conflicting objectives. In this context, this paper proposes a multi-objective optimization framework to control electric vehicle charging to achieve both energy cost reduction and peak shaving. A weighted-sum method is developed due to its intuitiveness and efficiency. Monte Carlo simulations are implemented to investigate the impact of uncertain electric vehicle driving patterns and provide decision-makers with a robust outcome in terms of prospective cost and network loading. The results demonstrate that there is a conflict between energy cost efficiency and peak shaving, with the decision-makers needing to make a collaborative decision.

Keywords: electric vehicles, multi-objective optimization, uncertainty, mixed integer linear programming

Procedia PDF Downloads 180
3043 Domain Adaptation Save Lives - Drowning Detection in Swimming Pool Scene Based on YOLOV8 Improved by Gaussian Poisson Generative Adversarial Network Augmentation

Authors: Simiao Ren, En Wei

Abstract:

Drowning is a significant safety issue worldwide, and a robust computer vision-based alert system can easily prevent such tragedies in swimming pools. However, due to domain shift caused by the visual gap (potentially due to lighting, indoor scene change, pool floor color etc.) between the training swimming pool and the test swimming pool, the robustness of such algorithms has been questionable. The annotation cost for labeling each new swimming pool is too expensive for mass adoption of such a technique. To address this issue, we propose a domain-aware data augmentation pipeline based on Gaussian Poisson Generative Adversarial Network (GP-GAN). Combined with YOLOv8, we demonstrate that such a domain adaptation technique can significantly improve the model performance (from 0.24 mAP to 0.82 mAP) on new test scenes. As the augmentation method only require background imagery from the new domain (no annotation needed), we believe this is a promising, practical route for preventing swimming pool drowning.

Keywords: computer vision, deep learning, YOLOv8, detection, swimming pool, drowning, domain adaptation, generative adversarial network, GAN, GP-GAN

Procedia PDF Downloads 101
3042 Italian Speech Vowels Landmark Detection through the Legacy Tool 'xkl' with Integration of Combined CNNs and RNNs

Authors: Kaleem Kashif, Tayyaba Anam, Yizhi Wu

Abstract:

This paper introduces a methodology for advancing Italian speech vowels landmark detection within the distinctive feature-based speech recognition domain. Leveraging the legacy tool 'xkl' by integrating combined convolutional neural networks (CNNs) and recurrent neural networks (RNNs), the study presents a comprehensive enhancement to the 'xkl' legacy software. This integration incorporates re-assigned spectrogram methodologies, enabling meticulous acoustic analysis. Simultaneously, our proposed model, integrating combined CNNs and RNNs, demonstrates unprecedented precision and robustness in landmark detection. The augmentation of re-assigned spectrogram fusion within the 'xkl' software signifies a meticulous advancement, particularly enhancing precision related to vowel formant estimation. This augmentation catalyzes unparalleled accuracy in landmark detection, resulting in a substantial performance leap compared to conventional methods. The proposed model emerges as a state-of-the-art solution in the distinctive feature-based speech recognition systems domain. In the realm of deep learning, a synergistic integration of combined CNNs and RNNs is introduced, endowed with specialized temporal embeddings, harnessing self-attention mechanisms, and positional embeddings. The proposed model allows it to excel in capturing intricate dependencies within Italian speech vowels, rendering it highly adaptable and sophisticated in the distinctive feature domain. Furthermore, our advanced temporal modeling approach employs Bayesian temporal encoding, refining the measurement of inter-landmark intervals. Comparative analysis against state-of-the-art models reveals a substantial improvement in accuracy, highlighting the robustness and efficacy of the proposed methodology. Upon rigorous testing on a database (LaMIT) speech recorded in a silent room by four Italian native speakers, the landmark detector demonstrates exceptional performance, achieving a 95% true detection rate and a 10% false detection rate. A majority of missed landmarks were observed in proximity to reduced vowels. These promising results underscore the robust identifiability of landmarks within the speech waveform, establishing the feasibility of employing a landmark detector as a front end in a speech recognition system. The synergistic integration of re-assigned spectrogram fusion, CNNs, RNNs, and Bayesian temporal encoding not only signifies a significant advancement in Italian speech vowels landmark detection but also positions the proposed model as a leader in the field. The model offers distinct advantages, including unparalleled accuracy, adaptability, and sophistication, marking a milestone in the intersection of deep learning and distinctive feature-based speech recognition. This work contributes to the broader scientific community by presenting a methodologically rigorous framework for enhancing landmark detection accuracy in Italian speech vowels. The integration of cutting-edge techniques establishes a foundation for future advancements in speech signal processing, emphasizing the potential of the proposed model in practical applications across various domains requiring robust speech recognition systems.

Keywords: landmark detection, acoustic analysis, convolutional neural network, recurrent neural network

Procedia PDF Downloads 65
3041 The Effective Operations Competitive Advantages of Mobile Phone Service Providers across Countries: The Case of Middle East Region

Authors: Yazan Khalid Abed-Allah Migdadi

Abstract:

The aim of this study is identifying the effective operations competitive advantages of mobile phone service providers across countries. All Arab countries in the Middle East region were surveyed except Syria, and 27 out of 31 service providers were surveyed. Data collected from corporations’ annual reports, websites and other professional institutions published sources. Multiple linear regression analysis test was used to identify the relationship between operations competitive advantages and market share. The effective operations competitive advantages were; diversity of offers and service accessibility

Keywords: competitive advantage, mobile telecommunication operations, Middle East, service provider

Procedia PDF Downloads 398
3040 Prediction of Bariatric Surgery Publications by Using Different Machine Learning Algorithms

Authors: Senol Dogan, Gunay Karli

Abstract:

Identification of relevant publications based on a Medline query is time-consuming and error-prone. An all based process has the potential to solve this problem without any manual work. To the best of our knowledge, our study is the first to investigate the ability of machine learning to identify relevant articles accurately. 5 different machine learning algorithms were tested using 23 predictors based on several metadata fields attached to publications. We find that the Boosted model is the best-performing algorithm and its overall accuracy is 96%. In addition, specificity and sensitivity of the algorithm is 97 and 93%, respectively. As a result of the work, we understood that we can apply the same procedure to understand cancer gene expression big data.

Keywords: prediction of publications, machine learning, algorithms, bariatric surgery, comparison of algorithms, boosted, tree, logistic regression, ANN model

Procedia PDF Downloads 210