Search results for: neural interface
1638 Control of Chaotic Behaviour in Parallel-Connected DC-DC Buck-Boost Converters
Authors: Ammar Nimer Natsheh
Abstract:
Chaos control is used to design a controller that is able to eliminate the chaotic behaviour of nonlinear dynamic systems that experience such phenomena. The paper describes the control of the bifurcation behaviour of a parallel-connected DC-DC buck-boost converter used to provide an interface between energy storage batteries and photovoltaic (PV) arrays as renewable energy sources. The paper presents a delayed feedback control scheme in a module converter comprises two identical buck-boost circuits and operates in the continuous-current conduction mode (CCM). MATLAB/SIMULINK simulation results show the effectiveness and robustness of the scheme.Keywords: chaos, bifurcation, DC-DC Buck-Boost Converter, Delayed Feedback Control
Procedia PDF Downloads 4421637 Simulating Drilling Using a CAD System
Authors: Panagiotis Kyratsis, Konstantinos Kakoulis
Abstract:
Nowadays, the rapid development of CAD systems’ programming environments results in the creation of multiple downstream applications, which are developed and becoming increasingly available. CAD based manufacturing simulations is gradually following the same trend. Drilling is the most popular hole-making process used in a variety of industries. A specially built piece of software that deals with the drilling kinematics is presented. The cutting forces are calculated based on the tool geometry, the cutting conditions and the tool/work piece materials. The results are verified by experimental work. Finally, the response surface methodology (RSM) is applied and mathematical models of the total thrust force and the thrust force developed because of the main cutting edges are proposed.Keywords: CAD, application programming interface, response surface methodology, drilling, RSM
Procedia PDF Downloads 4771636 Estimation of Forces Applied to Forearm Using EMG Signal Features to Control of Powered Human Arm Prostheses
Authors: Faruk Ortes, Derya Karabulut, Yunus Ziya Arslan
Abstract:
Myoelectric features gathering from musculature environment are considered on a preferential basis to perceive muscle activation and control human arm prostheses according to recent experimental researches. EMG (electromyography) signal based human arm prostheses have shown a promising performance in terms of providing basic functional requirements of motions for the amputated people in recent years. However, these assistive devices for neurorehabilitation still have important limitations in enabling amputated people to perform rather sophisticated or functional movements. Surface electromyogram (EMG) is used as the control signal to command such devices. This kind of control consists of activating a motion in prosthetic arm using muscle activation for the same particular motion. Extraction of clear and certain neural information from EMG signals plays a major role especially in fine control of hand prosthesis movements. Many signal processing methods have been utilized for feature extraction from EMG signals. The specific objective of this study was to compare widely used time domain features of EMG signal including integrated EMG(IEMG), root mean square (RMS) and waveform length(WL) for prediction of externally applied forces to human hands. Obtained features were classified using artificial neural networks (ANN) to predict the forces. EMG signals supplied to process were recorded during only type of muscle contraction which is isometric and isotonic one. Experiments were performed by three healthy subjects who are right-handed and in a range of 25-35 year-old aging. EMG signals were collected from muscles of the proximal part of the upper body consisting of: biceps brachii, triceps brachii, pectorialis major and trapezius. The force prediction results obtained from the ANN were statistically analyzed and merits and pitfalls of the extracted features were discussed with detail. The obtained results are anticipated to contribute classification process of EMG signal and motion control of powered human arm prosthetics control.Keywords: assistive devices for neurorehabilitation, electromyography, feature extraction, force estimation, human arm prosthesis
Procedia PDF Downloads 3691635 Numerical Investigation of the Effects of Surfactant Concentrations on the Dynamics of Liquid-Liquid Interfaces
Authors: Bamikole J. Adeyemi, Prashant Jadhawar, Lateef Akanji
Abstract:
Theoretically, there exist two mathematical interfaces (fluid-solid and fluid-fluid) when a liquid film is present on solid surfaces. These interfaces overlap if the mineral surface is oil-wet or mixed wet, and therefore, the effects of disjoining pressure are significant on both boundaries. Hence, dewetting is a necessary process that could detach oil from the mineral surface. However, if the thickness of the thin water film directly in contact with the surface is large enough, disjoining pressure can be thought to be zero at the liquid-liquid interface. Recent studies show that the integration of fluid-fluid interactions with fluid-rock interactions is an important step towards a holistic approach to understanding smart water effects. Experiments have shown that the brine solution can alter the micro forces at oil-water interfaces, and these ion-specific interactions lead to oil emulsion formation. The natural emulsifiers present in crude oil behave as polyelectrolytes when the oil interfaces with low salinity water. Wettability alteration caused by low salinity waterflooding during Enhanced Oil Recovery (EOR) process results from the activities of divalent ions. However, polyelectrolytes are said to lose their viscoelastic property with increasing cation concentrations. In this work, the influence of cation concentrations on the dynamics of viscoelastic liquid-liquid interfaces is numerically investigated. The resultant ion concentrations at the crude oil/brine interfaces were estimated using a surface complexation model. Subsequently, the ion concentration parameter is integrated into a mathematical model to describe its effects on the dynamics of a viscoelastic interfacial thin film. The film growth, stability, and rupture were measured after different time steps for three types of fluids (Newtonian, purely elastic and viscoelastic fluids). The interfacial films respond to exposure time in a similar manner with an increasing growth rate, which resulted in the formation of more droplets with time. Increased surfactant accumulation at the interface results in a higher film growth rate which leads to instability and subsequent formation of more satellite droplets. Purely elastic and viscoelastic properties limit film growth rate and consequent film stability compared to the Newtonian fluid. Therefore, low salinity and reduced concentration of the potential determining ions in injection water will lead to improved interfacial viscoelasticity.Keywords: liquid-liquid interfaces, surfactant concentrations, potential determining ions, residual oil mobilization
Procedia PDF Downloads 1481634 Learning Traffic Anomalies from Generative Models on Real-Time Observations
Authors: Fotis I. Giasemis, Alexandros Sopasakis
Abstract:
This study focuses on detecting traffic anomalies using generative models applied to real-time observations. By integrating a Graph Neural Network with an attention-based mechanism within the Spatiotemporal Generative Adversarial Network framework, we enhance the capture of both spatial and temporal dependencies in traffic data. Leveraging minute-by-minute observations from cameras distributed across Gothenburg, our approach provides a more detailed and precise anomaly detection system, effectively capturing the complex topology and dynamics of urban traffic networks.Keywords: traffic, anomaly detection, GNN, GAN
Procedia PDF Downloads 141633 Comparison between LQR and ANN Active Anti-Roll Control of a Single Unit Heavy Vehicle
Authors: Babesse Saad, Ameddah Djemeleddine
Abstract:
In this paper, a learning algorithm using neuronal networks to improve the roll stability and prevent the rollover in a single unit heavy vehicle is proposed. First, LQR control to keep balanced normalized rollovers, between front and rear axles, below the unity, then a data collected from this controller is used as a training basis of a neuronal regulator. The ANN controller is thereafter applied for the nonlinear side force model, and gives satisfactory results than the LQR one.Keywords: rollover, single unit heavy vehicle, neural networks, nonlinear side force
Procedia PDF Downloads 4801632 Effect of Pre-bonding Storage Period on Laser-treated Al Surfaces
Authors: Rio Hirakawa, Christian Gundlach, Sven Hartwig
Abstract:
In recent years, the use of aluminium has further expanded and is expected to replace steel in the future as vehicles become lighter and more recyclable in order to reduce greenhouse gas (GHG) emissions and improve fuel economy. In line with this, structures and components are becoming increasingly multi-material, with different materials, including aluminium, being used in combination to improve mechanical utility and performance. A common method of assembling dissimilar materials is mechanical fastening, but it has several drawbacks, such as increased manufacturing processes and the influence of substrate-specific mechanical properties. Adhesive bonding and fusion bonding are methods that overcome the above disadvantages. In these two joining methods, surface pre-treatment of the substrate is always necessary to ensure the strength and durability of the joint. Previous studies have shown that laser surface treatment improves the strength and durability of the joint. Yan et al. showed that laser surface treatment of aluminium alloys changes α-Al2O3 in the oxide layer to γ-Al2O3. As γ-Al2O3 has a large specific surface area, is very porous and chemically active, laser-treated aluminium surfaces are expected to undergo physico-chemical changes over time and adsorb moisture and organic substances from the air or storage atmosphere. The impurities accumulated on the laser-treated surface may be released at the adhesive and bonding interface by the heat input to the bonding system during the joining phase, affecting the strength and durability of the joint. However, only a few studies have discussed the effect of such storage periods on laser-treated surfaces. This paper, therefore, investigates the ageing of laser-treated aluminium alloy surfaces through thermal analysis, electrochemical analysis and microstructural observations.AlMg3 of 0.5 mm and 1.5 mm thickness was cut using a water-jet cutting machine, cleaned and degreased with isopropanol and surface pre-treated with a pulsed fibre laser at 1060 nm wavelength, 70 W maximum power and 55 kHz repetition frequency. The aluminium surface was then analysed using SEM, thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR) and cyclic voltammetry (CV) after storage in air for various periods ranging from one day to several months TGA and FTIR analysed impurities adsorbed on the aluminium surface, while CV revealed changes in the true electrochemically active surface area. SEM also revealed visual changes on the treated surface. In summary, the changes in the laser-treated aluminium surface with storage time were investigated, and the final results were used to determine the appropriate storage period.Keywords: laser surface treatment, pre-treatment, adhesion, bonding, corrosion, durability, dissimilar material interface, automotive, aluminium alloys
Procedia PDF Downloads 841631 Deep Learning for SAR Images Restoration
Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo Ferraioli
Abstract:
In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring. SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.Keywords: SAR image, polarimetric SAR image, convolutional neural network, deep learnig, deep neural network
Procedia PDF Downloads 741630 Alteration Quartz-Kfeldspar-Apatite-Molybdenite at B Anomaly Prospection with Artificial Neural Network to Determining Molydenite Economic Deposits in Malala District, Western Sulawesi
Authors: Ahmad Lutfi, Nikolas Dhega
Abstract:
The Malala deposit in northwest Sulawesi is the only known porphyry molybdenum and the only source for rhenium, occurrence in Indonesia. The neural network method produces results that correspond very closely to those of the knowledge-based fuzzy logic method and weights of evidence method. This method required data of solid geology, regional faults, airborne magnetic, gamma-ray survey data and GIS data. This interpretation of the network output fits with the intuitive notion that a prospective area has characteristics that closely resemble areas known to contain mineral deposits. Contrasts with the weights of evidence and fuzzy logic methods, where, for a given grid location, each input-parameter value automatically results in an increase in the prospective estimated. Malala District indicated molybdenum anomalies in stream sediments from in excess of 15 km2 were obtained, including the Takudan Fault as most prominent structure with striking 40̊ to 60̊ over a distance of about 30 km and in most places weakly at anomaly B, developed over an area of 4 km2, with a ‘shell’ up to 50 m thick at the intrusive contact with minor mineralization occurring in the Tinombo Formation. Series of NW trending, steeply dipping fracture zones, named the East Zone has an estimated resource of 100 Mt at 0.14% MoS2 and minimum target of 150 Mt 0.25%. The Malala porphyries occur as stocks and dykes with predominantly granitic, with fluorine-poor class of molybdenum deposits and belongs to the plutonic sub-type. Unidirectional solidification textures consisting of subparallel, crenulated layers of quartz that area separated by layers of intrusive material textures. The deuteric nature of the molybdenum mineralization and the dominance of carbonate alteration.The nature of the Stage I with alteration barren quartz K‐feldspar; and Stage II with alteration quartz‐K‐feldspar‐apatite-molybdenite veins combined with the presence of disseminated molybdenite with primary biotite in the host intrusive.Keywords: molybdenite, Malala, porphyries, anomaly B
Procedia PDF Downloads 1551629 Effect of Signal Acquisition Procedure on Imagined Speech Classification Accuracy
Authors: M.R Asghari Bejestani, Gh. R. Mohammad Khani, V.R. Nafisi
Abstract:
Imagined speech recognition is one of the most interesting approaches to BCI development and a lot of works have been done in this area. Many different experiments have been designed and hundreds of combinations of feature extraction methods and classifiers have been examined. Reported classification accuracies range from the chance level to more than 90%. Based on non-stationary nature of brain signals, we have introduced 3 classification modes according to time difference in inter and intra-class samples. The modes can explain the diversity of reported results and predict the range of expected classification accuracies from the brain signal accusation procedure. In this paper, a few samples are illustrated by inspecting results of some previous works.Keywords: brain computer interface, silent talk, imagined speech, classification, signal processing
Procedia PDF Downloads 1561628 The Establishment of RELAP5/SNAP Model for Kuosheng Nuclear Power Plant
Authors: C. Shih, J. R. Wang, H. C. Chang, S. W. Chen, S. C. Chiang, T. Y. Yu
Abstract:
After the measurement uncertainty recapture (MUR) power uprates, Kuosheng nuclear power plant (NPP) was uprated the power from 2894 MWt to 2943 MWt. For power upgrade, several codes (e.g., TRACE, RELAP5, etc.) were applied to assess the safety of Kuosheng NPP. Hence, the main work of this research is to establish a RELAP5/MOD3.3 model of Kuosheng NPP with SNAP interface. The establishment of RELAP5/SNAP model was referred to the FSAR, training documents, and TRACE model which has been developed and verified before. After completing the model establishment, the startup test scenarios would be applied to the RELAP5/SNAP model. With comparing the startup test data and TRACE analysis results, the applicability of RELAP5/SNAP model would be assessed.Keywords: RELAP5, TRACE, SNAP, BWR
Procedia PDF Downloads 4331627 Mobile Smart Application Proposal for Predicting Calories in Food
Authors: Marcos Valdez Alexander Junior, Igor Aguilar-Alonso
Abstract:
Malnutrition is the root of different diseases that universally affect everyone, diseases such as obesity and malnutrition. The objective of this research is to predict the calories of the food to be eaten, developing a smart mobile application to show the user if a meal is balanced. Due to the large percentage of obesity and malnutrition in Peru, the present work is carried out. The development of the intelligent application is proposed with a three-layer architecture, and for the prediction of the nutritional value of the food, the use of pre-trained models based on convolutional neural networks is proposed.Keywords: volume estimation, calorie estimation, artificial vision, food nutrition
Procedia PDF Downloads 1051626 Deep Learning Based Polarimetric SAR Images Restoration
Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo ferraioli
Abstract:
In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring . SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.Keywords: SAR image, deep learning, convolutional neural network, deep neural network, SAR polarimetry
Procedia PDF Downloads 981625 Federated Learning in Healthcare
Authors: Ananya Gangavarapu
Abstract:
Convolutional Neural Networks (CNN) based models are providing diagnostic capabilities on par with the medical specialists in many specialty areas. However, collecting the medical data for training purposes is very challenging because of the increased regulations around data collections and privacy concerns around personal health data. The gathering of the data becomes even more difficult if the capture devices are edge-based mobile devices (like smartphones) with feeble wireless connectivity in rural/remote areas. In this paper, I would like to highlight Federated Learning approach to mitigate data privacy and security issues.Keywords: deep learning in healthcare, data privacy, federated learning, training in distributed environment
Procedia PDF Downloads 1451624 A Deep Learning Approach for the Predictive Quality of Directional Valves in the Hydraulic Final Test
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
The increasing use of deep learning applications in production is becoming a competitive advantage. Predictive quality enables the assurance of product quality by using data-driven forecasts via machine learning models as a basis for decisions on test results. The use of real Bosch production data along the value chain of hydraulic valves is a promising approach to classifying the leakage of directional valves.Keywords: artificial neural networks, classification, hydraulics, predictive quality, deep learning
Procedia PDF Downloads 2511623 Two Layer Photo-Thermal Deflection Model to Investigate the Electronic Properties in BGaAs/GaAs Alloys
Authors: S. Ilahi, M. Baira, F. Saidi, N. Yacoubi, L. Auvray, H. Maaref
Abstract:
Photo-thermal deflection technique (PTD) is used to study the nonradiative recombination process in BGaAs/GaAs alloy with boron composition of 3% and 8% grown by metal organic chemical vapor deposition (MOCVD). A two layer theoretical model has been developed taking into account both thermal and electronic contribution in the photothermal signal allowing to extract the electronic parameters namely electronic diffusivity, surface and interface recombination. It is found that the increase of boron composition alters the BGaAs epilayers transport properties.Keywords: photothermal defelction technique, two layer model, BGaAs/GaAs alloys, boron composition
Procedia PDF Downloads 3031622 Design of Permanent Sensor Fault Tolerance Algorithms by Sliding Mode Observer for Smart Hybrid Powerpack
Authors: Sungsik Jo, Hyeonwoo Kim, Iksu Choi, Hunmo Kim
Abstract:
In the SHP, LVDT sensor is for detecting the length changes of the EHA output, and the thrust of the EHA is controlled by the pressure sensor. Sensor is possible to cause hardware fault by internal problem or external disturbance. The EHA of SHP is able to be uncontrollable due to control by feedback from uncertain information, on this paper; the sliding mode observer algorithm estimates the original sensor output information in permanent sensor fault. The proposed algorithm shows performance to recovery fault of disconnection and short circuit basically, also the algorithm detect various of sensor fault mode.Keywords: smart hybrid powerpack (SHP), electro hydraulic actuator (EHA), permanent sensor fault tolerance, sliding mode observer (SMO), graphic user interface (GUI)
Procedia PDF Downloads 5531621 Leveraging Deep Q Networks in Portfolio Optimization
Authors: Peng Liu
Abstract:
Deep Q networks (DQNs) represent a significant advancement in reinforcement learning, utilizing neural networks to approximate the optimal Q-value for guiding sequential decision processes. This paper presents a comprehensive introduction to reinforcement learning principles, delves into the mechanics of DQNs, and explores its application in portfolio optimization. By evaluating the performance of DQNs against traditional benchmark portfolios, we demonstrate its potential to enhance investment strategies. Our results underscore the advantages of DQNs in dynamically adjusting asset allocations, offering a robust portfolio management framework.Keywords: deep reinforcement learning, deep Q networks, portfolio optimization, multi-period optimization
Procedia PDF Downloads 411620 Device to Alert and Fire Prevention through Temperature Monitoring and Gas Detection
Authors: Dêivisson Alves Anjos, Blenda Fonseca Aires Teles, Queitiane Castro Costa
Abstract:
Fire is one of the biggest dangers for factories, warehouses, mills, among other places, causing unimaginable damage, because besides the material damage also directly affects the lives of workers who are likely to suffer death or very serious consequences. This protection of the lives of these people should be taken seriously, always seeking safety. Thus investment in security and monitoring equipment must be high, so you can prevent or reduce the impacts of a possible fire. Our device, made in PIC micro controller monitors the temperature and the presence of gas in the environment, it sends the data via Bluetooth device to a developed in LabVIEW interface saves these data continuously and alert if the temperature exceeds the allowed or some gas is detected. Currently the device is in operation and can perform several tests, as well as use in different areas for which you need anti-fire protection.Keywords: pic, bluetooth, fire, temperature, gas, LabVIEW
Procedia PDF Downloads 5371619 Forecasting of Grape Juice Flavor by Using Support Vector Regression
Authors: Ren-Jieh Kuo, Chun-Shou Huang
Abstract:
The research of juice flavor forecasting has become more important in China. Due to the fast economic growth in China, many different kinds of juices have been introduced to the market. If a beverage company can understand their customers’ preference well, the juice can be served more attractively. Thus, this study intends to introduce the basic theory and computing process of grapes juice flavor forecasting based on support vector regression (SVR). Applying SVR, BPN and LR to forecast the flavor of grapes juice in real data, the result shows that SVR is more suitable and effective at predicting performance.Keywords: flavor forecasting, artificial neural networks, Support Vector Regression, China
Procedia PDF Downloads 4961618 Evolution and Merging of Double-Diffusive Layers in a Vertically Stable Compositional Field
Authors: Ila Thakur, Atul Srivastava, Shyamprasad Karagadde
Abstract:
The phenomenon of double-diffusive convection is driven by density gradients created by two different components (e.g., temperature and concentration) having different molecular diffusivities. The evolution of horizontal double-diffusive layers (DDLs) is one of the outcomes of double-diffusive convection occurring in a laterally/vertically cooled rectangular cavity having a pre-existing vertically stable composition field. The present work mainly focuses on different characteristics of the formation and merging of double-diffusive layers by imposing lateral/vertical thermal gradients in a vertically stable compositional field. A CFD-based twodimensional fluent model has been developed for the investigation of the aforesaid phenomena. The configuration containing vertical thermal gradients shows the evolution and merging of DDLs, where, elements from the same horizontal plane move vertically and mix with surroundings, creating a horizontal layer. In the configuration of lateral thermal gradients, a specially oriented convective roll was found inside each DDL and each roll was driven by the competing density change due to the already existing composition field and imposed thermal field. When the thermal boundary layer near the vertical wall penetrates the salinity interface, it can disrupt the compositional interface and can lead to layer merging. Different analytical scales were quantified and compared for both configurations. Various combinations of solutal and thermal Rayleigh numbers were investigated to get three different regimes, namely; stagnant regime, layered regime and unicellular regime. For a particular solutal Rayleigh number, a layered structure can originate only for a range of thermal Rayleigh numbers. Lower thermal Rayleigh numbers correspond to a diffusion-dominated stagnant regime. Very high thermal Rayleigh corresponds to a unicellular regime with high convective mixing. Different plots identifying these three regimes, number, thickness and time of existence of DDLs have been studied and plotted. For a given solutal Rayleigh number, an increase in thermal Rayleigh number increases the width but decreases both the number and time of existence of DDLs in the fluid domain. Sudden peaks in the velocity and heat transfer coefficient have also been observed and discussed at the time of merging. The present study is expected to be useful in correlating the double-diffusive convection in many large-scale applications including oceanography, metallurgy, geology, etc. The model has also been developed for three-dimensional geometry, but the results were quite similar to that of 2-D simulations.Keywords: double diffusive layers, natural convection, Rayleigh number, thermal gradients, compositional gradients
Procedia PDF Downloads 881617 Emerging Methods as a Tool for Obtaining Subconscious Feedback in E-Commerce and Marketplace
Authors: J. Berčík, A. Mravcová, A. Rusková, P. Jurčišin, R. Virágh
Abstract:
The online world is changing every day. With this comes the emergence and development of new business models. One of them is the sale of several types of products in one place. This type of sales in the form of online marketplaces has undergone a positive development in recent years and represents a kind of alternative to brick-and-mortar shopping centres. The main philosophy is to buy several products under one roof. Examples of popular e-commerce marketplaces are Amazon, eBay, and Allegro. Their share of total e-commerce turnover is expected to even double in the coming years. The paper highlights possibilities for testing web applications and online marketplace using emerging methods like stationary eye cameras (eye tracking) and facial analysis (FaceReading).Keywords: emerging methods, consumer neuroscience, e-commerce, marketplace, user experience, user interface
Procedia PDF Downloads 741616 Systematic Review of Digital Interventions to Reduce the Carbon Footprint of Primary Care
Authors: Anastasia Constantinou, Panayiotis Laouris, Stephen Morris
Abstract:
Background: Climate change has been reported as one of the worst threats to healthcare. The healthcare sector is a significant contributor to greenhouse gas emissions with primary care being responsible for 23% of the NHS’ total carbon footprint. Digital interventions, primarily focusing on telemedicine, offer a route to change. This systematic review aims to quantify and characterize the carbon footprint savings associated with the implementation of digital interventions in the setting of primary care. Methods: A systematic review of published literature was conducted according to PRISMA (Preferred Reporting Item for Systematic Reviews and Meta-Analyses) guidelines. MEDLINE, PubMed, and Scopus databases as well as Google scholar were searched using key terms relating to “carbon footprint,” “environmental impact,” “sustainability”, “green care”, “primary care,”, and “general practice,” using citation tracking to identify additional articles. Data was extracted and analyzed in Microsoft Excel. Results: Eight studies were identified conducted in four different countries between 2010 and 2023. Four studies used interventions to address primary care services, three studies focused on the interface between primary and specialist care, and one study addressed both. Digital interventions included the use of mobile applications, online portals, access to electronic medical records, electronic referrals, electronic prescribing, video-consultations and use of autonomous artificial intelligence. Only one study carried out a complete life cycle assessment to determine the carbon footprint of the intervention. It estimate that digital interventions reduced the carbon footprint at primary care level by 5.1 kgCO2/visit, and at the interface with specialist care by 13.4 kg CO₂/visit. When assessing the relationship between travel-distance saved and savings in emissions, we identified a strong correlation, suggesting that most of the carbon footprint reduction is attributed to reduced travel. However, two studies also commented on environmental savings associated with reduced use of paper. Patient savings in the form of reduced fuel cost and reduced travel time were also identified. Conclusion: All studies identified significant reductions in carbon footprint following implementation of digital interventions. In the future, controlled, prospective studies incorporating complete life cycle assessments and accounting for double-consulting effects, use of additional resources, technical failures, quality of care and cost-effectiveness are needed to fully appreciate the sustainable benefit of these interventionsKeywords: carbon footprint, environmental impact, primary care, sustainable healthcare
Procedia PDF Downloads 671615 Corpus Linguistics as a Tool for Translation Studies Analysis: A Bilingual Parallel Corpus of Students’ Translations
Authors: Juan-Pedro Rica-Peromingo
Abstract:
Nowadays, corpus linguistics has become a key research methodology for Translation Studies, which broadens the scope of cross-linguistic studies. In the case of the study presented here, the approach used focuses on learners with little or no experience to study, at an early stage, general mistakes and errors, the correct or incorrect use of translation strategies, and to improve the translational competence of the students. Led by Sylviane Granger and Marie-Aude Lefer of the Centre for English Corpus Linguistics of the University of Louvain, the MUST corpus (MUltilingual Student Translation Corpus) is an international project which brings together partners from Europe and worldwide universities and connects Learner Corpus Research (LCR) and Translation Studies (TS). It aims to build a corpus of translations carried out by students including both direct (L2 > L1) an indirect (L1 > L2) translations, from a great variety of text types, genres, and registers in a wide variety of languages: audiovisual translations (including dubbing, subtitling for hearing population and for deaf population), scientific, humanistic, literary, economic and legal translation texts. This paper focuses on the work carried out by the Spanish team from the Complutense University (UCMA), which is part of the MUST project, and it describes the specific features of the corpus built by its members. All the texts used by UCMA are either direct or indirect translations between English and Spanish. Students’ profiles comprise translation trainees, foreign language students with a major in English, engineers studying EFL and MA students, all of them with different English levels (from B1 to C1); for some of the students, this would be their first experience with translation. The MUST corpus is searchable via Hypal4MUST, a web-based interface developed by Adam Obrusnik from Masaryk University (Czech Republic), which includes a translation-oriented annotation system (TAS). A distinctive feature of the interface is that it allows source texts and target texts to be aligned, so we can be able to observe and compare in detail both language structures and study translation strategies used by students. The initial data obtained point out the kind of difficulties encountered by the students and reveal the most frequent strategies implemented by the learners according to their level of English, their translation experience and the text genres. We have also found common errors in the graduate and postgraduate university students’ translations: transfer errors, lexical errors, grammatical errors, text-specific translation errors, and cultural-related errors have been identified. Analyzing all these parameters will provide more material to bring better solutions to improve the quality of teaching and the translations produced by the students.Keywords: corpus studies, students’ corpus, the MUST corpus, translation studies
Procedia PDF Downloads 1501614 A Unified Ghost Solid Method for the Elastic Solid-Solid Interface
Authors: Abouzar Kaboudian, Boo Cheong Khoo
Abstract:
The Ghost Solid Method (GSM) based algorithms have been extensively used for numerical calculation of wave propagation in the limit of abrupt changes in materials. In this work, we present a unified version of the GSMs that can be successfully applied to both abrupt as well as smooth changes of the material properties in a medium. The application of this method enables us to use the previously-matured numerical algorithms which were developed to be applied to homogeneous mediums, with only minor modifications. This method is developed for one-dimensional settings and its extension to multi-dimensions is briefly discussed. Various numerical experiments are presented to show the applicability of this unified GSM to wave propagation problems in sharply as well as smoothly varying mediums.Keywords: elastic solid, functionally graded material, ghost solid method, solid-solid interaction
Procedia PDF Downloads 4201613 Modelling the Growth of σ-Phase in AISI 347H FG Steel
Authors: Yohanes Chekol Malede
Abstract:
σ-phase has negative effects on the corrosion responses and the mechanical properties of steels. The growth of σ-phase in the austenite matrix of AISI 347H FG steel was simulated using DICTRA software using CALPHAD method. The simulation work included the influence of both volume diffusion and grain boundary diffusion. The simulation results showed a good agreement with the experimental findings. The simulation results revealed a Cr-depleted and a Ni-enriched σ-phase/austenite interface. Effects of temperature, grain size, and composition of alloying elements on the growth kinetics of σ-phase were assessed. The simulated results were fitted to the JMAK equation and a good correlation was obtained.Keywords: AISI 347H FG austenitic steel, CALPHAD, sigma phase, microstructure evolution
Procedia PDF Downloads 1511612 An Artificial Neural Network Model Based Study of Seismic Wave
Authors: Hemant Kumar, Nilendu Das
Abstract:
A study based on ANN structure gives us the information to predict the size of the future in realizing a past event. ANN, IMD (Indian meteorological department) data and remote sensing were used to enable a number of parameters for calculating the size that may occur in the future. A threshold selected specifically above the high-frequency harvest reached the area during the selected seismic activity. In the field of human and local biodiversity it remains to obtain the right parameter compared to the frequency of impact. But during the study the assumption is that predicting seismic activity is a difficult process, not because of the parameters involved here, which can be analyzed and funded in research activity.Keywords: ANN, Bayesion class, earthquakes, IMD
Procedia PDF Downloads 1291611 An Internet of Things Based Home Automation Based on Raspberry Pi and Node JS Server
Authors: Ahmed Khattab, Bassem Shetta
Abstract:
Today, there are many branches of technology, one of them is the internet of things. In this paper, it's focused specifically on automating all the home appliances through E-mail using Node JS server, the server side stores, and processes this data. The server side contains user interface and notification system functionalities which is operated by Raspberry Pi. It will present the security requirements for the smart home. In this application, the privilege of home control including special persons to use it, using the hardware appliances through mobiles and tablets is achieved. The proposed application delivers high quality of service, long lifetime, low maintenance, fast deployment, and low power requirements with low cost needed for development.Keywords: Raspberry Pi, E-mail, home automation, temperature sensor, PIR sensor, actuators, relay
Procedia PDF Downloads 2681610 Highly Realistic Facial Expressions of Anthropomorphic Social Agent as a Factor in Solving the 'Uncanny Valley' Problem
Authors: Daniia Nigmatullina, Vlada Kugurakova, Maxim Talanov
Abstract:
We present a methodology and our plans of anthropomorphic social agent visualization. That includes creation of three-dimensional model of the virtual companion's head and its facial expressions. Talking Head is a cross-disciplinary project of developing of the human-machine interface with cognitive functions. During the creation of a realistic humanoid robot or a character, there might be the ‘uncanny valley’ problem. We think about this phenomenon and its possible causes. We are going to overcome the ‘uncanny valley’ by increasing of realism. This article discusses issues that should be considered when creating highly realistic characters (particularly the head), their facial expressions and speech visualization.Keywords: anthropomorphic social agent, facial animation, uncanny valley, visualization, 3D modeling
Procedia PDF Downloads 2931609 HelpMeBreathe: A Web-Based System for Asthma Management
Authors: Alia Al Rayssi, Mahra Al Marar, Alyazia Alkhaili, Reem Al Dhaheri, Shayma Alkobaisi, Hoda Amer
Abstract:
We present in this paper a web-based system called “HelpMeBreathe” for managing asthma. The proposed system provides analytical tools, which allow better understanding of environmental triggers of asthma, hence better support of data-driven decision making. The developed system provides warning messages to a specific asthma patient if the weather in his/her area might cause any difficulty in breathing or could trigger an asthma attack. HelpMeBreathe collects, stores, and analyzes individuals’ moving trajectories and health conditions as well as environmental data. It then processes and displays the patients’ data through an analytical tool that leads to an effective decision making by physicians and other decision makers.Keywords: asthma, environmental triggers, map interface, web-based systems
Procedia PDF Downloads 295