Search results for: in-situ atmospheric sensing
221 A Single-Use Endoscopy System for Identification of Abnormalities in the Distal Oesophagus of Individuals with Chronic Reflux
Authors: Nafiseh Mirabdolhosseini, Jerry Zhou, Vincent Ho
Abstract:
The dramatic global rise in acid reflux has also led to oesophageal adenocarcinoma (OAC) becoming the fastest-growing cancer in developed countries. While gastroscopy with biopsy is used to diagnose OAC patients, this labour-intensive and expensive process is not suitable for population screening. This study aims to design, develop, and implement a minimally invasive system to capture optical data of the distal oesophagus for rapid screening of potential abnormalities. To develop the system and understand user requirements, a user-centric approach was employed by utilising co-design strategies. Target users’ segments were identified, and 38 patients and 14 health providers were interviewed. Next, the technical requirements were developed based on consultations with the industry. A minimally invasive optical system was designed and developed considering patient comfort. This system consists of the sensing catheter, controller unit, and analysis program. Its procedure only takes 10 minutes to perform and does not require cleaning afterward since it has a single-use catheter. A prototype system was evaluated for safety and efficacy for both laboratory and clinical performance. This prototype performed successfully when submerged in simulated gastric fluid without showing evidence of erosion after 24 hours. The system effectively recorded a video of the mid-distal oesophagus of a healthy volunteer (34-year-old male). The recorded images were used to develop an automated program to identify abnormalities in the distal oesophagus. Further data from a larger clinical study will be used to train the automated program. This system allows for quick visual assessment of the lower oesophagus in primary care settings and can serve as a screening tool for oesophageal adenocarcinoma. In addition, this system is able to be coupled with 24hr ambulatory pH monitoring to better correlate oesophageal physiological changes with reflux symptoms. It also can provide additional information on lower oesophageal sphincter functions such as opening times and bolus retention.Keywords: endoscopy, MedTech, oesophageal adenocarcinoma, optical system, screening tool
Procedia PDF Downloads 88220 Effects of Magnetic Field on 4H-SiC P-N Junctions
Authors: Khimmatali Nomozovich Juraev
Abstract:
Silicon carbide is one of the promising materials with potential applications in electronic devices using high power, high frequency and high electric field. Currently, silicon carbide is used to manufacture high power and frequency diodes, transistors, radiation detectors, light emitting diodes (LEDs) and other functional devices. In this work, the effects of magnetic field on p-n junctions based on 4H-SiC were experimentally studied. As a research material, monocrystalline silicon carbide wafers (Cree Research, Inc., USA) with relatively few growth defects grown by physical vapor transport (PVT) method were used: Nd dislocations 104 cm², Nm micropipes ~ 10–10² cm-², thickness ~ 300-600 μm, surface ~ 0.25 cm², resistivity ~ 3.6–20 Ωcm, the concentration of background impurities Nd − Na ~ (0.5–1.0)×1017cm-³. The initial parameters of the samples were determined on a Hall Effect Measurement System HMS-7000 (Ecopia) measuring device. Diffusing Ni nickel atoms were covered to the silicon surface of silicon carbide in a Universal Vacuum Post device at a vacuum of 10-⁵ -10-⁶ Torr by thermal sputtering and kept at a temperature of 600-650°C for 30 minutes. Then Ni atoms were diffused into the silicon carbide 4H-SiC sample at a temperature of 1150-1300°C by low temperature diffusion method in an air atmosphere, and the effects of the magnetic field on the I-V characteristics of the samples were studied. I-V characteristics of silicon carbide 4H-SiCKeywords: 4H-SiC, diffusion Ni, effects of magnetic field, I-V characteristics
Procedia PDF Downloads 96219 Vapour Liquid Equilibrium Measurement of CO₂ Absorption in Aqueous 2-Aminoethylpiperazine (AEP)
Authors: Anirban Dey, Sukanta Kumar Dash, Bishnupada Mandal
Abstract:
Carbondioxide (CO2) is a major greenhouse gas responsible for global warming and fossil fuel power plants are the main emitting sources. Therefore the capture of CO2 is essential to maintain the emission levels according to the standards. Carbon capture and storage (CCS) is considered as an important option for stabilization of atmospheric greenhouse gases and minimizing global warming effects. There are three approaches towards CCS: Pre combustion capture where carbon is removed from the fuel prior to combustion, Oxy-fuel combustion, where coal is combusted with oxygen instead of air and Post combustion capture where the fossil fuel is combusted to produce energy and CO2 is removed from the flue gases left after the combustion process. Post combustion technology offers some advantage as existing combustion technologies can still be used without adopting major changes on them. A number of separation processes could be utilized part of post –combustion capture technology. These include (a) Physical absorption (b) Chemical absorption (c) Membrane separation (d) Adsorption. Chemical absorption is one of the most extensively used technologies for large scale CO2 capture systems. The industrially important solvents used are primary amines like Monoethanolamine (MEA) and Diglycolamine (DGA), secondary amines like diethanolamine (DEA) and Diisopropanolamine (DIPA) and tertiary amines like methyldiethanolamine (MDEA) and Triethanolamine (TEA). Primary and secondary amines react fast and directly with CO2 to form stable carbamates while Tertiary amines do not react directly with CO2 as in aqueous solution they catalyzes the hydrolysis of CO2 to form a bicarbonate ion and a protonated amine. Concentrated Piperazine (PZ) has been proposed as a better solvent as well as activator for CO2 capture from flue gas with a 10 % energy benefit compared to conventional amines such as MEA. However, the application of concentrated PZ is limited due to its low solubility in water at low temperature and lean CO2 loading. So following the performance of PZ its derivative 2-Aminoethyl piperazine (AEP) which is a cyclic amine can be explored as an activator towards the absorption of CO2. Vapour liquid equilibrium (VLE) in CO2 capture systems is an important factor for the design of separation equipment and gas treating processes. For proper thermodynamic modeling accurate equilibrium data for the solvent system over a wide range of temperatures, pressure and composition is essential. The present work focuses on the determination of VLE data for (AEP + H2O) system at 40 °C for various composition range.Keywords: absorption, aminoethyl piperazine, carbondioxide, vapour liquid equilibrium
Procedia PDF Downloads 267218 Rice Area Determination Using Landsat-Based Indices and Land Surface Temperature Values
Authors: Burçin Saltık, Levent Genç
Abstract:
In this study, it was aimed to determine a route for identification of rice cultivation areas within Thrace and Marmara regions of Turkey using remote sensing and GIS. Landsat 8 (OLI-TIRS) imageries acquired in production season of 2013 with 181/32 Path/Row number were used. Four different seasonal images were generated utilizing original bands and different transformation techniques. All images were classified individually using supervised classification techniques and Land Use Land Cover Maps (LULC) were generated with 8 classes. Areas (ha, %) of each classes were calculated. In addition, district-based rice distribution maps were developed and results of these maps were compared with Turkish Statistical Institute (TurkSTAT; TSI)’s actual rice cultivation area records. Accuracy assessments were conducted, and most accurate map was selected depending on accuracy assessment and coherency with TSI results. Additionally, rice areas on over 4° slope values were considered as mis-classified pixels and they eliminated using slope map and GIS tools. Finally, randomized rice zones were selected to obtain maximum-minimum value ranges of each date (May, June, July, August, September images separately) NDVI, LSWI, and LST images to test whether they may be used for rice area determination via raster calculator tool of ArcGIS. The most accurate classification for rice determination was obtained from seasonal LSWI LULC map, and considering TSI data and accuracy assessment results and mis-classified pixels were eliminated from this map. According to results, 83151.5 ha of rice areas exist within study area. However, this result is higher than TSI records with an area of 12702.3 ha. Use of maximum-minimum range of rice area NDVI, LSWI, and LST was tested in Meric district. It was seen that using the value ranges obtained from July imagery, gave the closest results to TSI records, and the difference was only 206.4 ha. This difference is normal due to relatively low resolution of images. Thus, employment of images with higher spectral, spatial, temporal and radiometric resolutions may provide more reliable results.Keywords: landsat 8 (OLI-TIRS), LST, LSWI, LULC, NDVI, rice
Procedia PDF Downloads 228217 Delhi Metro: A Race towards Zero Emission
Authors: Pramit Garg, Vikas Kumar
Abstract:
In December 2015, all the members of the United Nations Framework Convention on Climate Change (UNFCCC) unanimously adopted the historic Paris Agreement. As per the convention, 197 countries have followed the guidelines of the agreement and have agreed to reduce the use of fossil fuels and also reduce the carbon emission to reach net carbon neutrality by 2050 and reduce the global temperature by 2°C by the year 2100. Globally, transport accounts for 23% of the energy-related CO2 that feeds global warming. Decarbonization of the transport sector is an essential step towards achieving India’s nationally determined contributions and net zero emissions by 2050. Metro rail systems are playing a vital role in the decarbonization of the transport sector as they create metro cities for the “21st-century world” that could ensure “mobility, connectivity, productivity, safety and sustainability” for the populace. Metro rail was introduced in Delhi in 2002 to decarbonize Delhi-National Capital Region and to provide a sustainable mode of public transportation. Metro Rail Projects significantly contribute to pollution reduction and are thus a prerequisite for sustainable development. The Delhi Metro is the 1ˢᵗ metro system in the world to earn carbon credits from Clean Development Mechanism (CDM) projects registered under United Nations Framework Convention on Climate Change. A good Metro Project with reasonable network coverage attracts a modal shift from various private modes and hence fewer vehicles on the road, thus restraining the pollution at the source. The absence of Greenhouse Gas emissions from the vehicle of modal shift passengers and lower emissions due to decongested roads contribute to the reduction in Green House Gas emissions and hence overall reduction in atmospheric pollution. The reduction in emission during the horizon year 2002 to 2019 has been estimated using emission standards and deterioration factor(s) for different categories of vehicles. Presently, our results indicate that the Delhi Metro system has reduced approximately 17.3% of motorized trips by road resulting in an emission reduction significantly. Overall, Delhi Metro, with an immediate catchment area of 17% of the National Capital Territory of Delhi (NCTD), is helping today to reduce 387 tonnes of emissions per day and 141.2 ktonnes of emissions yearly. The findings indicate that the Metro rail system is driving cities towards a more livable environment.Keywords: Delhi metro, GHG emission, sustainable public transport, urban transport
Procedia PDF Downloads 125216 Liver Regeneration of Small in situ Injury
Authors: Ziwei Song, Junjun Fan, Jeremy Teo, Yang Yu, Yukun Ma, Jie Yan, Shupei Mo, Lisa Tucker-Kellogg, Peter So, Hanry Yu
Abstract:
Liver is the center of detoxification and exposed to toxic metabolites all the time. It is highly regenerative after injury, with the ability to restore even after 70% partial hepatectomy. Most of the previous studies were using hepatectomy as injury models for liver regeneration study. There is limited understanding of small-scale liver injury, which can be caused by either low dose drug consumption or hepatocyte routine metabolism. Although these small in situ injuries do not cause immediate symptoms, repeated injuries will lead to aberrant wound healing in liver. Therefore, the cellular dynamics during liver regeneration is critical for our understanding of liver regeneration mechanism. We aim to study the liver regeneration of small-scale in situ liver injury in transgenic mice labeling actin (Lifeact-GFP). Previous studies have been using sample sections and biopsies of liver, which lack real-time information. In order to trace every individual hepatocyte during the regeneration process, we have developed and optimized an intravital imaging system that allows in vivo imaging of mouse liver for consecutive 5 days, allowing real-time cellular tracking and quantification of hepatocytes. We used femtosecond-laser ablation to make controlled and repeatable liver injury model, which mimics the real-life small in situ liver injury. This injury model is the first case of its kind for in vivo study on liver. We found that small-scale in situ liver injury is repaired by the coordination of hypertrophy and migration of hepatocytes. Hypertrophy is only transient at initial phase, while migration is the main driving force to complete the regeneration process. From cellular aspect, Akt/mTOR pathway is activated immediately after injury, which leads to transient hepatocyte hypertrophy. From mechano-sensing aspect, the actin cable, formed at apical surface of wound proximal hepatocytes, provides mechanical tension for hepatocyte migration. This study provides important information on both chemical and mechanical signals that promote liver regeneration of small in situ injury. We conclude that hypertrophy and migration play a dominant role at different stages of liver regeneration.Keywords: hepatocyte, hypertrophy, intravital imaging, liver regeneration, migration
Procedia PDF Downloads 205215 Antimicrobial Properties of SEBS Compounds with Copper Microparticles
Authors: Vanda Ferreira Ribeiro, Daiane Tomacheski, Douglas Naue Simões, Michele Pitto, Ruth Marlene Campomanes Santana
Abstract:
Indoor environments, such as car cabins and public transportation vehicles are places where users are subject to air quality. Microorganisms (bacteria, fungi, yeasts) enter these environments through windows, ventilation systems and may use the organic particles present as a growth substrate. In addition, atmospheric pollutants can act as potential carbon and nitrogen sources for some microorganisms. Compounds base SEBS copolymers, poly(styrene-b-(ethylene-co-butylene)-b-styrene, are a class of thermoplastic elastomers (TPEs), fully recyclable and largely used in automotive parts. Metals, such as cooper and silver, have biocidal activities and the production of the SEBS compounds by melting blending with these agents can be a good option for producing compounds for use in plastic parts of ventilation systems and automotive air-conditioning, in order to minimize the problems caused by growth of pathogenic microorganisms. In this sense, the aim of this work was to evaluate the effect of copper microparticles as antimicrobial agent in compositions based on SEBS/PP/oil/calcite. Copper microparticles were used in weight proportion of 0%, 1%, 2% and 4%. The compounds were prepared using a co-rotating double screw extruder (L/D ratio of 40/1 and 16 mm screw diameter). The processing parameters were 300 rpm of screw rotation rate, with a temperature profile between 150 to 190°C. SEBS based TPE compounds were injection molded. The compounds emission were characterized by gravimetric fogging test. Compounds were characterized by physical (density and staining by contact), mechanical (hardness and tension properties) and rheological properties (melt volume rate – MVR). Antibacterial properties were evaluated against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) strains. To avaluate the abilities toward the fungi have been chosen Aspergillus niger (A. niger), Candida albicans (C. albicans), Cladosporium cladosporioides (C. cladosporioides) and Penicillium chrysogenum (P. chrysogenum). The results of biological tests showed a reduction on bacteria in up to 88% in E.coli and up to 93% in S. aureus. The tests with fungi showed no conclusive results because the sample without copper also demonstrated inhibition of the development of these microorganisms. The copper addition did not cause significant variations in mechanical properties, in the MVR and the emission behavior of the compounds. The density increases with the increment of copper in compounds.Keywords: air conditioner, antimicrobial, cooper, SEBS
Procedia PDF Downloads 282214 Potential of High Performance Ring Spinning Based on Superconducting Magnetic Bearing
Authors: M. Hossain, A. Abdkader, C. Cherif, A. Berger, M. Sparing, R. Hühne, L. Schultz, K. Nielsch
Abstract:
Due to the best quality of yarn and the flexibility of the machine, the ring spinning process is the most widely used spinning method for short staple yarn production. However, the productivity of these machines is still much lower in comparison to other spinning systems such as rotor or air-jet spinning process. The main reason for this limitation lies on the twisting mechanism of the ring spinning process. In the ring/traveler twisting system, each rotation of the traveler along with the ring inserts twist in the yarn. The rotation of the traveler at higher speed includes strong frictional forces, which in turn generates heat. Different ring/traveler systems concerning with its geometries, material combinations and coatings have already been implemented to solve the frictional problem. However, such developments can neither completely solve the frictional problem nor increase the productivity. The friction free superconducting magnetic bearing (SMB) system can be a right alternative replacing the existing ring/traveler system. The unique concept of SMB bearings is that they possess a self-stabilizing behavior, i.e. they remain fully passive without any necessity for expensive position sensing and control. Within the framework of a research project funded by German research foundation (DFG), suitable concepts of the SMB-system have been designed, developed, and integrated as a twisting device of ring spinning replacing the existing ring/traveler system. With the help of the developed mathematical model and experimental investigation, the physical limitations of this innovative twisting device in the spinning process have been determined. The interaction among the parameters of the spinning process and the superconducting twisting element has been further evaluated, which derives the concrete information regarding the new spinning process. Moreover, the influence of the implemented SMB twisting system on the yarn quality has been analyzed with respect to different process parameters. The presented work reveals the enormous potential of the innovative twisting mechanism, so that the productivity of the ring spinning process especially in case of thermoplastic materials can be at least doubled for the first time in a hundred years. The SMB ring spinning tester has also been presented in the international fair “International Textile Machinery Association (ITMA) 2015”.Keywords: ring spinning, superconducting magnetic bearing, yarn properties, productivity
Procedia PDF Downloads 237213 Advancing Phenological Understanding of Plants/Trees Through Phenocam Digital Time-lapse Images
Authors: Siddhartha Khare, Suyash Khare
Abstract:
Phenology, a crucial discipline in ecology, offers insights into the seasonal dynamics of organisms within natural ecosystems and the underlying environmental triggers. Leveraging the potent capabilities of digital repeat photography, PhenoCams capture invaluable data on the phenology of crops, plants, and trees. These cameras yield digital imagery in Red Green Blue (RGB) color channels, and some advanced systems even incorporate Near Infrared (NIR) bands. This study presents compelling case studies employing PhenoCam technology to unravel the phenology of black spruce trees. Through the analysis of RGB color channels, a range of essential color metrics including red chromatic coordinate (RCC), green chromatic coordinate (GCC), blue chromatic coordinate (BCC), vegetation contrast index (VCI), and excess green index (ExGI) are derived. These metrics illuminate variations in canopy color across seasons, shedding light on bud and leaf development. This, in turn, facilitates a deeper understanding of phenological events and aids in delineating the growth periods of trees and plants. The initial phase of this study addresses critical questions surrounding the fidelity of continuous canopy greenness records in representing bud developmental phases. Additionally, it discerns which color-based index most accurately tracks the seasonal variations in tree phenology within evergreen forest ecosystems. The subsequent section of this study delves into the transition dates of black spruce (Picea mariana (Mill.) B.S.P.) phenology. This is achieved through a fortnightly comparative analysis of the MODIS normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI). By employing PhenoCam technology and leveraging advanced color metrics, this study significantly advances our comprehension of black spruce tree phenology, offering valuable insights for ecological research and management.Keywords: phenology, remote sensing, phenocam, color metrics, NDVI, GCC
Procedia PDF Downloads 60212 Identification of Nutrient Sensitive Signaling Pathways via Analysis of O-GlcNAcylation
Authors: Michael P. Mannino, Gerald W. Hart
Abstract:
The majority of glucose metabolism proceeds through glycolytic pathways such as glycolysis or pentose phosphate pathway, however, about 5% is shunted through the hexosamine biosynthetic pathway, producing uridine diphosphate N-acetyl glucosamine (UDP-GlcNAc). This precursor can then be incorporated into complex oligosaccharides decorating the cell surface or remain as an intracellular post-translational-modification (PTM) of serine/threonine residues (O-GlcNAcylation, OGN), which has been identified on over 4,000 cytosolic or nuclear proteins. Intracellular OGN has major implications on cellularprocesses, typically by modulating protein localization, protein-protein interactions, protein degradation, and gene expression. Additionally, OGN is known to have an extensive cross-talk with phosphorylation, be in a competitive or cooperative manner. Unlike other PTMs there are only two cycling enzymes that are capable of adding or removing the GlcNAc moiety, O-linked N-aceytl glucosamine Transferase (OGT) and O-linked N-acetyl glucoamidase (OGA), respectively. The activity of OGT has been shown to be sensitive to cellular UDP-GlcNAc levels, even changing substrate affinity. Owing to this and that the concentration of UDP-GlcNAc is related to the metabolisms of glucose, amino acid, fatty acid, and nucleotides, O-GlcNAc is often referred to as a nutrient sensing rheostat. Indeed OGN is known to regulate several signaling pathways as a result of nutrient levels, such as insulin signaling. Dysregulation of OGN is associated with several disease states such as cancer, diabetes, and neurodegeneration. Improvements in glycomics over the past 10-15 years has significantly increased the OGT substrate pool, suggesting O-GlcNAc’s involvement in a wide variety of signaling pathways. However, O-GlcNAc’s role at the receptor level has only been identified in a case-by-case basis of known pathways. Examining the OGN of the plasma membrane (PM) may better focus our understanding of O-GlcNAc-effected signaling pathways. In this current study, PM fractions were isolated from several cell types via ultracentrifugation, followed by purification and MS/MS analysis in several cell lines. This process was repeated with or without OGT/OGA inhibitors or with increased/decreased glucose levels in media to ascertain the importance of OGN. Various pathways are followed up on in more detailed studies employing methods to localize OGN at the PM specifically.Keywords: GlcNAc, nutrient sensitive, post-translational-modification, receptor
Procedia PDF Downloads 112211 Yield Loss Estimation Using Multiple Drought Severity Indices
Authors: Sara Tokhi Arab, Rozo Noguchi, Tofeal Ahamed
Abstract:
Drought is a natural disaster that occurs in a region due to a lack of precipitation and high temperatures over a continuous period or in a single season as a consequence of climate change. Precipitation deficits and prolonged high temperatures mostly affect the agricultural sector, water resources, socioeconomics, and the environment. Consequently, it causes agricultural product loss, food shortage, famines, migration, and natural resources degradation in a region. Agriculture is the first sector affected by drought. Therefore, it is important to develop an agricultural drought risk and loss assessment to mitigate the drought impact in the agriculture sector. In this context, the main purpose of this study was to assess yield loss using composite drought indices in the drought-affected vineyards. In this study, the CDI was developed for the years 2016 to 2020 by comprising five indices: the vegetation condition index (VCI), temperature condition index (TCI), deviation of NDVI from the long-term mean (NDVI DEV), normalized difference moisture index (NDMI) and precipitation condition index (PCI). Moreover, the quantitative principal component analysis (PCA) approach was used to assign a weight for each input parameter, and then the weights of all the indices were combined into one composite drought index. Finally, Bayesian regularized artificial neural networks (BRANNs) were used to evaluate the yield variation in each affected vineyard. The composite drought index result indicated the moderate to severe droughts were observed across the Kabul Province during 2016 and 2018. Moreover, the results showed that there was no vineyard in extreme drought conditions. Therefore, we only considered the severe and moderated condition. According to the BRANNs results R=0.87 and R=0.94 in severe drought conditions for the years of 2016 and 2018 and the R= 0.85 and R=0.91 in moderate drought conditions for the years of 2016 and 2018, respectively. In the Kabul Province within the two years drought periods, there was a significate deficit in the vineyards. According to the findings, 2018 had the highest rate of loss almost -7 ton/ha. However, in 2016 the loss rates were about – 1.2 ton/ha. This research will support stakeholders to identify drought affect vineyards and support farmers during severe drought.Keywords: grapes, composite drought index, yield loss, satellite remote sensing
Procedia PDF Downloads 157210 Inversion of PROSPECT+SAIL Model for Estimating Vegetation Parameters from Hyperspectral Measurements with Application to Drought-Induced Impacts Detection
Authors: Bagher Bayat, Wouter Verhoef, Behnaz Arabi, Christiaan Van der Tol
Abstract:
The aim of this study was to follow the canopy reflectance patterns in response to soil water deficit and to detect trends of changes in biophysical and biochemical parameters of grass (Poa pratensis species). We used visual interpretation, imaging spectroscopy and radiative transfer model inversion to monitor the gradual manifestation of water stress effects in a laboratory setting. Plots of 21 cm x 14.5 cm surface area with Poa pratensis plants that formed a closed canopy were subjected to water stress for 50 days. In a regular weekly schedule, canopy reflectance was measured. In addition, Leaf Area Index (LAI), Chlorophyll (a+b) content (Cab) and Leaf Water Content (Cw) were measured at regular time intervals. The 1-D bidirectional canopy reflectance model SAIL, coupled with the leaf optical properties model PROSPECT, was inverted using hyperspectral measurements by means of an iterative optimization method to retrieve vegetation biophysical and biochemical parameters. The relationships between retrieved LAI, Cab, Cw, and Cs (Senescent material) with soil moisture content were established in two separated groups; stress and non-stressed. To differentiate the water stress condition from the non-stressed condition, a threshold was defined that was based on the laboratory produced Soil Water Characteristic (SWC) curve. All parameters retrieved by model inversion using canopy spectral data showed good correlation with soil water content in the water stress condition. These parameters co-varied with soil moisture content under the stress condition (Chl: R2= 0.91, Cw: R2= 0.97, Cs: R2= 0.88 and LAI: R2=0.48) at the canopy level. To validate the results, the relationship between vegetation parameters that were measured in the laboratory and soil moisture content was established. The results were totally in agreement with the modeling outputs and confirmed the results produced by radiative transfer model inversion and spectroscopy. Since water stress changes all parts of the spectrum, we concluded that analysis of the reflectance spectrum in the VIS-NIR-MIR region is a promising tool for monitoring water stress impacts on vegetation.Keywords: hyperspectral remote sensing, model inversion, vegetation responses, water stress
Procedia PDF Downloads 225209 Air Breakdown Voltage Prediction in Post-arcing Conditions for Compact Circuit Breakers
Authors: Jing Nan
Abstract:
The air breakdown voltage in compact circuit breakers is a critical factor in the design and reliability of electrical distribution systems. This voltage determines the threshold at which the air insulation between conductors will fail or 'break down,' leading to an arc. This phenomenon is highly sensitive to the conditions within the breaker, such as the temperature and the distance between electrodes. Typically, air breakdown voltage models have been reliable for predicting failure under standard operational temperatures. However, in conditions post-arcing, where temperatures can soar above 2000K, these models face challenges due to the complex physics of ionization and electron behaviour at such high-energy states. Building upon the foundational understanding that the breakdown mechanism is initiated by free electrons and propelled by electric fields, which lead to ionization and, potentially, to avalanche or streamer formation, we acknowledge the complexity introduced by high-temperature environments. Recognizing the limitations of existing experimental data, a notable research gap exists in the accurate prediction of breakdown voltage at elevated temperatures, typically observed post-arcing, where temperatures exceed 2000K.To bridge this knowledge gap, we present a method that integrates gap distance and high-temperature effects into air breakdown voltage assessment. The proposed model is grounded in the physics of ionization, accounting for the dynamic behaviour of free electrons which, under intense electric fields at elevated temperatures, lead to thermal ionization and potentially reach the threshold for streamer formation as Meek's criterion. Employing the Saha equation, our model calculates equilibrium electron densities, adapting to the atmospheric pressure and the hot temperature regions indicative of post-arc temperature conditions. Our model is rigorously validated against established experimental data, demonstrating substantial improvements in predicting air breakdown voltage in the high-temperature regime. This work significantly improves the predictive power for air breakdown voltage under conditions that closely mimic operational stressors in compact circuit breakers. Looking ahead, the proposed methods are poised for further exploration in alternative insulating media, like SF6, enhancing the model's utility for a broader range of insulation technologies and contributing to the future of high-temperature electrical insulation research.Keywords: air breakdown voltage, high-temperature insulation, compact circuit breakers, electrical discharge, saha equation
Procedia PDF Downloads 84208 Nanobiosensor System for Aptamer Based Pathogen Detection in Environmental Waters
Authors: Nimet Yildirim Tirgil, Ahmed Busnaina, April Z. Gu
Abstract:
Environmental waters are monitored worldwide to protect people from infectious diseases primarily caused by enteric pathogens. All long, Escherichia coli (E. coli) is a good indicator for potential enteric pathogens in waters. Thus, a rapid and simple detection method for E. coli is very important to predict the pathogen contamination. In this study, to the best of our knowledge, as the first time we developed a rapid, direct and reusable SWCNTs (single walled carbon nanotubes) based biosensor system for sensitive and selective E. coli detection in water samples. We use a novel and newly developed flexible biosensor device which was fabricated by high-rate nanoscale offset printing process using directed assembly and transfer of SWCNTs. By simple directed assembly and non-covalent functionalization, aptamer (biorecognition element that specifically distinguish the E. coli O157:H7 strain from other pathogens) based SWCNTs biosensor system was designed and was further evaluated for environmental applications with simple and cost-effective steps. The two gold electrode terminals and SWCNTs-bridge between them allow continuous resistance response monitoring for the E. coli detection. The detection procedure is based on competitive mode detection. A known concentration of aptamer and E. coli cells were mixed and after a certain time filtered. The rest of free aptamers injected to the system. With hybridization of the free aptamers and their SWCNTs surface immobilized probe DNA (complementary-DNA for E. coli aptamer), we can monitor the resistance difference which is proportional to the amount of the E. coli. Thus, we can detect the E. coli without injecting it directly onto the sensing surface, and we could protect the electrode surface from the aggregation of target bacteria or other pollutants that may come from real wastewater samples. After optimization experiments, the linear detection range was determined from 2 cfu/ml to 10⁵ cfu/ml with higher than 0.98 R² value. The system was regenerated successfully with 5 % SDS solution over 100 times without any significant deterioration of the sensor performance. The developed system had high specificity towards E. coli (less than 20 % signal with other pathogens), and it could be applied to real water samples with 86 to 101 % recovery and 3 to 18 % cv values (n=3).Keywords: aptamer, E. coli, environmental detection, nanobiosensor, SWCTs
Procedia PDF Downloads 197207 Knowledge Graph Development to Connect Earth Metadata and Standard English Queries
Authors: Gabriel Montague, Max Vilgalys, Catherine H. Crawford, Jorge Ortiz, Dava Newman
Abstract:
There has never been so much publicly accessible atmospheric and environmental data. The possibilities of these data are exciting, but the sheer volume of available datasets represents a new challenge for researchers. The task of identifying and working with a new dataset has become more difficult with the amount and variety of available data. Datasets are often documented in ways that differ substantially from the common English used to describe the same topics. This presents a barrier not only for new scientists, but for researchers looking to find comparisons across multiple datasets or specialists from other disciplines hoping to collaborate. This paper proposes a method for addressing this obstacle: creating a knowledge graph to bridge the gap between everyday English language and the technical language surrounding these datasets. Knowledge graph generation is already a well-established field, although there are some unique challenges posed by working with Earth data. One is the sheer size of the databases – it would be infeasible to replicate or analyze all the data stored by an organization like The National Aeronautics and Space Administration (NASA) or the European Space Agency. Instead, this approach identifies topics from metadata available for datasets in NASA’s Earthdata database, which can then be used to directly request and access the raw data from NASA. By starting with a single metadata standard, this paper establishes an approach that can be generalized to different databases, but leaves the challenge of metadata harmonization for future work. Topics generated from the metadata are then linked to topics from a collection of English queries through a variety of standard and custom natural language processing (NLP) methods. The results from this method are then compared to a baseline of elastic search applied to the metadata. This comparison shows the benefits of the proposed knowledge graph system over existing methods, particularly in interpreting natural language queries and interpreting topics in metadata. For the research community, this work introduces an application of NLP to the ecological and environmental sciences, expanding the possibilities of how machine learning can be applied in this discipline. But perhaps more importantly, it establishes the foundation for a platform that can enable common English to access knowledge that previously required considerable effort and experience. By making this public data accessible to the full public, this work has the potential to transform environmental understanding, engagement, and action.Keywords: earth metadata, knowledge graphs, natural language processing, question-answer systems
Procedia PDF Downloads 149206 Effects of the Coagulation Bath and Reduction Process on SO2 Adsorption Capacity of Graphene Oxide Fiber
Authors: Özge Alptoğa, Nuray Uçar, Nilgün Karatepe Yavuz, Ayşen Önen
Abstract:
Sulfur dioxide (SO2) is a very toxic air pollutant gas and it causes the greenhouse effect, photochemical smog, and acid rain, which threaten human health severely. Thus, the capture of SO2 gas is very important for the environment. Graphene which is two-dimensional material has excellent mechanical, chemical, thermal properties, and many application areas such as energy storage devices, gas adsorption, sensing devices, and optical electronics. Further, graphene oxide (GO) is examined as a good adsorbent because of its important features such as functional groups (epoxy, carboxyl and hydroxyl) on the surface and layered structure. The SO2 adsorption properties of the fibers are usually investigated on carbon fibers. In this study, potential adsorption capacity of GO fibers was researched. GO dispersion was first obtained with Hummers’ method from graphite, and then GO fibers were obtained via wet spinning process. These fibers were converted into a disc shape, dried, and then subjected to SO2 gas adsorption test. The SO2 gas adsorption capacity of GO fiber discs was investigated in the fields of utilization of different coagulation baths and reduction by hydrazine hydrate. As coagulation baths, single and triple baths were used. In single bath, only ethanol and CaCl2 (calcium chloride) salt were added. In triple bath, each bath has a different concentration of water/ethanol and CaCl2 salt, and the disc obtained from triple bath has been called as reference disk. The fibers which were produced with single bath were flexible and rough, and the analyses show that they had higher SO2 adsorption capacity than triple bath fibers (reference disk). However, the reduction process did not increase the adsorption capacity, because the SEM images showed that the layers and uniform structure in the fiber form were damaged, and reduction decreased the functional groups which SO2 will be attached. Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD) analyzes were performed on the fibers and discs, and the effects on the results were interpreted. In the future applications of the study, it is aimed that subjects such as pH and additives will be examined.Keywords: coagulation bath, graphene oxide fiber, reduction, SO2 gas adsorption
Procedia PDF Downloads 360205 Hydrodynamic and Water Quality Modelling to Support Alternative Fuels Maritime Operations Incident Planning & Impact Assessments
Authors: Chow Jeng Hei, Pavel Tkalich, Low Kai Sheng Bryan
Abstract:
Due to the growing demand for sustainability in the maritime industry, there has been a significant increase in focus on alternative fuels such as biofuels, liquefied natural gas (LNG), hydrogen, methanol and ammonia to reduce the carbon footprint of vessels. Alternative fuels offer efficient transportability and significantly reduce carbon dioxide emissions, a critical factor in combating global warming. In an era where the world is determined to tackle climate change, the utilization of methanol is projected to witness a consistent rise in demand, even during downturns in the oil and gas industry. Since 2022, there has been an increase in methanol loading and discharging operations for industrial use in Singapore. These operations were conducted across various storage tank terminals at Jurong Island of varying capacities, which are also used to store alternative fuels for bunkering requirements. The key objective of this research is to support the green shipping industries in the transformation to new fuels such as methanol and ammonia, especially in evolving the capability to inform risk assessment and management of spills. In the unlikely event of accidental spills, a highly reliable forecasting system must be in place to provide mitigation measures and ahead planning. The outcomes of this research would lead to an enhanced metocean prediction capability and, together with advanced sensing, will continuously build up a robust digital twin of the bunkering operating environment. Outputs from the developments will contribute to management strategies for alternative marine fuel spills, including best practices, safety challenges and crisis management. The outputs can also benefit key port operators and the various bunkering, petrochemicals, shipping, protection and indemnity, and emergency response sectors. The forecasted datasets provide a forecast of the expected atmosphere and hydrodynamic conditions prior to bunkering exercises, enabling a better understanding of the metocean conditions ahead and allowing for more refined spill incident management planningKeywords: clean fuels, hydrodynamics, coastal engineering, impact assessments
Procedia PDF Downloads 70204 Determination of Circulating Tumor Cells in Breast Cancer Patients by Electrochemical Biosensor
Authors: Gökçe Erdemir, İlhan Yaylım, Serap Erdem-Kuruca, Musa Mutlu Can
Abstract:
It has been determined that the main reason for the death of cancer disease is caused by metastases rather than the primary tumor. The cells that leave the primary tumor and enter the circulation and cause metastasis in the secondary organs are called "circulating tumor cells" (CTCs). The presence and number of circulating tumor cells has been associated with poor prognosis in many major types of cancer, including breast, prostate, and colorectal cancer. It is thought that knowledge of circulating tumor cells, which are seen as the main cause of cancer-related deaths due to metastasis, plays a key role in the diagnosis and treatment of cancer. The fact that tissue biopsies used in cancer diagnosis and follow-up are an invasive method and are insufficient in understanding the risk of metastasis and the progression of the disease have led to new searches. Liquid biopsy tests performed with a small amount of blood sample taken from the patient for the detection of CTCs are easy and reliable, as well as allowing more than one sample to be taken over time to follow the prognosis. However, since these cells are found in very small amounts in the blood, it is very difficult to capture them and specially designed analytical techniques and devices are required. Methods based on the biological and physical properties of the cells are used to capture these cells in the blood. Early diagnosis is very important in following the prognosis of tumors of epithelial origin such as breast, lung, colon and prostate. Molecules such as EpCAM, vimentin, and cytokeratins are expressed on the surface of cells that pass into the circulation from very few primary tumors and reach secondary organs from the circulation, and are used in the diagnosis of cancer in the early stage. For example, increased EpCAM expression in breast and prostate cancer has been associated with prognosis. These molecules can be determined in some blood or body fluids to be taken from patients. However, more sensitive methods are required to be able to determine when they are at a low level according to the course of the disease. The aim is to detect these molecules found in very few cancer cells with the help of sensitive, fast-sensing biosensors, first in breast cancer cells reproduced in vitro and then in blood samples taken from breast cancer patients. In this way, cancer cells can be diagnosed early and easily and effectively treated.Keywords: electrochemical biosensors, breast cancer, circulating tumor cells, EpCAM, Vimentin, Cytokeratins
Procedia PDF Downloads 261203 Implicit U-Net Enhanced Fourier Neural Operator for Long-Term Dynamics Prediction in Turbulence
Authors: Zhijie Li, Wenhui Peng, Zelong Yuan, Jianchun Wang
Abstract:
Turbulence is a complex phenomenon that plays a crucial role in various fields, such as engineering, atmospheric science, and fluid dynamics. Predicting and understanding its behavior over long time scales have been challenging tasks. Traditional methods, such as large-eddy simulation (LES), have provided valuable insights but are computationally expensive. In the past few years, machine learning methods have experienced rapid development, leading to significant improvements in computational speed. However, ensuring stable and accurate long-term predictions remains a challenging task for these methods. In this study, we introduce the implicit U-net enhanced Fourier neural operator (IU-FNO) as a solution for stable and efficient long-term predictions of the nonlinear dynamics in three-dimensional (3D) turbulence. The IU-FNO model combines implicit re-current Fourier layers to deepen the network and incorporates the U-Net architecture to accurately capture small-scale flow structures. We evaluate the performance of the IU-FNO model through extensive large-eddy simulations of three types of 3D turbulence: forced homogeneous isotropic turbulence (HIT), temporally evolving turbulent mixing layer, and decaying homogeneous isotropic turbulence. The results demonstrate that the IU-FNO model outperforms other FNO-based models, including vanilla FNO, implicit FNO (IFNO), and U-net enhanced FNO (U-FNO), as well as the dynamic Smagorinsky model (DSM), in predicting various turbulence statistics. Specifically, the IU-FNO model exhibits improved accuracy in predicting the velocity spectrum, probability density functions (PDFs) of vorticity and velocity increments, and instantaneous spatial structures of the flow field. Furthermore, the IU-FNO model addresses the stability issues encountered in long-term predictions, which were limitations of previous FNO models. In addition to its superior performance, the IU-FNO model offers faster computational speed compared to traditional large-eddy simulations using the DSM model. It also demonstrates generalization capabilities to higher Taylor-Reynolds numbers and unseen flow regimes, such as decaying turbulence. Overall, the IU-FNO model presents a promising approach for long-term dynamics prediction in 3D turbulence, providing improved accuracy, stability, and computational efficiency compared to existing methods.Keywords: data-driven, Fourier neural operator, large eddy simulation, fluid dynamics
Procedia PDF Downloads 74202 The Learning Loops in the Public Realm Project in South Verona: Air Quality and Noise Pollution Participatory Data Collection towards Co-Design, Planning and Construction of Mitigation Measures in Urban Areas
Authors: Massimiliano Condotta, Giovanni Borga, Chiara Scanagatta
Abstract:
Urban systems are places where the various actors involved interact and enter in conflict, in particular with reference to topics such as traffic congestion and security. But topics of discussion, and often clash because of their strong complexity, are air and noise pollution. For air pollution, the complexity stems from the fact that atmospheric pollution is due to many factors, but above all, the observation and measurement of the amount of pollution of a transparent, mobile and ethereal element like air is very difficult. Often the perceived condition of the inhabitants does not coincide with the real conditions, because it is conditioned - sometimes in positive ways other in negative ways - from many other factors such as the presence, or absence, of natural elements such as trees or rivers. These problems are seen with noise pollution as well, which is also less considered as an issue even if it’s problematic just as much as air quality. Starting from these opposite positions, it is difficult to identify and implement valid, and at the same time shared, mitigation solutions for the problem of urban pollution (air and noise pollution). The LOOPER (Learning Loops in the Public Realm) project –described in this paper – wants to build and test a methodology and a platform for participatory co-design, planning, and construction process inside a learning loop process. Novelties in this approach are various; the most relevant are three. The first is that citizens participation starts since from the research of problems and air quality analysis through a participatory data collection, and that continues in all process steps (design and construction). The second is that the methodology is characterized by a learning loop process. It means that after the first cycle of (1) problems identification, (2) planning and definition of design solution and (3) construction and implementation of mitigation measures, the effectiveness of implemented solutions is measured and verified through a new participatory data collection campaign. In this way, it is possible to understand if the policies and design solution had a positive impact on the territory. As a result of the learning process produced by the first loop, it will be possible to improve the design of the mitigation measures and start the second loop with new and more effective measures. The third relevant aspect is that the citizens' participation is carried out via Urban Living Labs that involve all stakeholder of the city (citizens, public administrators, associations of all urban stakeholders,…) and that the Urban Living Labs last for all the cycling of the design, planning and construction process. The paper will describe in detail the LOOPER methodology and the technical solution adopted for the participatory data collection and design and construction phases.Keywords: air quality, co-design, learning loops, noise pollution, urban living labs
Procedia PDF Downloads 365201 Best-Performing Color Space for Land-Sea Segmentation Using Wavelet Transform Color-Texture Features and Fusion of over Segmentation
Authors: Seynabou Toure, Oumar Diop, Kidiyo Kpalma, Amadou S. Maiga
Abstract:
Color and texture are the two most determinant elements for perception and recognition of the objects in an image. For this reason, color and texture analysis find a large field of application, for example in image classification and segmentation. But, the pioneering work in texture analysis was conducted on grayscale images, thus discarding color information. Many grey-level texture descriptors have been proposed and successfully used in numerous domains for image classification: face recognition, industrial inspections, food science medical imaging among others. Taking into account color in the definition of these descriptors makes it possible to better characterize images. Color texture is thus the subject of recent work, and the analysis of color texture images is increasingly attracting interest in the scientific community. In optical remote sensing systems, sensors measure separately different parts of the electromagnetic spectrum; the visible ones and even those that are invisible to the human eye. The amounts of light reflected by the earth in spectral bands are then transformed into grayscale images. The primary natural colors Red (R) Green (G) and Blue (B) are then used in mixtures of different spectral bands in order to produce RGB images. Thus, good color texture discrimination can be achieved using RGB under controlled illumination conditions. Some previous works investigate the effect of using different color space for color texture classification. However, the selection of the best performing color space in land-sea segmentation is an open question. Its resolution may bring considerable improvements in certain applications like coastline detection, where the detection result is strongly dependent on the performance of the land-sea segmentation. The aim of this paper is to present the results of a study conducted on different color spaces in order to show the best-performing color space for land-sea segmentation. In this sense, an experimental analysis is carried out using five different color spaces (RGB, XYZ, Lab, HSV, YCbCr). For each color space, the Haar wavelet decomposition is used to extract different color texture features. These color texture features are then used for Fusion of Over Segmentation (FOOS) based classification; this allows segmentation of the land part from the sea one. By analyzing the different results of this study, the HSV color space is found as the best classification performance while using color and texture features; which is perfectly coherent with the results presented in the literature.Keywords: classification, coastline, color, sea-land segmentation
Procedia PDF Downloads 248200 Decolonial Aesthetics in Ronnie Govender’s at the Edge and Other Cato Manor Stories
Authors: Rajendra Chetty
Abstract:
Decolonial aesthetics departs and delinks from colonial ideas about ‘the arts’ and the modernist/colonial work of aesthetics. Education is trapped in the western epistemic and hermeneutical vocabulary, hence it is necessary to introduce new concepts and work the entanglement between co-existing concepts. This paper will discuss the contribution of Ronnie Govender, a South African writer, to build decolonial sensibilities and delink from the grand narrative of the colonial and apartheid literary landscape in Govender’s text, At the Edge and other Cato Manor Stories. Govender uses the world of art to make a decolonial statement. Decolonial artists have to work in the entanglement of power and engage with a border epistemology. Govender’s writings depart from an embodied consciousness of the colonial wound and moves toward healing. Border thinking and doing (artistic creativity) is precisely the decolonial methodology posited by Linda T. Smith, where theory comes in the form of storytelling. Govender’s stories engage with the wounds infringed by racism and patriarchy, two pillars of eurocentric knowing, sensing, and believing that sustain a structure of knowledge. This structure is embedded in characters, institutions, languages that regulate and mange the world of the excluded. Healing is the process of delinking, or regaining pride, dignity, and humanity, not through the psychoanalytic cure, but the popular healer. The legacies of the community of Cato Manor that was pushed out of their land are built in his stories. Decoloniality then is a concept that carries the experience of liberation struggles and recognizes the strenuous conditions of marginalized people together with their strength, wisdom, and endurance. Govender’s unique performative prose reconstructs and resurrects the lives of the people of Cato Manor, their vitality and humor, pain and humiliation: a vibrant and racially integrated community destroyed by the regime’s notorious racial laws. The paper notes that Govender’s objective with his plays and stories was to open windows to both the pain and joy of life; a mission that is not didactic but to shine a torch on both mankind’s waywardness as well as its inspiring and often moving achievements against huge odds.Keywords: Govender, decoloniality, delinking, exclusion, racism, Cato Manor
Procedia PDF Downloads 157199 Formulation and Characterization of Active Edible Films from Cassava Starch for Snacks and Savories
Authors: P. Raajeswari, S. M. Devatha, S. Yuvajanani, U. Rashika
Abstract:
Edible food packaging are the need of the hour to save life on land and under water by eliminating waste cycle and replacing Single Use Plastics at grass root level as it can be eaten or composted as such. Cassava (Manihot esculenta) selected for making edible films are rich source of starch, and also it exhibit good sheeting propertiesdue to the high amylose: amylopectin content. Cassava starch was extracted by manual method at a laboratory scale and yielded 65 per cent. Edible films were developed by adding food grade plasticizers and water. Glycerol showed good plasticizing property as compared to sorbitol and polylactic acid in both manual (petri dish) and machine (film making machine) production. The thickness of the film is 0.25±0.03 mm. Essential oil and components from peels like pomegranate, orange, pumpkin, onion, and banana brat, and herbs like tulsi and country borage was extracted through the standardized aqueous and alkaline method. In the standardized film, the essential oil and components from selected peel and herbs were added to the casting solution separately and casted the film. It was added to improve the anti-oxidant, anti-microbial and optical properties. By inclusion of extracts, it reduced the bubble formation while casting. FTIR, Water Vapor and Oxygen Transmission Rate (WVTR and OTR), tensile strength, microbial load, shelf life, and degradability of the films were done to analyse the mechanical property of the standardized films. FTIR showed the presence of essential oil. WVTR and OTR of the film was improved after inclusion of essential oil and extracts from 1.312 to 0.811 cm₃/m₂ and 15.12 to 17.81 g/ m₂.d. Inclusion of essential oil from herbs showed better WVTR and OTR than the inclusion of peel extract and standard. Tensile strength and Elongation at break has not changed by essential oil and extracts at 0.86 ± 0.12 mpa and 14 ± 2 at 85 N force. By inclusion of extracts, an optical property of the film enhanced, and it increases the appearance of the packaging material. The films were completely degraded on 84thdays and partially soluble in water. Inclusion of essential oil does not have impact on degradability and solubility. The microbial loads of the active films were decreased from 15 cfu/gm to 7 cfu/gm. The films can be stored at frozen state for 24 days and 48 days at atmospheric temperature when packed with South Indian snacks and savories.Keywords: active films, cassava starch, plasticizer, characterization
Procedia PDF Downloads 81198 The Role of Microbes in Organic Sustainable Agriculture and Plant Protection
Authors: Koppula Prawan, Kehinde D. Oyeyemi, Kushal P. Singh
Abstract:
As people become more conscious of the detrimental consequences of conventional agricultural practices on the environment and human health, organic, sustainable agriculture and plant protection employing microorganisms have grown in importance. Although the use of microorganisms in agriculture is a centuries-old tradition, it has recently attracted renewed interest as a sustainable alternative to chemical-based plant protection and fertilization. Healthy soil is the cornerstone of sustainable agriculture, and microbes are essential to this process. Synthetic fertilizers and pesticides can destroy the beneficial microorganisms in the soil, upsetting the ecosystem's equilibrium. By utilizing organic farming's natural practices, such as the usage of microbes, it aims to maintain and improve the health of the soil. Microbes have several functions in agriculture, including nitrogen fixation, phosphorus solubilization, and disease suppression. Nitrogen fixation is the process by which certain microbes, such as rhizobia and Azotobacter, convert atmospheric nitrogen into a form that plants can use. Phosphorus solubilization involves the conversion of insoluble phosphorus into a soluble form that plants can absorb. Disease suppression involves the use of microbes to control plant diseases by competing with pathogenic organisms for resources or by producing antimicrobial compounds. Microbes can be applied to plants through seed coatings, foliar sprays, or soil inoculants. Seed coatings involve applying a mixture of microbes and nutrients to the surface of seeds before planting. Foliar sprays involve applying microbes and nutrients to the leaves of plants during the growing season. Soil inoculants involve adding microbes to the soil before planting. The use of microbes in plant protection and fertilization has several advantages over conventional methods. Firstly, microbes are natural and non-toxic, making them safe for human health and the environment. Secondly, microbes have the ability to adapt to changing environmental conditions, making them more resilient to drought and other stressors. Finally, the use of microbes can reduce the need for synthetic fertilizers and pesticides, reducing costs and minimizing environmental impact. In conclusion, organic, sustainable agriculture and plant protection using microbes are an effective and sustainable alternatives to conventional farming practices. The use of microbes can help to preserve and enhance soil health, increase plant productivity, and reduce the need for synthetic fertilizers and pesticides. As the demand for organic and sustainable agriculture continues to grow, the use of microbes is likely to become more widespread, providing a more environmentally friendly and sustainable future for agriculture.Keywords: microbes, inoculants, fertilization, soil health, conventional.
Procedia PDF Downloads 83197 Estimation of Small Hydropower Potential Using Remote Sensing and GIS Techniques in Pakistan
Authors: Malik Abid Hussain Khokhar, Muhammad Naveed Tahir, Muhammad Amin
Abstract:
Energy demand has been increased manifold due to increasing population, urban sprawl and rapid socio-economic improvements. Low water capacity in dams for continuation of hydrological power, land cover and land use are the key parameters which are creating problems for more energy production. Overall installed hydropower capacity of Pakistan is more than 35000 MW whereas Pakistan is producing up to 17000 MW and the requirement is more than 22000 that is resulting shortfall of 5000 - 7000 MW. Therefore, there is a dire need to develop small hydropower to fulfill the up-coming requirements. In this regards, excessive rainfall, snow nurtured fast flowing perennial tributaries and streams in northern mountain regions of Pakistan offer a gigantic scope of hydropower potential throughout the year. Rivers flowing in KP (Khyber Pakhtunkhwa) province, GB (Gilgit Baltistan) and AJK (Azad Jammu & Kashmir) possess sufficient water availability for rapid energy growth. In the backdrop of such scenario, small hydropower plants are believed very suitable measures for more green environment and power sustainable option for the development of such regions. Aim of this study is to estimate hydropower potential sites for small hydropower plants and stream distribution as per steam network available in the available basins in the study area. The proposed methodology will focus on features to meet the objectives i.e. site selection of maximum hydropower potential for hydroelectric generation using well emerging GIS tool SWAT as hydrological run-off model on the Neelum, Kunhar and the Dor Rivers’ basins. For validation of the results, NDWI will be computed to show water concentration in the study area while overlaying on geospatial enhanced DEM. This study will represent analysis of basins, watershed, stream links, and flow directions with slope elevation for hydropower potential to produce increasing demand of electricity by installing small hydropower stations. Later on, this study will be benefitted for other adjacent regions for further estimation of site selection for installation of such small power plants as well.Keywords: energy, stream network, basins, SWAT, evapotranspiration
Procedia PDF Downloads 221196 The Evolution and Driving Forces Analysis of Urban Spatial Pattern in Tibet Based on Archetype Theory
Authors: Qiuyu Chen, Bin Long, Junxi Yang
Abstract:
Located in the southwest of the "roof of the world", Tibet is the origin center of Tibetan Culture.Lhasa, Shigatse and Gyantse are three famous historical and cultural cities in Tibet. They have always been prominent political, economic and cultural cities, and have accumulated the unique aesthetic orientation and value consciousness of Tibet's urban construction. "Archetype" usually refers to the theoretical origin of things, which is the collective unconscious precipitation. The archetype theory fundamentally explores the dialectical relationship between image expression, original form and behavior mode. By abstracting and describing typical phenomena or imagery of the archetype object can observe the essence of objects, explore ways in which object phenomena arise. Applying archetype theory to the field of urban planning helps to gain insight, evaluation, and restructuring of the complex and ever-changing internal structural units of cities. According to existing field investigations, it has been found that Dzong, Temple, Linka and traditional residential systems are important structural units that constitute the urban space of Lhasa, Shigatse and Gyantse. This article applies the thinking method of archetype theory, starting from the imagery expression of urban spatial pattern, using technologies such as ArcGIS, Depthmap, and Computer Vision to descriptively identify the spatial representation and plane relationship of three cities through remote sensing images and historical maps. Based on historical records, the spatial characteristics of cities in different historical periods are interpreted in a hierarchical manner, attempting to clarify the origin of the formation and evolution of urban pattern imagery from the perspectives of geopolitical environment, social structure, religious theory, etc, and expose the growth laws and key driving forces of cities. The research results can provide technical and material support for important behaviors such as urban restoration, spatial intervention, and promoting transformation in the region.Keywords: archetype theory, urban spatial imagery, original form and pattern, behavioral driving force, Tibet
Procedia PDF Downloads 64195 Tactile Sensory Digit Feedback for Cochlear Implant Electrode Insertion
Authors: Yusuf Bulale, Mark Prince, Geoff Tansley, Peter Brett
Abstract:
Cochlear Implantation (CI) which became a routine procedure for the last decades is an electronic device that provides a sense of sound for patients who are severely and profoundly deaf. Today, cochlear implantation technology uses electrode array (EA) implanted manually into the cochlea. The optimal success of this implantation depends on the electrode technology and deep insertion techniques. However, this manual insertion procedure may cause mechanical trauma which can lead to a severe destruction of the delicate intracochlear structure. Accordingly, future improvement of the cochlear electrode implant insertion needs reduction of the excessive force application during the cochlear implantation which causes tissue damage and trauma. This study is examined tool-tissue interaction of large prototype scale digit embedded with distributive tactile sensor based upon cochlear electrode and large prototype scale cochlea phantom for simulating the human cochlear which could lead to small-scale digit requirements. The digit, distributive tactile sensors embedded with silicon-substrate was inserted into the cochlea phantom to measure any digit/phantom interaction and position of the digit in order to minimize tissue and trauma damage during the electrode cochlear insertion. The digit has provided tactile information from the digit-phantom insertion interaction such as contact status, tip penetration, obstacles, relative shape and location, contact orientation and multiple contacts. The tests demonstrated that even devices of such a relative simple design with low cost have a potential to improve cochlear implant surgery and other lumen mapping applications by providing tactile sensory feedback information and thus controlling the insertion through sensing and control of the tip of the implant during the insertion. In that approach, the surgeon could minimize the tissue damage and potential damage to the delicate structures within the cochlear caused by current manual electrode insertion of the cochlear implantation. This approach also can be applied to other minimally invasive surgery applications as well as diagnosis and path navigation procedures.Keywords: cochlear electrode insertion, distributive tactile sensory feedback information, flexible digit, minimally invasive surgery, tool/tissue interaction
Procedia PDF Downloads 398194 Olive Stone Valorization to Its Application on the Ceramic Industry
Authors: M. Martín-Morales, D. Eliche-Quesada, L. Pérez-Villarejo, M. Zamorano
Abstract:
Olive oil is a product of particular importance within the Mediterranean and Spanish agricultural food system, and more specifically in Andalusia, owing to be the world's main production area. Olive oil processing generates olive stones which are dried and cleaned to remove pulp and olive stones fines to produce biofuel characterized to have high energy efficiency in combustion processes. Olive stones fine fraction is not too much appreciated as biofuel, so it is important the study of alternative solutions to be valorized. Some researchers have studied recycling different waste to produce ceramic bricks. The main objective of this study is to investigate the effects of olive stones addition on the properties of fired clay bricks for building construction. Olive stones were substituted by volume (7.5%, 15%, and 25%) to brick raw material in three different sizes (lower than 1 mm, lower than 2 mm and between 1 and 2 mm). In order to obtain comparable results, a series without olive stones was also prepared. The prepared mixtures were compacted in laboratory type extrusion under a pressure of 2.5MPa for rectangular shaped (30 mm x 60 mm x 10 mm). Dried and fired industrial conditions were applied to obtain laboratory brick samples. Mass loss after sintering, bulk density, porosity, water absorption and compressive strength of fired samples were investigated and compared with a sample manufactured without biomass. Results obtained have shown that olive stone addition decreased mechanical properties due to the increase in water absorption, although values tested satisfied the requirements in EN 772-1 about methods of test for masonry units (Part 1: Determination of compressive strength). Finally, important advantages related to the properties of bricks as well as their environmental effects could be obtained with the use of biomass studied to produce ceramic bricks. The increasing of the percentage of olive stones incorporated decreased bulk density and then increased the porosity of bricks. On the one hand, this lower density supposes a weight reduction of bricks to be transported, handled as well as the lightening of building; on the other hand, biomass in clay contributes to auto thermal combustion which involves lower fuel consumption during firing step. Consequently, the production of porous clay bricks using olive stones could reduce atmospheric emissions and improve their life cycle assessment, producing eco-friendly clay bricks.Keywords: clay bricks, olive stones, sustainability, valorization
Procedia PDF Downloads 153193 Spatio-Temporal Land Cover Changes Monitoring Using Remotely Sensed Techniques in Riyadh Region, KSA
Authors: Abdelrahman Elsehsah
Abstract:
Land Use and Land Cover (LULC) dynamics in Riyadh over a decade were comprehensively analyzed using the Google Earth Engine (GEE) platform. By harnessing the Landsat 8 Image collection and night-time light image collection from May to August for the years 2013 and 2023, we were able to generate insightful datasets capturing the changing landscape of the region. Our approach involved a Random Forest (RF) classification model that consistently displayed commendable precision scores above 92% for both years. A notable discovery from the study was the pronounced urban expansion, particularly around Riyadh city. Within a mere ten-year span, urbanization surged noticeably, affecting the broader ecological environment of the region. Interestingly, the northeastern part of Riyadh emerged as a focal point of this growth, signaling rapid urban growth of urban sprawl and development. A comparison between the two years indicates a 21.51% increase in built-up areas, revealing the transformative pace of urban sprawl. Contrastingly, vegetation cover patterns presented a more nuanced picture. While our initial hypothesis predicted a decline in vegetation, the actual findings depicted both vegetation reduction in certain pockets and new growth in others, resulting in an overall 25.89% increase. This intricate pattern might be attributed to shifting agricultural practices, afforestation efforts, or even satellite image timings not aligning with seasonal vegetation growth. The bare soil, predominant in the desert landscape of Riyadh, saw a marginal reduction of 0.37% over the decade, challenging our initial expectations. Urban and agricultural advancements in Saudi Arabia appear to have slightly reduced the expanse of barren terrains. This study, underpinned by a rigorous methodological framework, reveals the multifaceted land cover changes in Riyadh in response to urban development and environmental factors. The precise, data-driven insights provided by our analysis serve as invaluable tools for understanding urban growth trajectories, guiding urban planning, policy formulation, and sustainable development endeavors in the region.Keywords: remote sensing, KSA, ArcGIS, spatio-temporal
Procedia PDF Downloads 36192 Climate Changes Impact on Artificial Wetlands
Authors: Carla Idely Palencia-Aguilar
Abstract:
Artificial wetlands play an important role at Guasca Municipality in Colombia, not only because they are used for the agroindustry, but also because more than 45 species were found, some of which are endemic and migratory birds. Remote sensing was used to determine the changes in the area occupied by water of artificial wetlands by means of Aster and Modis images for different time periods. Evapotranspiration was also determined by three methods: Surface Energy Balance System-Su (SEBS) algorithm, Surface Energy Balance- Bastiaanssen (SEBAL) algorithm, and Potential Evapotranspiration- FAO. Empirical equations were also developed to determine the relationship between Normalized Difference Vegetation Index (NDVI) versus net radiation, ambient temperature and rain with an obtained R2 of 0.83. Groundwater level fluctuations on a daily basis were studied as well. Data from a piezometer placed next to the wetland were fitted with rain changes (with two weather stations located at the proximities of the wetlands) by means of multiple regression and time series analysis, the R2 from the calculated and measured values resulted was higher than 0.98. Information from nearby weather stations provided information for ordinary kriging as well as the results for the Digital Elevation Model (DEM) developed by using PCI software. Standard models (exponential, spherical, circular, gaussian, linear) to describe spatial variation were tested. Ordinary Cokriging between height and rain variables were also tested, to determine if the accuracy of the interpolation would increase. The results showed no significant differences giving the fact that the mean result of the spherical function for the rain samples after ordinary kriging was 58.06 and a standard deviation of 18.06. The cokriging using for the variable rain, a spherical function; for height variable, the power function and for the cross variable (rain and height), the spherical function had a mean of 57.58 and a standard deviation of 18.36. Threatens of eutrophication were also studied, given the unconsciousness of neighbours and government deficiency. Water quality was determined over the years; different parameters were studied to determine the chemical characteristics of water. In addition, 600 pesticides were studied by gas and liquid chromatography. Results showed that coliforms, nitrogen, phosphorous and prochloraz were the most significant contaminants.Keywords: DEM, evapotranspiration, geostatistics, NDVI
Procedia PDF Downloads 120