Search results for: forest fire detection
3210 Development of Functional Cosmetic Materials from Demilitarized Zone Habiting Plants
Authors: Younmin Shin, Jin Kyu Kim, Mirim Jin, Jeong June Choi
Abstract:
Demilitarized Zone (DMZ) is a peace region located between South and North Korea border to avoid accidental armed conflict. Because human accessing to the area was forced to be prohibited for more than 60 years, DMZ is one of the cleanest land keeping wild lives as nature itself in South Korea. In this study, we evaluated the biological efficacies of plants (SS, PC, and AR) inhabiting in DMZ for the development of functional cosmetics. First, we tested the cytotoxicity of plant extracts in keratinocyte and melanocyte, which are the major cell components of skin. By 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay with the cell lines, we determined the safety concentrations of the extracts for the efficacy tests. Next, we assessed the anti-wrinkle cosmetic function of SS by demonstrating that SS treatment decreased the expression of Matrix metalloproteinase-1 (MMP-1) in UV-irradiated keratinocytes via real-time PCR. The suppressive effect of SS was greatly potentiated by combination with other DMZ-inhabiting plants, PC and AR. The expression of tyrosinase, which is one the main enzyme that producing melanin in melanocyte, was also down-regulated by the DMZ-inhabiting SS extract. Wound healing activity was also investigated by in vitro test with HaCat cell line, a human fibroblast cell line. All the natural materials extracted form DMZ habiting plants accelerated the recovery of the cells. These results suggested that DMZ is a treasure island of functional plants and DMZ-inhabiting natural products are warranted to develop functional cosmetic materials. This study was carried out with the support of R&D Program for Forest Science Technology (Project No. 2017027A00-1819-BA01) provided by Korea Forest Service (Korea Forestry Promotion Institute).Keywords: anti-wrinkle, Demilitarized Zone, functional cosmetics, whitening
Procedia PDF Downloads 1443209 Alcohol Detection with Engine Locking System Using Arduino and ESP8266
Authors: Sukhpreet Singh, Kishan Bhojrath, Vijay, Avinash Kumar, Mandlesh Mishra
Abstract:
The project uses an Arduino and ESP8266 to construct an alcohol detection system with an engine locking mechanism, offering a distinct way to fight drunk driving. An alcohol sensor module is used by the system to determine the amount of alcohol present in the ambient air. When the system detects alcohol levels beyond a certain threshold that is deemed hazardous for driving, it activates a relay module that is linked to the engine of the car, so rendering it inoperable. By preventing people from operating a vehicle while intoxicated, this preventive measure seeks to improve road safety. Adding an ESP8266 module also allows for remote monitoring and notifications, giving users access to real-time status updates on their system. By using an integrated strategy, the initiative provides a workable and efficient way to lessen the dangers related to driving while intoxicated.Keywords: MQ3 sensor, ESP 8266, arduino, IoT
Procedia PDF Downloads 673208 Glaucoma Detection in Retinal Tomography Using the Vision Transformer
Authors: Sushish Baral, Pratibha Joshi, Yaman Maharjan
Abstract:
Glaucoma is a chronic eye condition that causes vision loss that is irreversible. Early detection and treatment are critical to prevent vision loss because it can be asymptomatic. For the identification of glaucoma, multiple deep learning algorithms are used. Transformer-based architectures, which use the self-attention mechanism to encode long-range dependencies and acquire extremely expressive representations, have recently become popular. Convolutional architectures, on the other hand, lack knowledge of long-range dependencies in the image due to their intrinsic inductive biases. The aforementioned statements inspire this thesis to look at transformer-based solutions and investigate the viability of adopting transformer-based network designs for glaucoma detection. Using retinal fundus images of the optic nerve head to develop a viable algorithm to assess the severity of glaucoma necessitates a large number of well-curated images. Initially, data is generated by augmenting ocular pictures. After that, the ocular images are pre-processed to make them ready for further processing. The system is trained using pre-processed images, and it classifies the input images as normal or glaucoma based on the features retrieved during training. The Vision Transformer (ViT) architecture is well suited to this situation, as it allows the self-attention mechanism to utilise structural modeling. Extensive experiments are run on the common dataset, and the results are thoroughly validated and visualized.Keywords: glaucoma, vision transformer, convolutional architectures, retinal fundus images, self-attention, deep learning
Procedia PDF Downloads 1943207 An Assessment of Floodplain Vegetation Response to Groundwater Changes Using the Soil & Water Assessment Tool Hydrological Model, Geographic Information System, and Machine Learning in the Southeast Australian River Basin
Authors: Newton Muhury, Armando A. Apan, Tek N. Marasani, Gebiaw T. Ayele
Abstract:
The changing climate has degraded freshwater availability in Australia that influencing vegetation growth to a great extent. This study assessed the vegetation responses to groundwater using Terra’s moderate resolution imaging spectroradiometer (MODIS), Normalised Difference Vegetation Index (NDVI), and soil water content (SWC). A hydrological model, SWAT, has been set up in a southeast Australian river catchment for groundwater analysis. The model was calibrated and validated against monthly streamflow from 2001 to 2006 and 2007 to 2010, respectively. The SWAT simulated soil water content for 43 sub-basins and monthly MODIS NDVI data for three different types of vegetation (forest, shrub, and grass) were applied in the machine learning tool, Waikato Environment for Knowledge Analysis (WEKA), using two supervised machine learning algorithms, i.e., support vector machine (SVM) and random forest (RF). The assessment shows that different types of vegetation response and soil water content vary in the dry and wet seasons. The WEKA model generated high positive relationships (r = 0.76, 0.73, and 0.81) between NDVI values of all vegetation in the sub-basins against soil water content (SWC), the groundwater flow (GW), and the combination of these two variables, respectively, during the dry season. However, these responses were reduced by 36.8% (r = 0.48) and 13.6% (r = 0.63) against GW and SWC, respectively, in the wet season. Although the rainfall pattern is highly variable in the study area, the summer rainfall is very effective for the growth of the grass vegetation type. This study has enriched our knowledge of vegetation responses to groundwater in each season, which will facilitate better floodplain vegetation management.Keywords: ArcSWAT, machine learning, floodplain vegetation, MODIS NDVI, groundwater
Procedia PDF Downloads 1013206 Detection of Alzheimer's Protein on Nano Designed Polymer Surfaces in Water and Artificial Saliva
Authors: Sevde Altuntas, Fatih Buyukserin
Abstract:
Alzheimer’s disease is responsible for irreversible neural damage of brain parts. One of the disease markers is Amyloid-β 1-42 protein that accumulates in the brain in the form plaques. The basic problem for detection of the protein is the low amount of protein that cannot be detected properly in body liquids such as blood, saliva or urine. To solve this problem, tests like ELISA or PCR are proposed which are expensive, require specialized personnel and can contain complex protocols. Therefore, Surface-enhanced Raman Spectroscopy (SERS) a good candidate for detection of Amyloid-β 1-42 protein. Because the spectroscopic technique can potentially allow even single molecule detection from liquid and solid surfaces. Besides SERS signal can be improved by using nanopattern surface and also is specific to molecules. In this context, our study proposes to fabricate diagnostic test models that utilize Au-coated nanopatterned polycarbonate (PC) surfaces modified with Thioflavin - T to detect low concentrations of Amyloid-β 1-42 protein in water and artificial saliva medium by the enhancement of protein SERS signal. The nanopatterned PC surface that was used to enhance SERS signal was fabricated by using Anodic Alumina Membranes (AAM) as a template. It is possible to produce AAMs with different column structures and varying thicknesses depending on voltage and anodization time. After fabrication process, the pore diameter of AAMs can be arranged with dilute acid solution treatment. In this study, two different columns structures were prepared. After a surface modification to decrease their surface energy, AAMs were treated with PC solution. Following the solvent evaporation, nanopatterned PC films with tunable pillared structures were peeled off from the membrane surface. The PC film was then modified with Au and Thioflavin-T for the detection of Amyloid-β 1-42 protein. The protein detection studies were conducted first in water via this biosensor platform. Same measurements were conducted in artificial saliva to detect the presence of Amyloid Amyloid-β 1-42 protein. SEM, SERS and contact angle measurements were carried out for the characterization of different surfaces and further demonstration of the protein attachment. SERS enhancement factor calculations were also completed via experimental results. As a result, our research group fabricated diagnostic test models that utilize Au-coated nanopatterned polycarbonate (PC) surfaces modified with Thioflavin-T to detect low concentrations of Alzheimer’s Amiloid – β protein in water and artificial saliva medium. This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) Grant No: 214Z167.Keywords: alzheimer, anodic aluminum oxide, nanotopography, surface enhanced Raman spectroscopy
Procedia PDF Downloads 2913205 A Real-Time Snore Detector Using Neural Networks and Selected Sound Features
Authors: Stelios A. Mitilineos, Nicolas-Alexander Tatlas, Georgia Korompili, Lampros Kokkalas, Stelios M. Potirakis
Abstract:
Obstructive Sleep Apnea Hypopnea Syndrome (OSAHS) is a widespread chronic disease that mostly remains undetected, mainly due to the fact that it is diagnosed via polysomnography which is a time and resource-intensive procedure. Screening the disease’s symptoms at home could be used as an alternative approach in order to alert individuals that potentially suffer from OSAHS without compromising their everyday routine. Since snoring is usually linked to OSAHS, developing a snore detector is appealing as an enabling technology for screening OSAHS at home using ubiquitous equipment like commodity microphones (included in, e.g., smartphones). In this context, this study developed a snore detection tool and herein present the approach and selection of specific sound features that discriminate snoring vs. environmental sounds, as well as the performance of the proposed tool. Furthermore, a Real-Time Snore Detector (RTSD) is built upon the snore detection tool and employed in whole-night sleep sound recordings resulting to a large dataset of snoring sound excerpts that are made freely available to the public. The RTSD may be used either as a stand-alone tool that offers insight to an individual’s sleep quality or as an independent component of OSAHS screening applications in future developments.Keywords: obstructive sleep apnea hypopnea syndrome, apnea screening, snoring detection, machine learning, neural networks
Procedia PDF Downloads 2083204 An Assistive Robotic Arm for Defence and Rescue Application
Authors: J. Harrison Kurunathan, R. Jayaparvathy
Abstract:
"Assistive Robotics" is the field that deals with the study of robots that helps in human motion and also empowers human abilities by interfacing the robotic systems to be manipulated by human motion. The proposed model is a robotic arm that works as a haptic interface on the basis on accelerometers and DC motors that will function with respect to the movement of the human muscle. The proposed model would effectively work as a haptic interface that would reduce human effort in the field of defense and rescue. This can be used in very critical conditions like fire accidents to avoid causalities.Keywords: accelerometers, haptic interface, servo motors, signal processing
Procedia PDF Downloads 3983203 Review on Quaternion Gradient Operator with Marginal and Vector Approaches for Colour Edge Detection
Authors: Nadia Ben Youssef, Aicha Bouzid
Abstract:
Gradient estimation is one of the most fundamental tasks in the field of image processing in general, and more particularly for color images since that the research in color image gradient remains limited. The widely used gradient method is Di Zenzo’s gradient operator, which is based on the measure of squared local contrast of color images. The proposed gradient mechanism, presented in this paper, is based on the principle of the Di Zenzo’s approach using quaternion representation. This edge detector is compared to a marginal approach based on multiscale product of wavelet transform and another vector approach based on quaternion convolution and vector gradient approach. The experimental results indicate that the proposed color gradient operator outperforms marginal approach, however, it is less efficient then the second vector approach.Keywords: gradient, edge detection, color image, quaternion
Procedia PDF Downloads 2363202 An Aptasensor Based on Magnetic Relaxation Switch and Controlled Magnetic Separation for the Sensitive Detection of Pseudomonas aeruginosa
Authors: Fei Jia, Xingjian Bai, Xiaowei Zhang, Wenjie Yan, Ruitong Dai, Xingmin Li, Jozef Kokini
Abstract:
Pseudomonas aeruginosa is a Gram-negative, aerobic, opportunistic human pathogen that is present in the soil, water, and food. This microbe has been recognized as a representative food-borne spoilage bacterium that can lead to many types of infections. Considering the casualties and property loss caused by P. aeruginosa, the development of a rapid and reliable technique for the detection of P. aeruginosa is crucial. The whole-cell aptasensor, an emerging biosensor using aptamer as a capture probe to bind to the whole cell, for food-borne pathogens detection has attracted much attention due to its convenience and high sensitivity. Here, a low-field magnetic resonance imaging (LF-MRI) aptasensor for the rapid detection of P. aeruginosa was developed. The basic detection principle of the magnetic relaxation switch (MRSw) nanosensor lies on the ‘T₂-shortening’ effect of magnetic nanoparticles in NMR measurements. Briefly speaking, the transverse relaxation time (T₂) of neighboring water protons get shortened when magnetic nanoparticles are clustered due to the cross-linking upon the recognition and binding of biological targets, or simply when the concentration of the magnetic nanoparticles increased. Such shortening is related to both the state change (aggregation or dissociation) and the concentration change of magnetic nanoparticles and can be detected using NMR relaxometry or MRI scanners. In this work, two different sizes of magnetic nanoparticles, which are 10 nm (MN₁₀) and 400 nm (MN₄₀₀) in diameter, were first immobilized with anti- P. aeruginosa aptamer through 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS) chemistry separately, to capture and enrich the P. aeruginosa cells. When incubating with the target, a ‘sandwich’ (MN₁₀-bacteria-MN₄₀₀) complex are formed driven by the bonding of MN400 with P. aeruginosa through aptamer recognition, as well as the conjugate aggregation of MN₁₀ on the surface of P. aeruginosa. Due to the different magnetic performance of the MN₁₀ and MN₄₀₀ in the magnetic field caused by their different saturation magnetization, the MN₁₀-bacteria-MN₄₀₀ complex, as well as the unreacted MN₄₀₀ in the solution, can be quickly removed by magnetic separation, and as a result, only unreacted MN₁₀ remain in the solution. The remaining MN₁₀, which are superparamagnetic and stable in low field magnetic field, work as a signal readout for T₂ measurement. Under the optimum condition, the LF-MRI platform provides both image analysis and quantitative detection of P. aeruginosa, with the detection limit as low as 100 cfu/mL. The feasibility and specificity of the aptasensor are demonstrated in detecting real food samples and validated by using plate counting methods. Only two steps and less than 2 hours needed for the detection procedure, this robust aptasensor can detect P. aeruginosa with a wide linear range from 3.1 ×10² cfu/mL to 3.1 ×10⁷ cfu/mL, which is superior to conventional plate counting method and other molecular biology testing assay. Moreover, the aptasensor has a potential to detect other bacteria or toxins by changing suitable aptamers. Considering the excellent accuracy, feasibility, and practicality, the whole-cell aptasensor provides a promising platform for a quick, direct and accurate determination of food-borne pathogens at cell-level.Keywords: magnetic resonance imaging, meat spoilage, P. aeruginosa, transverse relaxation time
Procedia PDF Downloads 1533201 Load Forecasting in Microgrid Systems with R and Cortana Intelligence Suite
Authors: F. Lazzeri, I. Reiter
Abstract:
Energy production optimization has been traditionally very important for utilities in order to improve resource consumption. However, load forecasting is a challenging task, as there are a large number of relevant variables that must be considered, and several strategies have been used to deal with this complex problem. This is especially true also in microgrids where many elements have to adjust their performance depending on the future generation and consumption conditions. The goal of this paper is to present a solution for short-term load forecasting in microgrids, based on three machine learning experiments developed in R and web services built and deployed with different components of Cortana Intelligence Suite: Azure Machine Learning, a fully managed cloud service that enables to easily build, deploy, and share predictive analytics solutions; SQL database, a Microsoft database service for app developers; and PowerBI, a suite of business analytics tools to analyze data and share insights. Our results show that Boosted Decision Tree and Fast Forest Quantile regression methods can be very useful to predict hourly short-term consumption in microgrids; moreover, we found that for these types of forecasting models, weather data (temperature, wind, humidity and dew point) can play a crucial role in improving the accuracy of the forecasting solution. Data cleaning and feature engineering methods performed in R and different types of machine learning algorithms (Boosted Decision Tree, Fast Forest Quantile and ARIMA) will be presented, and results and performance metrics discussed.
Keywords: time-series, features engineering methods for forecasting, energy demand forecasting, Azure Machine Learning
Procedia PDF Downloads 2993200 Biogas Production from Lake Bottom Biomass from Forest Management Areas
Authors: Dessie Tegegne Tibebu, Kirsi Mononen, Ari Pappinen
Abstract:
In areas with forest management, agricultural, and industrial activity, sediments and biomass are accumulated in lakes through drainage system, which might be a cause for biodiversity loss and health problems. One possible solution can be utilization of lake bottom biomass and sediments for biogas production. The main objective of this study was to investigate the potentials of lake bottom materials for production of biogas by anaerobic digestion and to study the effect of pretreatment methods for feed materials on biogas yield. In order to study the potentials of biogas production lake bottom materials were collected from two sites, Likokanta and Kutunjärvi lake. Lake bottom materials were mixed with straw-horse manure to produce biogas in a laboratory scale reactor. The results indicated that highest yields of biogas values were observed when feeds were composed of 50% lake bottom materials with 50% straw horse manure mixture-while with above 50% lake bottom materials in the feed biogas production decreased. CH4 content from Likokanta lake materials with straw-horse manure and Kutunjärvi lake materials with straw-horse manure were similar values when feed consisted of 50% lake bottom materials with 50% straw horse manure mixtures. However, feeds with lake bottom materials above 50%, the CH4 concentration started to decrease, impairing gas process. Pretreatment applied on Kutunjärvi lake materials showed a slight negative effect on the biogas production and lowest CH4 concentration throughout the experiment. The average CH4 production (ml g-1 VS) from pretreated Kutunjärvi lake materials with straw horse manure (208.9 ml g-1 VS) and untreated Kutunjärvi lake materials with straw horse manure (182.2 ml g-1 VS) were markedly higher than from Likokanta lake materials with straw horse manure (157.8 ml g-1 VS). According to the experimental results, utilization of 100% lake bottom materials for biogas production is likely to be impaired negatively. In the future, further analyses to improve the biogas yields, assessment of costs and benefits is needed before utilizing lake bottom materials for the production of biogas.Keywords: anaerobic digestion, biogas, lake bottom materials, sediments, pretreatment
Procedia PDF Downloads 3373199 Investigation into the Socio-ecological Impact of Migration of Fulani Herders in Anambra State of Nigeria Through a Climate Justice Lens
Authors: Anselm Ego Onyimonyi, Maduako Johnpaul O.
Abstract:
The study was designed to investigate into the socio-ecological impact of migration of Fulani herders in Anambra state of Nigeria, through a climate justice lens. Nigeria is one of the world’s most densely populated countries with a population of over 284 million people, half of which are considered to be in abject poverty. There is no doubt that livestock production provides sustainable contributions to food security and poverty reduction to Nigeria economy, but not without some environmental implications like any other economic activities. Nigeria is recognized as being vulnerable to climate change. Climate change and global warming if left unchecked will cause adverse effects on livelihoods in Nigeria, such as livestock production, crop production, fisheries, forestry and post-harvest activities, because the rainfall regimes and patterns will be altered, floods which devastate farmlands would occur, increase in temperature and humidity which increases pest and disease would occur and other natural disasters like desertification, drought, floods, ocean and storm surges, which not only damage Nigerians’ livelihood but also cause harm to life and property, would occur. This and other climatic issue as it affects Fulani herdsmen was what this study investigated. In carrying out this research, a survey research design was adopted. A simple sampling technique was used. One local government area (LGA) was selected purposively from each of the four agricultural zone in the state based on its predominance of Fulani herders. For appropriate sampling, 25 respondents from each of the four Agricultural zones in the state were randomly selected making up the 100 respondent being sampled. Primary data were generated by using a set of structured 5-likert scale questionnaire. Data generated were analyzed using SPSS and the result presented using descriptive statistics. From the data analyzed, the study indentified; Unpredicted rainfall (mean = 3.56), Forest fire (mean = 4.63), Drying Water Source (mean = 3.99), Dwindling Grazing (mean 4.43), Desertification (mean = 4.44), Fertile land scarcity (mean = 3.42) as major factor predisposing Fulani herders to migrate southward while rejecting Natural inclination to migrate (mean = 2.38) and migration to cause trouble as a factor. On the reason why Fulani herders are trying to establish a permanent camp in Anambra state; Moderate temperature (mean= 3.60), Avoiding overgrazing (4.42), Search for fodder and water (mean = 4.81) and (mean = 4.70) respectively, Need for market (4.28), Favorable environment (mean = 3.99) and Access to fertile land (3.96) were identified. It was concluded that changing climatic variables necessitated the migration of herders from Northern Nigeria to areas in the South were the variables are most favorable to the herders and their animals.Keywords: socio-ecological, migration, fulani, climate, justice, lens
Procedia PDF Downloads 483198 Collision Avoidance Based on Model Predictive Control for Nonlinear Octocopter Model
Authors: Doğan Yıldız, Aydan Müşerref Erkmen
Abstract:
The controller of the octocopter is mostly based on the PID controller. For complex maneuvers, PID controllers have limited performance capability like in collision avoidance. When an octocopter needs avoidance from an obstacle, it must instantly show an agile maneuver. Also, this kind of maneuver is affected severely by the nonlinear characteristic of octocopter. When these kinds of limitations are considered, the situation is highly challenging for the PID controller. In the proposed study, these challenges are tried to minimize by using the model predictive controller (MPC) for collision avoidance with a nonlinear octocopter model. The aim is to show that MPC-based collision avoidance has the capability to deal with fast varying conditions in case of obstacle detection and diminish the nonlinear effects of octocopter with varying disturbances.Keywords: model predictive control, nonlinear octocopter model, collision avoidance, obstacle detection
Procedia PDF Downloads 1923197 Nanotechnology for Flame Retardancy of Thermoset Resins
Authors: Ewa Kicko Walczak, Grazyna Rymarz
Abstract:
In recent years, nanotechnology has been successfully applied for flame retardancy of polymers, in particular for construction materials. The consumption of thermoset resins as a construction polymers materials is approximately over one million tone word wide. Excellent mechanical, relatively high heat and thermal stability of their type of polymers are proven for variety applications, e.g. transportation, electrical, electronic, building part industry. Above applications in addition to the strength and thermal properties also requires -referring to the legal regulation or recommendation - an adequate level of flammability of the materials. This publication present the evaluation was made of effectiveness of flame retardancy of halogen-free hybrid flame retardants(FR) as compounds nitric/phosphorus modifiers that act with nanofillers (nano carbons, organ modified montmorillonite, nano silica, microsphere) in relation to unsaturated polyester/epoxy resins and glass-reinforced on base this resins laminates(GRP) as a final products. The analysis of the fire properties provided proof of effective flame retardancy of the tested composites by defining oxygen indices values (LOI), with the use of thermogravimetric methods (TGA) and combustion head (CH). An analysis of the combustion process with Cone Calorimeter (CC) method included in the first place N/P units and nanofillers with the observed phenomenon of synergic action of compounds. The fine-plates, phase morphology and rheology of composites were assessed by SEM/ TEM analysis. Polymer-matrix glass reinforced laminates with modified resins meet LOI over 30%, reduced in a decrease by 70% HRR (according to CC analysis), positive description of the curves TGA and values CH; no adverse negative impact on mechanical properties. The main objective of our current project is to contribute to the general understanding of the flame retardants mechanism and to investigate the corresponding structure/properties relationships. We confirm that nanotechnology systems are successfully concept for commercialized forms for non-flammable GRP pipe, concrete composites, and flame retardant tunnels constructions.Keywords: fire retardants, FR, halogen-free FR nanofillers, non-flammable pipe/concrete, thermoset resins
Procedia PDF Downloads 2853196 Outbreak of Cholera, Jalgaon District, Maharastra, 2013
Authors: Yogita Tulsian, A. Yadav
Abstract:
Background: India reports 3,600 cholera cases annually. In August 2013, a cholera outbreak was reported in Jalgaon district, Maharashtra state. We sought to describe the epidemiological characteristics,identify risk factors, and recommend control measures. Methods: We collected existing stool and water testing laboratory results, and conducted a1: 1 matched case-control study. A cholera case was defined as a resident of Vishnapur or Malapur villagewith onset of acute watery diarrhea on/ after 1-July-2013. Controls were matched by age, gender and village and had not experienced any diarrhea for 3 months. We collected socio-demographic characteristics, clinical presentation, and food/travel/water exposure history and conducted conditional logistic regression. Results: Of 50 people who met the cholera case definition, 40 (80%) were from Vishnapur village and 30 (60%) were female. The median age was 8.5 years (range; 0.3-75). Twenty (45%) cases were hospitalized, twelve (60%) with severe dehydration. Three of five stool samples revealed Vibrio cholerae 01 El Tor, Ogawa and samples from 7 of 14 Vishnapur water sources contained fecal coliforms. Cases from Vishnapur were significantly more likely to drink from identified contaminated water sources (matched odds ratio (MOR) 3.5; 95% confidence interval (CI): 1-13), or from a river/canal (MOR=18.4;95%CI: 2-504). Cases from Malapur were more likely to drink from a river/canal (MOR=6.2; 95%CI: 0.6-196). Cases from both villages were significantly more likely to visit the forest (MOR 6.3; 95%CI: 2-30) or another village (MOR 3.5; 95%CI; 0.9-17). Conclusions: This outbreak was caused by Vibrio cholerae, likely through contamination of water in Vishnapur village and/or through drinking river/canal water. We recommended safe drinking water for forest visitors and all residents of these villages and use of regular water testing.Keywords: cholera, case control study, contaminated water, river
Procedia PDF Downloads 3613195 The Complementary Effect of Internal Control System and Whistleblowing Policy on Prevention and Detection of Fraud in Nigerian Deposit Money Banks
Authors: Dada Durojaye Joshua
Abstract:
The study examined the combined effect of internal control system and whistle blowing policy while it pursues the following specific objectives, which are to: examine the relationship between monitoring activities and fraud’s detection and prevention; investigate the effect of control activities on fraud’s detection and prevention in Nigerian Deposit Money Banks (DMBs). The population of the study comprises the 89,275 members of staff in the 20 DMBs in Nigeria as at June 2019. Purposive and convenient sampling techniques were used in the selection of the 80 members of staff at the supervisory level of the Internal Audit Departments of the head offices of the sampled banks, that is, selecting 4 respondents (Audit Executive/Head, Internal Control; Manager, Operation Risk Management; Head, Financial Crime Control; the Chief Compliance Officer) from each of the 20 DMBs in Nigeria. A standard questionnaire was adapted from 2017/2018 Internal Control Questionnaire and Assessment, Bureau of Financial Monitoring and Accountability Florida Department of Economic Opportunity. It was modified to serve the purpose for which it was meant to serve. It was self-administered to gather data from the 80 respondents at the respective headquarters of the sampled banks at their respective locations across Nigeria. Two likert-scales was used in achieving the stated objectives. A logit regression was used in analysing the stated hypotheses. It was found that effect of monitoring activities using the construct of conduct of ongoing or separate evaluation (COSE), evaluation and communication of deficiencies (ECD) revealed that monitoring activities is significant and positively related to fraud’s detection and prevention in Nigerian DMBS. So also, it was found that control activities using selection and development of control activities (SDCA), selection and development of general controls over technology to prevent financial fraud (SDGCTF), development of control activities that gives room for transparency through procedures that put policies into actions (DCATPPA) contributed to influence fraud detection and prevention in the Nigerian DMBs. In addition, it was found that transparency, accountability, reliability, independence and value relevance have significant effect on fraud detection and prevention ibn Nigerian DMBs. The study concluded that the board of directors demonstrated independence from management and exercises oversight of the development and performance of internal control. Part of the conclusion was that there was accountability on the part of the owners and preparers of the financial reports and that the system gives room for the members of staff to account for their responsibilities. Among the recommendations was that the management of Nigerian DMBs should create and establish a standard Internal Control System strong enough to deter fraud in order to encourage continuity of operations by ensuring liquidity, solvency and going concern of the banks. It was also recommended that the banks create a structure that encourages whistleblowing to complement the internal control system.Keywords: internal control, whistleblowing, deposit money banks, fraud prevention, fraud detection
Procedia PDF Downloads 813194 Complementary Effect of Wistleblowing Policy and Internal Control System on Prevention and Detection of Fraud in Nigerian Deposit Money Banks
Authors: Dada Durojaye Joshua
Abstract:
The study examined the combined effect of internal control system and whistle blowing policy while it pursues the following specific objectives, which are to: examine the relationship between monitoring activities and fraud’s detection and prevention; investigate the effect of control activities on fraud’s detection and prevention in Nigerian Deposit Money Banks (DMBs). The population of the study comprises the 89,275 members of staff in the 20 DMBs in Nigeria as at June 2019. Purposive and convenient sampling techniques were used in the selection of the 80 members of staff at the supervisory level of the Internal Audit Departments of the head offices of the sampled banks, that is, selecting 4 respondents (Audit Executive/Head, Internal Control; Manager, Operation Risk Management; Head, Financial Crime Control; the Chief Compliance Officer) from each of the 20 DMBs in Nigeria. A standard questionnaire was adapted from 2017/2018 Internal Control Questionnaire and Assessment, Bureau of Financial Monitoring and Accountability Florida Department of Economic Opportunity. It was modified to serve the purpose for which it was meant to serve. It was self-administered to gather data from the 80 respondents at the respective headquarters of the sampled banks at their respective locations across Nigeria. Two likert-scales was used in achieving the stated objectives. A logit regression was used in analysing the stated hypotheses. It was found that effect of monitoring activities using the construct of conduct of ongoing or separate evaluation (COSE), evaluation and communication of deficiencies (ECD) revealed that monitoring activities is significant and positively related to fraud’s detection and prevention in Nigerian DMBS. So also, it was found that control activities using selection and development of control activities (SDCA), selection and development of general controls over technology to prevent financial fraud (SDGCTF), development of control activities that gives room for transparency through procedures that put policies into actions (DCATPPA) contributed to influence fraud detection and prevention in the Nigerian DMBs. In addition, it was found that transparency, accountability, reliability, independence and value relevance have significant effect on fraud detection and prevention ibn Nigerian DMBs. The study concluded that the board of directors demonstrated independence from management and exercises oversight of the development and performance of internal control. Part of the conclusion was that there was accountability on the part of the owners and preparers of the financial reports and that the system gives room for the members of staff to account for their responsibilities. Among the recommendations was that the management of Nigerian DMBs should create and establish a standard Internal Control System strong enough to deter fraud in order to encourage continuity of operations by ensuring liquidity, solvency and going concern of the banks. It was also recommended that the banks create a structure that encourages whistleblowing to complement the internal control system.Keywords: internal control, whistleblowing, deposit money banks, fraud prevention, fraud detection
Procedia PDF Downloads 753193 High Thermal Selective Detection of NOₓ Using High Electron Mobility Transistor Based on Gallium Nitride
Authors: Hassane Ouazzani Chahdi, Omar Helli, Bourzgui Nour Eddine, Hassan Maher, Ali Soltani
Abstract:
The real-time knowledge of the NO, NO₂ concentration at high temperature, would allow manufacturers of automobiles to meet the upcoming stringent EURO7 anti-pollution measures for diesel engines. Knowledge of the concentration of each of these species will also enable engines to run leaner (i.e., more fuel efficient) while still meeting the anti-pollution requirements. Our proposed technology is promising in the field of automotive sensors. It consists of nanostructured semiconductors based on gallium nitride and zirconia dioxide. The development of new technologies for selective detection of NO and NO₂ gas species would be a critical enabler of superior depollution. The current response was well correlated to the NO concentration in the range of 0–2000 ppm, 0-2500 ppm NO₂, and 0-300 ppm NH₃ at a temperature of 600.Keywords: NOₓ sensors, HEMT transistor, anti-pollution, gallium nitride, gas sensor
Procedia PDF Downloads 2483192 Financial Service of Financial Institution for SME in Thailand
Authors: Charawee Butbumrung
Abstract:
This research aim to study the financial service of the Thailand financial Institution, second is to identify "best practices" offered by four financial institutions, namely, Kasikornthai Bank, Bangkok Bank, Siam Commercial Bank, and Thanachart Bank. In-depth interviews with managers of financial institution and borrowers reveal best practices from each financial institution. Close monitoring of and a close relationship with borrowers appear to be important for early detection of any problem. Another aspect that may be important is building up loyalty and developing reliability among members. A close and informal relationship with borrowers may also help in monitoring and early detection of problems that may arise in non-repayment of loans. Other factors that may be considered important to the success of a financial service scheme are cooperation and coordination among various agencies that provide additional support to borrowers. Indirectly, these support systems contribute to the success of a SME in Thailand.Keywords: best practices, financial service, financial institution, SME in Thailand
Procedia PDF Downloads 2943191 Quality Control of Automotive Gearbox Based On Vibration Signal Analysis
Authors: Nilson Barbieri, Bruno Matos Martins, Gabriel de Sant'Anna Vitor Barbieri
Abstract:
In more complex systems, such as automotive gearbox, a rigorous treatment of the data is necessary because there are several moving parts (gears, bearings, shafts, etc.), and in this way, there are several possible sources of errors and also noise. The basic objective of this work is the detection of damage in automotive gearbox. The detection methods used are the wavelet method, the bispectrum; advanced filtering techniques (selective filtering) of vibrational signals and mathematical morphology. Gearbox vibration tests were performed (gearboxes in good condition and with defects) of a production line of a large vehicle assembler. The vibration signals are obtained using five accelerometers in different positions of the sample. The results obtained using the kurtosis, bispectrum, wavelet and mathematical morphology showed that it is possible to identify the existence of defects in automotive gearboxes.Keywords: automotive gearbox, mathematical morphology, wavelet, bispectrum
Procedia PDF Downloads 4763190 Improving Subjective Bias Detection Using Bidirectional Encoder Representations from Transformers and Bidirectional Long Short-Term Memory
Authors: Ebipatei Victoria Tunyan, T. A. Cao, Cheol Young Ock
Abstract:
Detecting subjectively biased statements is a vital task. This is because this kind of bias, when present in the text or other forms of information dissemination media such as news, social media, scientific texts, and encyclopedias, can weaken trust in the information and stir conflicts amongst consumers. Subjective bias detection is also critical for many Natural Language Processing (NLP) tasks like sentiment analysis, opinion identification, and bias neutralization. Having a system that can adequately detect subjectivity in text will boost research in the above-mentioned areas significantly. It can also come in handy for platforms like Wikipedia, where the use of neutral language is of importance. The goal of this work is to identify the subjectively biased language in text on a sentence level. With machine learning, we can solve complex AI problems, making it a good fit for the problem of subjective bias detection. A key step in this approach is to train a classifier based on BERT (Bidirectional Encoder Representations from Transformers) as upstream model. BERT by itself can be used as a classifier; however, in this study, we use BERT as data preprocessor as well as an embedding generator for a Bi-LSTM (Bidirectional Long Short-Term Memory) network incorporated with attention mechanism. This approach produces a deeper and better classifier. We evaluate the effectiveness of our model using the Wiki Neutrality Corpus (WNC), which was compiled from Wikipedia edits that removed various biased instances from sentences as a benchmark dataset, with which we also compare our model to existing approaches. Experimental analysis indicates an improved performance, as our model achieved state-of-the-art accuracy in detecting subjective bias. This study focuses on the English language, but the model can be fine-tuned to accommodate other languages.Keywords: subjective bias detection, machine learning, BERT–BiLSTM–Attention, text classification, natural language processing
Procedia PDF Downloads 1313189 Hydrothermal Synthesis of Mesoporous Carbon Nanospheres and Their Electrochemical Properties for Glucose Detection
Authors: Ali Akbar Kazemi Asl, Mansour Rahsepar
Abstract:
Mesoporous carbon nanospheres (MCNs) with uniform particle size distribution having an average of 290 nm and large specific surface area (274.4 m²/g) were synthesized by a one-step hydrothermal method followed by the calcination process and then utilized as an enzyme-free glucose biosensor. Morphology, crystal structure, and porous nature of the synthesized nanospheres were characterized by scanning electron microscopy (SEM), X-Ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) analysis, respectively. Also, the electrochemical performance of the MCNs@GCE electrode for the measurement of glucose concentration in alkaline media was investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and chronoamperometry (CA). MCNs@GCE electrode shows good sensing performance, including a rapid glucose oxidation response within 3.1 s, a wide linear range of 0.026-12 mM, a sensitivity of 212.34 μA.mM⁻¹.cm⁻², and a detection limit of 25.7 μM with excellent selectivity.Keywords: biosensor, electrochemical, glucose, mesoporous carbon, non-enzymatic
Procedia PDF Downloads 1913188 Relation of Optimal Pilot Offsets in the Shifted Constellation-Based Method for the Detection of Pilot Contamination Attacks
Authors: Dimitriya A. Mihaylova, Zlatka V. Valkova-Jarvis, Georgi L. Iliev
Abstract:
One possible approach for maintaining the security of communication systems relies on Physical Layer Security mechanisms. However, in wireless time division duplex systems, where uplink and downlink channels are reciprocal, the channel estimate procedure is exposed to attacks known as pilot contamination, with the aim of having an enhanced data signal sent to the malicious user. The Shifted 2-N-PSK method involves two random legitimate pilots in the training phase, each of which belongs to a constellation, shifted from the original N-PSK symbols by certain degrees. In this paper, legitimate pilots’ offset values and their influence on the detection capabilities of the Shifted 2-N-PSK method are investigated. As the implementation of the technique depends on the relation between the shift angles rather than their specific values, the optimal interconnection between the two legitimate constellations is investigated. The results show that no regularity exists in the relation between the pilot contamination attacks (PCA) detection probability and the choice of offset values. Therefore, an adversary who aims to obtain the exact offset values can only employ a brute-force attack but the large number of possible combinations for the shifted constellations makes such a type of attack difficult to successfully mount. For this reason, the number of optimal shift value pairs is also studied for both 100% and 98% probabilities of detecting pilot contamination attacks. Although the Shifted 2-N-PSK method has been broadly studied in different signal-to-noise ratio scenarios, in multi-cell systems the interference from the signals in other cells should be also taken into account. Therefore, the inter-cell interference impact on the performance of the method is investigated by means of a large number of simulations. The results show that the detection probability of the Shifted 2-N-PSK decreases inversely to the signal-to-interference-plus-noise ratio.Keywords: channel estimation, inter-cell interference, pilot contamination attacks, wireless communications
Procedia PDF Downloads 2183187 A Dual Channel Optical Sensor for Norepinephrine via Situ Generated Silver Nanoparticles
Authors: Shalini Menon, K. Girish Kumar
Abstract:
Norepinephrine (NE) is one of the naturally occurring catecholamines which act both as a neurotransmitter and a hormone. Catecholamine levels are used for the diagnosis and regulation of phaeochromocytoma, a neuroendocrine tumor of the adrenal medulla. The development of simple, rapid and cost-effective sensors for NE still remains a great challenge. Herein, a dual-channel sensor has been developed for the determination of NE. A mixture of AgNO₃, NaOH, NH₃.H₂O and cetrimonium bromide in appropriate concentrations was taken as the working solution. To the thoroughly vortexed mixture, an appropriate volume of NE solution was added. After a particular time, the fluorescence and absorbance were measured. Fluorescence measurements were made by exciting at a wavelength of 400 nm. A dual-channel optical sensor has been developed for the colorimetric as well as the fluorimetric determination of NE. Metal enhanced fluorescence property of nanoparticles forms the basis of the fluorimetric detection of this assay, whereas the appearance of brown color in the presence of NE leads to colorimetric detection. Wide linear ranges and sub-micromolar detection limits were obtained using both the techniques. Moreover, the colorimetric approach was applied for the determination of NE in synthetic blood serum and the results obtained were compared with the classic high-performance liquid chromatography (HPLC) method. Recoveries between 97% and 104% were obtained using the proposed method. Based on five replicate measurements, relative standard deviation (RSD) for NE determination in the examined synthetic blood serum was found to be 2.3%. This indicates the reliability of the proposed sensor for real sample analysis.Keywords: norepinephrine, colorimetry, fluorescence, silver nanoparticles
Procedia PDF Downloads 1143186 Reimagining Landscapes: Psychological Responses and Behavioral Shifts in the Aftermath of the Lytton Creek Fire
Authors: Tugba Altin
Abstract:
In an era where the impacts of climate change resonate more pronouncedly than ever, communities globally grapple with events bearing both tangible and intangible ramifications. Situating this within the evolving landscapes of Psychological and Behavioral Sciences, this research probes the profound psychological and behavioral responses evoked by such events. The Lytton Creek Fire of 2021 epitomizes these challenges. While tangible destruction is immediate and evident, the intangible repercussions—emotional distress, disintegration of cultural landscapes, and disruptions in place attachment (PA)—require meticulous exploration. PA, emblematic of the emotional and cognitive affiliations individuals nurture with their environments, emerges as a cornerstone for comprehending how environmental cataclysms influence cultural identity and bonds to land. This study, harmonizing the core tenets of an interpretive phenomenological approach with a hermeneutic framework, underscores the pivotal nature of this attachment. It delves deep into the realm of individuals' experiences post the Lytton Creek Fire, unraveling the intricate dynamics of PA amidst such calamity. The study's methodology deviates from conventional paradigms. Instead of traditional interview techniques, it employs walking audio sessions and photo elicitation methods, granting participants the agency to immerse, re-experience, and vocalize their sentiments in real-time. Such techniques shed light on spatial narratives post-trauma and capture the otherwise elusive emotional nuances, offering a visually rich representation of place-based experiences. Central to this research is the voice of the affected populace, whose lived experiences and testimonies form the nucleus of the inquiry. As they renegotiate their bonds with transformed environments, their narratives reveal the indispensable role of cultural landscapes in forging place-based identities. Such revelations accentuate the necessity of integrating both tangible and intangible trauma facets into community recovery strategies, ensuring they resonate more profoundly with affected individuals. Bridging the domains of environmental psychology and behavioral sciences, this research accentuates the intertwined nature of tangible restoration with the imperative of emotional and cultural recuperation post-environmental disasters. It advocates for adaptation initiatives that are rooted in the lived realities of the affected, emphasizing a holistic approach that recognizes the profundity of human connections to landscapes. This research advocates the interdisciplinary exchange of ideas and strategies in addressing post-disaster community recovery strategies. It not only enriches the climate change discourse by emphasizing the human facets of disasters but also reiterates the significance of an interdisciplinary approach, encompassing psychological and behavioral nuances, for fostering a comprehensive understanding of climate-induced traumas. Such a perspective is indispensable for shaping more informed, empathetic, and effective adaptation strategies.Keywords: place attachment, community recovery, disaster response, restorative landscapes, sensory response, visual methodologies
Procedia PDF Downloads 623185 Application of Biosensors in Forensic Analysis
Authors: Shirin jalili, Hadi Shirzad, Samaneh Nabavi, Somayeh Khanjani
Abstract:
Biosensors in forensic analysis are ideal biological tools that can be used for rapid and sensitive initial screening and testing to detect of suspicious components like biological and chemical agent in crime scenes. The wide use of different biomolecules such as proteins, nucleic acids, microorganisms, antibodies and enzymes makes it possible. These biosensors have great advantages such as rapidity, little sample manipulation and high sensitivity, also Because of their stability, specificity and low cost they have become a very important tool to Forensic analysis and detection of crime. In crime scenes different substances such as rape samples, Semen, saliva fingerprints and blood samples, act as a detecting elements for biosensors. On the other hand, successful fluid recovery via biosensor has the propensity to yield a highly valuable source of genetic material, which is important in finding the suspect. Although current biological fluid testing techniques are impaired for identification of body fluids. But these methods have disadvantages. For example if they are to be used simultaneously, Often give false positive result. These limitations can negatively result the output of a case through missed or misinterpreted evidence. The use of biosensor enable criminal researchers the highly sensitive and non-destructive detection of biological fluid through interaction with several fluid-endogenous and other biological and chemical contamination at the crime scene. For this reason, using of the biosensors for detecting the biological fluid found at the crime scenes which play an important role in identifying the suspect and solving the criminal.Keywords: biosensors, forensic analysis, biological fluid, crime detection
Procedia PDF Downloads 11223184 Requirement Engineering for Intrusion Detection Systems in Wireless Sensor Networks
Authors: Afnan Al-Romi, Iman Al-Momani
Abstract:
The urge of applying the Software Engineering (SE) processes is both of vital importance and a key feature in critical, complex large-scale systems, for example, safety systems, security service systems, and network systems. Inevitably, associated with this are risks, such as system vulnerabilities and security threats. The probability of those risks increases in unsecured environments, such as wireless networks in general and in Wireless Sensor Networks (WSNs) in particular. WSN is a self-organizing network of sensor nodes connected by wireless links. WSNs consist of hundreds to thousands of low-power, low-cost, multi-function sensor nodes that are small in size and communicate over short-ranges. The distribution of sensor nodes in an open environment that could be unattended in addition to the resource constraints in terms of processing, storage and power, make such networks in stringent limitations such as lifetime (i.e. period of operation) and security. The importance of WSN applications that could be found in many militaries and civilian aspects has drawn the attention of many researchers to consider its security. To address this important issue and overcome one of the main challenges of WSNs, security solution systems have been developed by researchers. Those solutions are software-based network Intrusion Detection Systems (IDSs). However, it has been witnessed, that those developed IDSs are neither secure enough nor accurate to detect all malicious behaviours of attacks. Thus, the problem is the lack of coverage of all malicious behaviours in proposed IDSs, leading to unpleasant results, such as delays in the detection process, low detection accuracy, or even worse, leading to detection failure, as illustrated in the previous studies. Also, another problem is energy consumption in WSNs caused by IDS. So, in other words, not all requirements are implemented then traced. Moreover, neither all requirements are identified nor satisfied, as for some requirements have been compromised. The drawbacks in the current IDS are due to not following structured software development processes by researches and developers when developing IDS. Consequently, they resulted in inadequate requirement management, process, validation, and verification of requirements quality. Unfortunately, WSN and SE research communities have been mostly impermeable to each other. Integrating SE and WSNs is a real subject that will be expanded as technology evolves and spreads in industrial applications. Therefore, this paper will study the importance of Requirement Engineering when developing IDSs. Also, it will study a set of existed IDSs and illustrate the absence of Requirement Engineering and its effect. Then conclusions are drawn in regard of applying requirement engineering to systems to deliver the required functionalities, with respect to operational constraints, within an acceptable level of performance, accuracy and reliability.Keywords: software engineering, requirement engineering, Intrusion Detection System, IDS, Wireless Sensor Networks, WSN
Procedia PDF Downloads 3243183 The Inattentional Blindness Paradigm: A Breaking Wave for Attentional Biases in Test Anxiety
Authors: Kritika Kulhari, Aparna Sahu
Abstract:
Test anxiety results from concerns about failure in examinations or evaluative situations. Attentional biases are known to pronounce the symptomatic expression of test anxiety. In recent times, the inattentional blindness (IB) paradigm has shown promise as an attention bias modification treatment (ABMT) for anxiety by overcoming practice and expectancy effects which preexisting paradigms fail to counter. The IB paradigm assesses the inability of an individual to attend to a stimulus that appears suddenly while indulging in a perceptual discrimination task. The present study incorporated an IB task with three critical items (book, face, and triangle) appearing randomly in the perceptual discrimination task. Attentional biases were assessed as detection and identification of the critical item. The sample (N = 50) consisted of low test anxiety (LTA) and high test anxiety (HTA) groups based on the reactions to tests scale scores. Test threat manipulation was done with pre- and post-test assessment of test anxiety using the State Test Anxiety Inventory. A mixed factorial design with gender, test anxiety, presence or absence of test threat, and critical items was conducted to assess their effects on attentional biases. Results showed only a significant main effect for test anxiety on detection with higher accuracy of detection of the critical item for the LTA group. The study presents promising results in the realm of ABMT for test anxiety.Keywords: attentional bias, attentional bias modification treatment, inattentional blindness, test anxiety
Procedia PDF Downloads 2263182 Assessment of a Rapid Detection Sensor of Faecal Pollution in Freshwater
Authors: Ciprian Briciu-Burghina, Brendan Heery, Dermot Brabazon, Fiona Regan
Abstract:
Good quality bathing water is a highly desirable natural resource which can provide major economic, social, and environmental benefits. Both in Ireland and Europe, such water bodies are managed under the European Directive for the management of bathing water quality (BWD). The BWD aims mainly: (i) to improve health protection for bathers by introducing stricter standards for faecal pollution assessment (E. coli, enterococci), (ii) to establish a more pro-active approach to the assessment of possible pollution risks and the management of bathing waters, and (iii) to increase public involvement and dissemination of information to the general public. Standard methods for E. coli and enterococci quantification rely on cultivation of the target organism which requires long incubation periods (from 18h to a few days). This is not ideal when immediate action is required for risk mitigation. Municipalities that oversee the bathing water quality and deploy appropriate signage have to wait for laboratory results. During this time, bathers can be exposed to pollution events and health risks. Although forecasting tools exist, they are site specific and as consequence extensive historical data is required to be effective. Another approach for early detection of faecal pollution is the use of marker enzymes. β-glucuronidase (GUS) is a widely accepted biomarker for E. coli detection in microbiological water quality control. GUS assay is particularly attractive as they are rapid, less than 4 h, easy to perform and they do not require specialised training. A method for on-site detection of GUS from environmental samples in less than 75 min was previously demonstrated. In this study, the capability of ColiSense as an early warning system for faecal pollution in freshwater is assessed. The system successfully detected GUS activity in all of the 45 freshwater samples tested. GUS activity was found to correlate linearly with E. coli (r2=0.53, N=45, p < 0.001) and enterococci (r2=0.66, N=45, p < 0.001) Although GUS is a marker for E. coli, a better correlation was obtained for enterococci. For this study water samples were collected from 5 rivers in the Dublin area over 1 month. This suggests a high diversity of pollution sources (agricultural, industrial, etc) as well as point and diffuse pollution sources were captured in the sample size. Such variety in the source of E. coli can account for different GUS activities/culturable cell and different ratios of viable but not culturable to viable culturable bacteria. A previously developed protocol for the recovery and detection of E. coli was coupled with a miniaturised fluorometer (ColiSense) and the system was assessed for the rapid detection FIB in freshwater samples. Further work will be carried out to evaluate the system’s performance on seawater samples.Keywords: faecal pollution, β-glucuronidase (GUS), bathing water, E. coli
Procedia PDF Downloads 2843181 Tomato-Weed Classification by RetinaNet One-Step Neural Network
Authors: Dionisio Andujar, Juan lópez-Correa, Hugo Moreno, Angela Ri
Abstract:
The increased number of weeds in tomato crops highly lower yields. Weed identification with the aim of machine learning is important to carry out site-specific control. The last advances in computer vision are a powerful tool to face the problem. The analysis of RGB (Red, Green, Blue) images through Artificial Neural Networks had been rapidly developed in the past few years, providing new methods for weed classification. The development of the algorithms for crop and weed species classification looks for a real-time classification system using Object Detection algorithms based on Convolutional Neural Networks. The site study was located in commercial corn fields. The classification system has been tested. The procedure can detect and classify weed seedlings in tomato fields. The input to the Neural Network was a set of 10,000 RGB images with a natural infestation of Cyperus rotundus l., Echinochloa crus galli L., Setaria italica L., Portulaca oeracea L., and Solanum nigrum L. The validation process was done with a random selection of RGB images containing the aforementioned species. The mean average precision (mAP) was established as the metric for object detection. The results showed agreements higher than 95 %. The system will provide the input for an online spraying system. Thus, this work plays an important role in Site Specific Weed Management by reducing herbicide use in a single step.Keywords: deep learning, object detection, cnn, tomato, weeds
Procedia PDF Downloads 106