Search results for: electricity from stirling engine
185 Standardization of Solar Water Pumping System for Remote Areas in Indonesia
Authors: Danar Agus Susanto, Hermawan Febriansyah, Meilinda Ayundyahrini
Abstract:
The availability of spring water to meet people demand is often a problem, especially in tropical areas with very limited surface water sources, or very deep underground water. Although the technology and equipment of pumping system are available and easy to obtain, but in remote areas, the availability of pumping system is difficult, due to the unavailability of fuel or the lack of electricity. Solar Water Pumping System (SWPS) became one of the alternatives that can overcome these obstacles. In the tropical country, sunlight can be obtained throughout the year, even in remote areas. SWPS were already widely built in Indonesia, but many encounter problems during operations, such as decreased of efficiency; pump damaged, damaged of controllers or inverters, and inappropriate photovoltaic performance. In 2011, International Electrotechnical Commission (IEC) issued the IEC standard 62253:2011 titled Photovoltaic pumping systems - Design qualification and performance measurements. This standard establishes design qualifications and performance measurements related to the product of a solar water pumping system. National Standardization Agency of Indonesia (BSN) as the national standardization body in Indonesia, has not set the standard related to solar water pumping system. This research to study operational procedures of SWPS by adopting of IEC Standard 62253:2011 to be Indonesia Standard (SNI). This research used literature study and field observation for installed SWPS in Indonesia. Based on the results of research on SWPS already installed in Indonesia, IEC 62253: 2011 standard can improve efficiency and reduce operational failure of SWPS. SWPS installed in Indonesia still has GAP of 51% against parameters in IEC standard 62253: 2011. The biggest factor not being met is related to operating and maintenance handbooks for personnel that included operation and repair procedures. This may result in operator ignorance in installing, operating and maintaining the system. The Photovoltaic (PV) was also the most non-compliance factor of 71%, although there are 22 Indonesia Standard (SNI) for PV (modules, installation, testing, and construction). These research samples (installers, manufacturers/distributors, and experts) agreed on the parameter in the IEC standard 62253: 2011 able to improve the quality of SWPS in Indonesia. Recommendations of this study, that is required the adoption of IEC standard 62253:2011 into SNI to support the development of SWPS for remote areas in Indonesia.Keywords: efficiency, inappropriate installation, remote areas, solar water pumping system, standard
Procedia PDF Downloads 197184 The Evolution of Traditional Rhythms in Redefining the West African Country of Guinea
Authors: Janice Haworth, Karamoko Camara, Marie-Therèse Dramou, Kokoly Haba, Daniel Léno, Augustin Mara, Adama Noël Oulari, Silafa Tolno, Noël Zoumanigui
Abstract:
The traditional rhythms of the West African country of Guinea have played a centuries-long role in defining the different people groups that make up the country. Throughout their history, before and since colonization by the French, the different ethnicities have used their traditional music as a distinct part of their historical identities. That is starting to change. Guinea is an impoverished nation created in the early twentieth-century with little regard for the history and cultures of the people who were included. The traditional rhythms of the different people groups and their heritages have remained. Fifteen individual traditional Guinean rhythms were chosen to represent popular rhythms from the four geographical regions of Guinea. Each rhythm was traced back to its native village and video recorded on-site by as many different local performing groups as could be located. The cyclical patterns rhythms were transcribed via a circular, spatial design and then copied into a box notation system where sounds happening at the same time could be studied. These rhythms were analyzed for their consistency-over-performance in a Fundamental Rhythm Pattern analysis so rhythms could be compared for how they are changing through different performances. The analysis showed that the traditional rhythm performances of the Middle and Forest Guinea regions were the most cohesive and showed the least evidence of change between performances. The role of music in each of these regions is both limited and focused. The Coastal and High Guinea regions have much in common historically through their ethnic history and modern-day trade connections, but the rhythm performances seem to be less consistent and demonstrate more changes in how they are performed today. In each of these regions the role and usage of music is much freer and wide-spread. In spite of advances being made as a country, different ethnic groups still frequently only respond and participate (dance and sing) to the music of their native ethnicity. There is some evidence that this self-imposed musical barrier is beginning to change and evolve, partially through the development of better roads, more access to electricity and technology, the nation-wide Ebola health crisis, and a growing self-identification as a unified nation.Keywords: cultural identity, Guinea, traditional rhythms, west Africa
Procedia PDF Downloads 390183 Gear Fault Diagnosis Based on Optimal Morlet Wavelet Filter and Autocorrelation Enhancement
Authors: Mohamed El Morsy, Gabriela Achtenová
Abstract:
Condition monitoring is used to increase machinery availability and machinery performance, whilst reducing consequential damage, increasing machine life, reducing spare parts inventories, and reducing breakdown maintenance. An efficient condition monitoring system provides early warning of faults by predicting them at an early stage. When a localized fault occurs in gears, the vibration signals always exhibit non-stationary behavior. The periodic impulsive feature of the vibration signal appears in the time domain and the corresponding gear mesh frequency (GMF) emerges in the frequency domain. However, one limitation of frequency-domain analysis is its inability to handle non-stationary waveform signals, which are very common when machinery faults occur. Particularly at the early stage of gear failure, the GMF contains very little energy and is often overwhelmed by noise and higher-level macro-structural vibrations. An effective signal processing method would be necessary to remove such corrupting noise and interference. In this paper, a new hybrid method based on optimal Morlet wavelet filter and autocorrelation enhancement is presented. First, to eliminate the frequency associated with interferential vibrations, the vibration signal is filtered with a band-pass filter determined by a Morlet wavelet whose parameters are selected or optimized based on maximum Kurtosis. Then, to further reduce the residual in-band noise and highlight the periodic impulsive feature, an autocorrelation enhancement algorithm is applied to the filtered signal. The test stand is equipped with three dynamometers; the input dynamometer serves as the internal combustion engine, the output dynamometers induce a load on the output joint shaft flanges. The pitting defect is manufactured on the tooth side of a gear of the fifth speed on the secondary shaft. The gearbox used for experimental measurements is of the type most commonly used in modern small to mid-sized passenger cars with transversely mounted powertrain and front wheel drive: a five-speed gearbox with final drive gear and front wheel differential. The results obtained from practical experiments prove that the proposed method is very effective for gear fault diagnosis.Keywords: wavelet analysis, pitted gear, autocorrelation, gear fault diagnosis
Procedia PDF Downloads 387182 Crowdsensing Project in the Brazilian Municipality of Florianópolis for the Number of Visitors Measurement
Authors: Carlos Roberto De Rolt, Julio da Silva Dias, Rafael Tezza, Luca Foschini, Matteo Mura
Abstract:
The seasonal population fluctuation presents a challenge to touristic cities since the number of inhabitants can double according to the season. The aim of this work is to develop a model that correlates the waste collected with the population of the city and also allow cooperation between the inhabitants and the local government. The model allows public managers to evaluate the impact of the seasonal population fluctuation on waste generation and also to improve planning resource utilization throughout the year. The study uses data from the company that collects the garbage in Florianópolis, a Brazilian city that presents the profile of a city that attracts tourists due to numerous beaches and warm weather. The fluctuations are caused by the number of people that come to the city throughout the year for holidays, summer time vacations or business events. Crowdsensing will be accomplished through smartphones with access to an app for data collection, with voluntary participation of the population. Crowdsensing participants can access information collected in waves for this portal. Crowdsensing represents an innovative and participatory approach which involves the population in gathering information to improve the quality of life. The management of crowdsensing solutions plays an essential role given the complexity to foster collaboration, establish available sensors and collect and process the collected data. Practical implications of this tool described in this paper refer, for example, to the management of seasonal tourism in a large municipality, whose public services are impacted by the floating of the population. Crowdsensing and big data support managers in predicting the arrival, permanence, and movement of people in a given urban area. Also, by linking crowdsourced data to databases from other public service providers - e.g., water, garbage collection, electricity, public transport, telecommunications - it is possible to estimate the floating of the population of an urban area affected by seasonal tourism. This approach supports the municipality in increasing the effectiveness of resource allocation while, at the same time, increasing the quality of the service as perceived by citizens and tourists.Keywords: big data, dashboards, floating population, smart city, urban management solutions
Procedia PDF Downloads 287181 Forecasting Market Share of Electric Vehicles in Taiwan Using Conjoint Models and Monte Carlo Simulation
Authors: Li-hsing Shih, Wei-Jen Hsu
Abstract:
Recently, the sale of electrical vehicles (EVs) has increased dramatically due to maturing technology development and decreasing cost. Governments of many countries have made regulations and policies in favor of EVs due to their long-term commitment to net zero carbon emissions. However, due to uncertain factors such as the future price of EVs, forecasting the future market share of EVs is a challenging subject for both the auto industry and local government. This study tries to forecast the market share of EVs using conjoint models and Monte Carlo simulation. The research is conducted in three phases. (1) A conjoint model is established to represent the customer preference structure on purchasing vehicles while five product attributes of both EV and internal combustion engine vehicles (ICEV) are selected. A questionnaire survey is conducted to collect responses from Taiwanese consumers and estimate the part-worth utility functions of all respondents. The resulting part-worth utility functions can be used to estimate the market share, assuming each respondent will purchase the product with the highest total utility. For example, attribute values of an ICEV and a competing EV are given respectively, two total utilities of the two vehicles of a respondent are calculated and then knowing his/her choice. Once the choices of all respondents are known, an estimate of market share can be obtained. (2) Among the attributes, future price is the key attribute that dominates consumers’ choice. This study adopts the assumption of a learning curve to predict the future price of EVs. Based on the learning curve method and past price data of EVs, a regression model is established and the probability distribution function of the price of EVs in 2030 is obtained. (3) Since the future price is a random variable from the results of phase 2, a Monte Carlo simulation is then conducted to simulate the choices of all respondents by using their part-worth utility functions. For instance, using one thousand generated future prices of an EV together with other forecasted attribute values of the EV and an ICEV, one thousand market shares can be obtained with a Monte Carlo simulation. The resulting probability distribution of the market share of EVs provides more information than a fixed number forecast, reflecting the uncertain nature of the future development of EVs. The research results can help the auto industry and local government make more appropriate decisions and future action plans.Keywords: conjoint model, electrical vehicle, learning curve, Monte Carlo simulation
Procedia PDF Downloads 67180 Optimizing Electric Vehicle Charging Networks with Dynamic Pricing and Demand Elasticity
Authors: Chiao-Yi Chen, Dung-Ying Lin
Abstract:
With the growing awareness of environmental protection and the implementation of government carbon reduction policies, the number of electric vehicles (EVs) has rapidly increased, leading to a surge in charging demand and imposing significant challenges on the existing power grid’s capacity. Traditional urban power grid planning has not adequately accounted for the additional load generated by EV charging, which often strains the infrastructure. This study aims to optimize grid operation and load management by dynamically adjusting EV charging prices based on real-time electricity supply and demand, leveraging consumer demand elasticity to enhance system efficiency. This study uniquely addresses the intricate interplay between urban traffic patterns and power grid dynamics in the context of electric vehicle (EV) adoption. By integrating Hsinchu City's road network with the IEEE 33-bus system, the research creates a comprehensive model that captures both the spatial and temporal aspects of EV charging demand. This approach allows for a nuanced analysis of how traffic flow directly influences the load distribution across the power grid. The strategic placement of charging stations at key nodes within the IEEE 33-bus system, informed by actual road traffic data, enables a realistic simulation of the dynamic relationship between vehicle movement and energy consumption. This integration of transportation and energy systems provides a holistic view of the challenges and opportunities in urban EV infrastructure planning, highlighting the critical need for solutions that can adapt to the ever-changing interplay between traffic patterns and grid capacity. The proposed dynamic pricing strategy effectively reduces peak charging loads, enhances the operational efficiency of charging stations, and maximizes operator profits, all while ensuring grid stability. These findings provide practical insights and a valuable framework for optimizing EV charging infrastructure and policies in future smart cities, contributing to more resilient and sustainable urban energy systems.Keywords: dynamic pricing, demand elasticity, EV charging, grid load balancing, optimization
Procedia PDF Downloads 17179 Immersive Environment as an Occupant-Centric Tool for Architecture Criticism and Architectural Education
Authors: Golnoush Rostami, Farzam Kharvari
Abstract:
In recent years, developments in the field of architectural education have resulted in a shift from conventional teaching methods to alternative state-of-the-art approaches in teaching methods and strategies. Criticism in architecture has been a key player both in the profession and education, but it has been mostly offered by renowned individuals. Hence, not only students or other professionals but also critics themselves may not have the option to experience buildings and rely on available 2D materials, such as images and plans, that may not result in a holistic understanding and evaluation of buildings. On the other hand, immersive environments provide students and professionals the opportunity to experience buildings virtually and reflect their evaluation by experiencing rather than judging based on 2D materials. Therefore, the aim of this study is to compare the effect of experiencing buildings in immersive environments and 2D drawings, including images and plans, on architecture criticism and architectural education. As a result, three buildings that have parametric brick facades were studied through 2D materials and in Unreal Engine v. 24 as an immersive environment among 22 architecture students that were selected using convenient sampling and were divided into two equal groups using simple random sampling. This study used mixed methods, including quantitative and qualitative methods; the quantitative section was carried out by a questionnaire, and deep interviews were used for the qualitative section. A questionnaire was developed for measuring three constructs, including privacy regulation based on Altman’s theory, the sufficiency of illuminance levels in the building, and the visual status of the view (visually appealing views based on obstructions that may have been caused by facades). Furthermore, participants had the opportunity to reflect their understanding and evaluation of the buildings in individual interviews. Accordingly, the collected data from the questionnaires were analyzed using independent t-test and descriptive analyses in IBM SPSS Statistics v. 26, and interviews were analyzed using the content analysis method. The results of the interviews showed that the participants who experienced the buildings in the immersive environment were able to have a thorough and more precise evaluation of the buildings in comparison to those who studied them through 2D materials. Moreover, the analyses of the respondents’ questionnaires revealed that there were statistically significant differences between measured constructs among the two groups. The outcome of this study suggests that integrating immersive environments into the profession and architectural education as an effective and efficient tool for architecture criticism is vital since these environments allow users to have a holistic evaluation of buildings for vigorous and sound criticism.Keywords: immersive environments, architecture criticism, architectural education, occupant-centric evaluation, pre-occupancy evaluation
Procedia PDF Downloads 133178 Spatial Analysis as a Tool to Assess Risk Management in Peru
Authors: Josué Alfredo Tomas Machaca Fajardo, Jhon Elvis Chahua Janampa, Pedro Rau Lavado
Abstract:
A flood vulnerability index was developed for the Piura River watershed in northern Peru using Principal Component Analysis (PCA) to assess flood risk. The official methodology to assess risk from natural hazards in Peru was introduced in 1980 and proved effective for aiding complex decision-making. This method relies in part on decision-makers defining subjective correlations between variables to identify high-risk areas. While risk identification and ensuing response activities benefit from a qualitative understanding of influences, this method does not take advantage of the advent of national and international data collection efforts, which can supplement our understanding of risk. Furthermore, this method does not take advantage of broadly applied statistical methods such as PCA, which highlight central indicators of vulnerability. Nowadays, information processing is much faster and allows for more objective decision-making tools, such as PCA. The approach presented here develops a tool to improve the current flood risk assessment in the Peruvian basin. Hence, the spatial analysis of the census and other datasets provides a better understanding of the current land occupation and a basin-wide distribution of services and human populations, a necessary step toward ultimately reducing flood risk in Peru. PCA allows the simplification of a large number of variables into a few factors regarding social, economic, physical and environmental dimensions of vulnerability. There is a correlation between the location of people and the water availability mainly found in rivers. For this reason, a comprehensive vision of the population location around the river basin is necessary to establish flood prevention policies. The grouping of 5x5 km gridded areas allows the spatial analysis of flood risk rather than assessing political divisions of the territory. The index was applied to the Peruvian region of Piura, where several flood events occurred in recent past years, being one of the most affected regions during the ENSO events in Peru. The analysis evidenced inequalities for the access to basic services, such as water, electricity, internet and sewage, between rural and urban areas.Keywords: assess risk, flood risk, indicators of vulnerability, principal component analysis
Procedia PDF Downloads 183177 Impact of Electric Vehicles on Energy Consumption and Environment
Authors: Amela Ajanovic, Reinhard Haas
Abstract:
Electric vehicles (EVs) are considered as an important means to cope with current environmental problems in transport. However, their high capital costs and limited driving ranges state major barriers to a broader market penetration. The core objective of this paper is to investigate the future market prospects of various types of EVs from an economic and ecological point of view. Our method of approach is based on the calculation of total cost of ownership of EVs in comparison to conventional cars and a life-cycle approach to assess the environmental benignity. The most crucial parameters in this context are km driven per year, depreciation time of the car and interest rate. The analysis of future prospects it is based on technological learning regarding investment costs of batteries. The major results are the major disadvantages of battery electric vehicles (BEVs) are the high capital costs, mainly due to the battery, and a low driving range in comparison to conventional vehicles. These problems could be reduced with plug-in hybrids (PHEV) and range extenders (REXs). However, these technologies have lower CO₂ emissions in the whole energy supply chain than conventional vehicles, but unlike BEV they are not zero-emission vehicles at the point of use. The number of km driven has a higher impact on total mobility costs than the learning rate. Hence, the use of EVs as taxis and in car-sharing leads to the best economic performance. The most popular EVs are currently full hybrid EVs. They have only slightly higher costs and similar operating ranges as conventional vehicles. But since they are dependent on fossil fuels, they can only be seen as energy efficiency measure. However, they can serve as a bridging technology, as long as BEVs and fuel cell vehicle do not gain high popularity, and together with PHEVs and REX contribute to faster technological learning and reduction in battery costs. Regarding the promotion of EVs, the best results could be reached with a combination of monetary and non-monetary incentives, as in Norway for example. The major conclusion is that to harvest the full environmental benefits of EVs a very important aspect is the introduction of CO₂-based fuel taxes. This should ensure that the electricity for EVs is generated from renewable energy sources; otherwise, total CO₂ emissions are likely higher than those of conventional cars.Keywords: costs, mobility, policy, sustainability,
Procedia PDF Downloads 224176 Environmental Benefits of Corn Cob Ash in Lateritic Soil Cement Stabilization for Road Works in a Sub-Tropical Region
Authors: Ahmed O. Apampa, Yinusa A. Jimoh
Abstract:
The potential economic viability and environmental benefits of using a biomass waste, such as corn cob ash (CCA) as pozzolan in stabilizing soils for road pavement construction in a sub-tropical region was investigated. Corn cob was obtained from Maya in South West Nigeria and processed to ash of characteristics similar to Class C Fly Ash pozzolan as specified in ASTM C618-12. This was then blended with ordinary Portland cement in the CCA:OPC ratios of 1:1, 1:2 and 2:1. Each of these blends was then mixed with lateritic soil of ASHTO classification A-2-6(3) in varying percentages from 0 – 7.5% at 1.5% intervals. The soil-CCA-Cement mixtures were thereafter tested for geotechnical index properties including the BS Proctor Compaction, California Bearing Ratio (CBR) and the Unconfined Compression Strength Test. The tests were repeated for soil-cement mix without any CCA blending. The cost of the binder inputs and optimal blends of CCA:OPC in the stabilized soil were thereafter analyzed by developing algorithms that relate the experimental data on strength parameters (Unconfined Compression Strength, UCS and California Bearing Ratio, CBR) with the bivariate independent variables CCA and OPC content, using Matlab R2011b. An optimization problem was then set up minimizing the cost of chemical stabilization of laterite with CCA and OPC, subject to the constraints of minimum strength specifications. The Evolutionary Engine as well as the Generalized Reduced Gradient option of the Solver of MS Excel 2010 were used separately on the cells to obtain the optimal blend of CCA:OPC. The optimal blend attaining the required strength of 1800 kN/m2 was determined for the 1:2 CCA:OPC as 5.4% mix (OPC content 3.6%) compared with 4.2% for the OPC only option; and as 6.2% mix for the 1:1 blend (OPC content 3%). The 2:1 blend did not attain the required strength, though over a 100% gain in UCS value was obtained over the control sample with 0% binder. Upon the fact that 0.97 tonne of CO2 is released for every tonne of cement used (OEE, 2001), the reduced OPC requirement to attain the same result indicates the possibility of reducing the net CO2 contribution of the construction industry to the environment ranging from 14 – 28.5% if CCA:OPC blends are widely used in soil stabilization, going by the results of this study. The paper concludes by recommending that Nigeria and other developing countries in the sub-tropics with abundant stock of biomass waste should look in the direction of intensifying the use of biomass waste as fuel and the derived ash for the production of pozzolans for road-works, thereby reducing overall green house gas emissions and in compliance with the objectives of the United Nations Framework on Climate Change.Keywords: corn cob ash, biomass waste, lateritic soil, unconfined compression strength, CO2 emission
Procedia PDF Downloads 371175 Hidro-IA: An Artificial Intelligent Tool Applied to Optimize the Operation Planning of Hydrothermal Systems with Historical Streamflow
Authors: Thiago Ribeiro de Alencar, Jacyro Gramulia Junior, Patricia Teixeira Leite
Abstract:
The area of the electricity sector that deals with energy needs by the hydroelectric in a coordinated manner is called Operation Planning of Hydrothermal Power Systems (OPHPS). The purpose of this is to find a political operative to provide electrical power to the system in a given period, with reliability and minimal cost. Therefore, it is necessary to determine an optimal schedule of generation for each hydroelectric, each range, so that the system meets the demand reliably, avoiding rationing in years of severe drought, and that minimizes the expected cost of operation during the planning, defining an appropriate strategy for thermal complementation. Several optimization algorithms specifically applied to this problem have been developed and are used. Although providing solutions to various problems encountered, these algorithms have some weaknesses, difficulties in convergence, simplification of the original formulation of the problem, or owing to the complexity of the objective function. An alternative to these challenges is the development of techniques for simulation optimization and more sophisticated and reliable, it can assist the planning of the operation. Thus, this paper presents the development of a computational tool, namely Hydro-IA for solving optimization problem identified and to provide the User an easy handling. Adopted as intelligent optimization technique is Genetic Algorithm (GA) and programming language is Java. First made the modeling of the chromosomes, then implemented the function assessment of the problem and the operators involved, and finally the drafting of the graphical interfaces for access to the User. The results with the Genetic Algorithms were compared with the optimization technique nonlinear programming (NLP). Tests were conducted with seven hydroelectric plants interconnected hydraulically with historical stream flow from 1953 to 1955. The results of comparison between the GA and NLP techniques shows that the cost of operating the GA becomes increasingly smaller than the NLP when the number of hydroelectric plants interconnected increases. The program has managed to relate a coherent performance in problem resolution without the need for simplification of the calculations together with the ease of manipulating the parameters of simulation and visualization of output results.Keywords: energy, optimization, hydrothermal power systems, artificial intelligence and genetic algorithms
Procedia PDF Downloads 419174 Predicting Wealth Status of Households Using Ensemble Machine Learning Algorithms
Authors: Habtamu Ayenew Asegie
Abstract:
Wealth, as opposed to income or consumption, implies a more stable and permanent status. Due to natural and human-made difficulties, households' economies will be diminished, and their well-being will fall into trouble. Hence, governments and humanitarian agencies offer considerable resources for poverty and malnutrition reduction efforts. One key factor in the effectiveness of such efforts is the accuracy with which low-income or poor populations can be identified. As a result, this study aims to predict a household’s wealth status using ensemble Machine learning (ML) algorithms. In this study, design science research methodology (DSRM) is employed, and four ML algorithms, Random Forest (RF), Adaptive Boosting (AdaBoost), Light Gradient Boosted Machine (LightGBM), and Extreme Gradient Boosting (XGBoost), have been used to train models. The Ethiopian Demographic and Health Survey (EDHS) dataset is accessed for this purpose from the Central Statistical Agency (CSA)'s database. Various data pre-processing techniques were employed, and the model training has been conducted using the scikit learn Python library functions. Model evaluation is executed using various metrics like Accuracy, Precision, Recall, F1-score, area under curve-the receiver operating characteristics (AUC-ROC), and subjective evaluations of domain experts. An optimal subset of hyper-parameters for the algorithms was selected through the grid search function for the best prediction. The RF model has performed better than the rest of the algorithms by achieving an accuracy of 96.06% and is better suited as a solution model for our purpose. Following RF, LightGBM, XGBoost, and AdaBoost algorithms have an accuracy of 91.53%, 88.44%, and 58.55%, respectively. The findings suggest that some of the features like ‘Age of household head’, ‘Total children ever born’ in a family, ‘Main roof material’ of their house, ‘Region’ they lived in, whether a household uses ‘Electricity’ or not, and ‘Type of toilet facility’ of a household are determinant factors to be a focal point for economic policymakers. The determinant risk factors, extracted rules, and designed artifact achieved 82.28% of the domain expert’s evaluation. Overall, the study shows ML techniques are effective in predicting the wealth status of households.Keywords: ensemble machine learning, households wealth status, predictive model, wealth status prediction
Procedia PDF Downloads 37173 Spatial Suitability Assessment of Onshore Wind Systems Using the Analytic Hierarchy Process
Authors: Ayat-Allah Bouramdane
Abstract:
Since 2010, there have been sustained decreases in the unit costs of onshore wind energy and large increases in its deployment, varying widely across regions. In fact, the onshore wind production is affected by air density— because cold air is more dense and therefore more effective at producing wind power— and by wind speed—as wind turbines cannot operate in very low or extreme stormy winds. The wind speed is essentially affected by the surface friction or the roughness and other topographic features of the land, which slow down winds significantly over the continent. Hence, the identification of the most appropriate locations of onshore wind systems is crucial to maximize their energy output and therefore minimize their Levelized Cost of Electricity (LCOE). This study focuses on the preliminary assessment of onshore wind energy potential, in several areas in Morocco with a particular focus on the Dakhla city, by analyzing the diurnal and seasonal variability of wind speed for different hub heights, the frequency distribution of wind speed, the wind rose and the wind performance indicators such as wind power density, capacity factor, and LCOE. In addition to climate criterion, other criteria (i.e., topography, location, environment) were selected fromGeographic Referenced Information (GRI), reflecting different considerations. The impact of each criterion on the suitability map of onshore wind farms was identified using the Analytic Hierarchy Process (AHP). We find that the majority of suitable zones are located along the Atlantic Ocean and the Mediterranean Sea. We discuss the sensitivity of the onshore wind site suitability to different aspects such as the methodology—by comparing the Multi-Criteria Decision-Making (MCDM)-AHP results to the Mean-Variance Portfolio optimization framework—and the potential impact of climate change on this suitability map, and provide the final recommendations to the Moroccan energy strategy by analyzing if the actual Morocco's onshore wind installations are located within areas deemed suitable. This analysis may serve as a decision-making framework for cost-effective investment in onshore wind power in Morocco and to shape the future sustainable development of the Dakhla city.Keywords: analytic hierarchy process (ahp), dakhla, geographic referenced information, morocco, multi-criteria decision-making, onshore wind, site suitability.
Procedia PDF Downloads 167172 Market Segmentation of Cruise Ship Passengers: Implications for Marketing of Local Products and Services at Destination Points
Authors: Gunnar Oskarsson, Irena Georgsdottir
Abstract:
Tourism has been growing incredibly fast during the past years, including the cruise industry, which is gaining increasing popularity among various groups of travelers. It is a challenging task for companies serving cruise ship passengers with local products and services at the point of destination to reach them in due time with information about their offerings, as well learning how to adapt their offerings and messages to the type of customers arriving on each particular occasion. Although some research has been conducted in this sphere, there is still limited knowledge about many specifics within this sector of the tourist industry. The objective of this research is to examine one of these, with the main goal of studying the segmentation of cruise passengers and to learn about marketing practices directed towards them. A qualitative research method, based on in-depth interviews, was used, as this provides an opportunity to gain insight into the participants’ perspectives. Interviews were conducted with 10 respondents from different companies in the tourist industry in Iceland, who interact with cruise passengers on a regular basis in their work environment. The main objective was to gain an understanding of what distinguishes different customer groups, or segments, in this industry, and of the marketing approaches directed towards them. The main findings reveal that participants note the strongest difference between cruise passengers of different nationalities, passengers coming on different ships (size and type), and passengers arriving at different times of the year. A drastic difference was noticed between nationalities in four main segments, American, British, Other European, and Asian customers, although some of these segments could be divided into even further sub-segments. Other important differencing factors were size and type of ships, quality or number of stars on the ship, and travelling time of the year. Companies serving cruise ship passengers, as well as the customers themselves, could benefit if the offerings of services were designed specifically for particular segments within the industry. Concerning marketing towards cruise passengers, the results indicate that it is carried out almost exclusively through the Internet using; a reliable website and, search engine optimization. Marketing is also by word-of-mouth. This research can assist practitioners by offering a deeper understanding of the approaches that may be effective in marketing local products and services to cruise ship passengers, based on their segmentation and by identifying effective ways to reach them. The research, furthermore, provides a valuable contribution to marketing knowledge for the benefit of an increasingly important market segment in a fast growing tourist industry.Keywords: capabilities, global integration, internationalisation, SMEs
Procedia PDF Downloads 400171 CO₂ Capture by Membrane Applied to Steel Production Process
Authors: Alexandra-Veronica Luca, Letitia Petrescu
Abstract:
Steel production is a major contributor to global warming potential. An average value of 1.83 tons of CO₂ is emitted for every ton of steel produced, resulting in over 3.3 Mt of CO₂ emissions each year. The present paper is focused on the investigation and comparison of two O₂ separation methods and two CO₂ capture technologies applicable to iron and steel industry. The O₂ used in steel production comes from an Air Separation Unit (ASU) using distillation or from air separation using membranes. The CO₂ capture technologies are represented by a two-stage membrane separation process and the gas-liquid absorption using methyl di-ethanol amine (MDEA). Process modelling and simulation tools, as well as environmental tools, are used in the present study. The production capacity of the steel mill is 4,000,000 tones/year. In order to compare the two CO₂ capture technologies in terms of efficiency, performance, and sustainability, the following cases have been investigated: Case 1: steel production using O₂ from ASU and no CO₂ capture; Case 2: steel production using O₂ from ASU and gas-liquid absorption for CO₂ capture; Case 3: steel production using O₂ from ASU and membranes for CO₂ capture; Case 4: steel production using O₂ from membrane separation method and gas-liquid absorption for CO₂ capture and Case-5: steel production using membranes for air separation and CO₂ capture. The O₂ separation rate obtained in the distillation technology was about 96%, and about 33% in the membrane technology. Similarly, the O₂ purity resulting in the conventional process (i.e. distillation) is higher compared to the O₂ purity obtained in the membrane unit (e.g., 99.50% vs. 73.66%). The air flow-rate required for membrane separation is about three times higher compared to the air flow-rate for cryogenic distillation (e.g., 549,096.93 kg/h vs. 189,743.82 kg/h). A CO₂ capture rate of 93.97% was obtained in the membrane case, while the CO₂ capture rate for the gas-liquid absorption was 89.97%. A quantity of 6,626.49 kg/h CO₂ with a purity of 95.45% is separated from the total 23,352.83 kg/h flue-gas in the membrane process, while with absorption of 6,173.94 kg/h CO₂ with a purity of 98.79% is obtained from 21,902.04 kg/h flue-gas and 156,041.80 kg/h MDEA is recycled. The simulation results, performed using ChemCAD process simulator software, lead to the conclusion that membrane-based technology can be a suitable alternative for CO₂ removal for steel production. An environmental evaluation using Life Cycle Assessment (LCA) methodology was also performed. Considering the electricity consumption, the performance, and environmental indicators, Case 3 can be considered the most effective. The environmental evaluation, performed using GaBi software, shows that membrane technology can lead to lower environmental emissions if membrane production is based on benzene derived from toluene hydrodealkilation and chlorine and sodium hydroxide are produced using mixed technologies.Keywords: CO₂ capture, gas-liquid absorption, Life Cycle Assessment, membrane separation, steel production
Procedia PDF Downloads 289170 Encouraging Collaboration and Innovation: The New Engineering Oriented Educational Reform in Urban Planning, Tianjin University, China
Authors: Tianjie Zhang, Bingqian Cheng, Peng Zeng
Abstract:
Engineering science and technology progress and innovation have become an important engine to promote social development. The reform exploration of "new engineering" in China has drawn extensive attention around the world, with its connotation as "to cultivate future diversified, innovative and outstanding engineering talents by taking ‘fostering character and civic virtue’ as the guide, responding to changes and shaping the future as the construction concept, and inheritance and innovation, crossover and fusion, coordination and sharing as the principal approach". In this context, Tianjin University, as a traditional Chinese university with advantages in engineering, further launched the CCII (Coherent-Collaborative-Interdisciplinary-Innovation) program, raising the cultivation idea of integrating new liberal arts education, multidisciplinary engineering education and personalized professional education. As urban planning practice in China has undergone the evolution of "physical planning -- comprehensive strategic planning -- resource management-oriented planning", planning education has also experienced the transmutation process of "building foundation -- urban scientific foundation -- multi-disciplinary integration". As a characteristic and advantageous discipline of Tianjin University, the major of Urban and Rural Planning, in accordance with the "CCII Program of Tianjin University", aims to build China's top and world-class major, and implements the following educational reform measures: 1. Adding corresponding English courses, such as advanced course on GIS Analysis, courses on comparative studies in international planning involving ecological resources and the sociology of the humanities, etc. 2. Holding "Academician Forum", inviting international academicians to give lectures or seminars to track international frontier scientific research issues. 3. Organizing "International Joint Workshop" to provide students with international exchange and design practice platform. 4. Setting up a business practice base, so that students can find problems from practice and solve them in an innovative way. Through these measures, the Urban and Rural Planning major of Tianjin University has formed a talent training system with multi-disciplinary cross integration and orienting to the future science and technology.Keywords: China, higher education reform, innovation, new engineering education, rural and urban planning, Tianjin University
Procedia PDF Downloads 120169 Emerging Barriers And Enablers Of Digital Inclusion For Students With Disabilities In Ethiopian Education
Authors: Merih Welay Welesilassie
Abstract:
This research investigated the factors influencing digital inclusion for young students with disabilities in Ethiopian schools. In this context, socio-economic, infrastructural, and cultural challenges amplify educational disparities. In the era of digital technology's pivotal role in education, it is crucial to ensure equitable access for students with disabilities. Nevertheless, obstacles like inadequate infrastructure, insufficient teacher training, and economic constraints impede the incorporation of digital tools in educational environments, especially for marginalised groups. This study employed an explanatory sequential mixed-methods approach involving data collection through a survey administered to 300 students. Subsequently, in-depth interviews were conducted with 30 participants to provide comprehensive insights into their experiences. The quantitative analysis uncovered that students with disabilities have limited support for digital readiness, find digital technologies less accessible, and perceive digital tools as less easy to use. The study revealed that economic barriers, such as the high cost of devices and limited internet access, prevent students from fully utilising digital resources. Furthermore, infrastructural challenges, such as unreliable electricity and poor internet connectivity, exacerbate the issue. The qualitative data provided a more profound understanding by emphasising social and attitudinal obstacles, including a lack of empathy from both peers and educators, exclusion from participatory digital tasks, and enduring negative stereotypes regarding disabilities. The research highlights the importance of implementing interventions to enhance digital accessibility for students with disabilities. Essential suggestions encompass refining teacher training programs to effectively facilitate inclusive education, improving digital infrastructure, and offering financial assistance to procure digital tools. Furthermore, implementing policy reforms and public awareness campaigns is crucial to cultivate a cultural shift and nurture a more inclusive societal atmosphere. This study yields valuable perspectives on the digital inclusion scenario in Ethiopia, laying the groundwork for prospective research endeavours to narrow the digital gap for students with disabilities.Keywords: digital inclussion, students with disabilities, ethiopian education, barries and access
Procedia PDF Downloads 19168 The Environmental Impacts of Textiles Reuse and Recycling: A Review on Life-Cycle-Assessment Publications
Authors: Samuele Abagnato, Lucia Rigamonti
Abstract:
Life-Cycle-Assessment (LCA) is an effective tool to quantify the environmental impacts of reuse models and recycling technologies for textiles. In this work, publications in the last ten years about LCA on textile waste are classified according to location, goal and scope, functional unit, waste composition, impact assessment method, impact categories, and sensitivity analysis. Twenty papers have been selected: 50% are focused only on recycling, 30% only on reuse, the 15% on both, while only one paper considers only the final disposal of the waste. It is found that reuse is generally the best way to decrease the environmental impacts of textiles waste management because of the avoided impacts of manufacturing a new item. In the comparison between a product made with recycled yarns and a product from virgin materials, in general, the first option is less impact, especially for the categories of climate change, water depletion, and land occupation, while for other categories, such as eutrophication or ecotoxicity, under certain conditions the impacts of the recycled fibres can be higher. Cultivation seems to have quite high impacts when natural fibres are involved, especially in the land use and water depletion categories, while manufacturing requires a remarkable amount of electricity, with its associated impact on climate change. In the analysis of the reuse processes, relevant importance is covered by the laundry phase, with water consumption and impacts related to the use of detergents. About the sensitivity analysis, it can be stated that one of the main variables that influence the LCA results and that needs to be further investigated in the modeling of the LCA system about this topic is the substitution rate between recycled and virgin fibres, that is the amount of recycled material that can be used in place of virgin one. Related to this, also the yield of the recycling processes has a strong influence on the results of the impact. The substitution rate is also important in the modeling of the reuse processes because it represents the number of avoided new items bought in place of the reused ones. Another aspect that appears to have a large influence on the impacts is consumer behaviour during the use phase (for example, the number of uses between two laundry cycles). In conclusion, to have a deeper knowledge of the impacts of a life-cycle approach of textile waste, further data and research are needed in the modeling of the substitution rate and of the use phase habits of the consumers.Keywords: environmental impacts, life-cycle-assessment, textiles recycling, textiles reuse, textiles waste management
Procedia PDF Downloads 87167 Strategic Analysis of Energy and Impact Assessment of Microalgae Based Biodiesel and Biogas Production in Outdoor Raceway Pond: A Life Cycle Perspective
Authors: T. Sarat Chandra, M. Maneesh Kumar, S. N. Mudliar, V. S. Chauhan, S. Mukherji, R. Sarada
Abstract:
The life cycle assessment (LCA) of biodiesel production from freshwater microalgae Scenedesmus dimorphus cultivated in open raceway pond is performed. Various scenarios for biodiesel production were simulated using primary and secondary data. The parameters varied in the modelled scenarios were related to biomass productivity, mode of culture mixing and type of energy source. The process steps included algae cultivation in open raceway ponds, harvesting by chemical flocculation, dewatering by mechanical drying option (MDO) followed by extraction, reaction and purification. Anaerobic digestion of defatted algal biomass (DAB) for biogas generation is considered as a co-product allocation and the energy derived from DAB was thereby used in the upstream of the process. The scenarios were analysed for energy demand, emissions and environmental impacts within the boundary conditions grounded on "cradle to gate" inventory. Across all the Scenarios, cultivation via raceway pond was observed to be energy intensive process. The mode of culture mixing and biomass productivity determined the energy requirements of the cultivation step. Emissions to Freshwater were found to be maximum contributing to 93-97% of total emissions in all the scenarios. Global warming potential (GWP) was the found to be major environmental impact accounting to about 99% of total environmental impacts in all the modelled scenarios. It was noticed that overall emissions and impacts were directly related to energy demand and an inverse relationship was observed with biomass productivity. The geographic location of an energy source affected the environmental impact of a given process. The integration of defatted algal remnants derived electricity with the cultivation system resulted in a 2% reduction in overall energy demand. Direct biogas generation from microalgae post harvesting is also analysed. Energy surplus was observed after using part of the energy in upstream for biomass production. Results suggest biogas production from microalgae post harvesting as an environmentally viable and sustainable option compared to biodiesel production.Keywords: biomass productivity, energy demand, energy source, Lifecycle Assessment (LCA), microalgae, open raceway pond
Procedia PDF Downloads 287166 Performance of HVOF Sprayed Ni-20CR and Cr3C2-NiCr Coatings on Fe-Based Superalloy in an Actual Industrial Environment of a Coal Fired Boiler
Authors: Tejinder Singh Sidhu
Abstract:
Hot corrosion has been recognized as a severe problem in steam-powered electricity generation plants and industrial waste incinerators as it consumes the material at an unpredictably rapid rate. Consequently, the load-carrying ability of the components reduces quickly, eventually leading to catastrophic failure. The inability to either totally prevent hot corrosion or at least detect it at an early stage has resulted in several accidents, leading to loss of life and/or destruction of infrastructures. A number of countermeasures are currently in use or under investigation to combat hot corrosion, such as using inhibitors, controlling the process parameters, designing a suitable industrial alloy, and depositing protective coatings. However, the protection system to be selected for a particular application must be practical, reliable, and economically viable. Due to the continuously rising cost of the materials as well as increased material requirements, the coating techniques have been given much more importance in recent times. Coatings can add value to products up to 10 times the cost of the coating. Among the different coating techniques, thermal spraying has grown into a well-accepted industrial technology for applying overlay coatings onto the surfaces of engineering components to allow them to function under extreme conditions of wear, erosion-corrosion, high-temperature oxidation, and hot corrosion. In this study, the hot corrosion performances of Ni-20Cr and Cr₃C₂-NiCr coatings developed by High Velocity Oxy-Fuel (HVOF) process have been studied. The coatings were developed on a Fe-based superalloy, and experiments were performed in an actual industrial environment of a coal-fired boiler. The cyclic study was carried out around the platen superheater zone where the temperature was around 1000°C. The study was conducted for 10 cycles, and one cycle was consisting of 100 hours of heating followed by 1 hour of cooling at ambient temperature. Both the coatings deposited on Fe-based superalloy imparted better hot corrosion resistance than the uncoated one. The Ni-20Cr coated superalloy performed better than the Cr₃C₂-NiCr coated in the actual working conditions of the coal fired boiler. It is found that the formation of chromium oxide at the boundaries of Ni-rich splats of the coating blocks the inward permeation of oxygen and other corrosive species to the substrate.Keywords: hot corrosion, coating, HVOF, oxidation
Procedia PDF Downloads 82165 Evaluation of Air Movement, Humidity and Temperature Perceptions with the Occupant Satisfaction in Office Buildings in Hot and Humid Climate Regions by Means of Field Surveys
Authors: Diego S. Caetano, Doreen E. Kalz, Louise L. B. Lomardo, Luiz P. Rosa
Abstract:
The energy consumption in non-residential buildings in Brazil has a great impact on the national infrastructure. The growth of the energy consumption has a special role over the building cooling systems, supported by the increased people's requirements on hygrothermal comfort. This paper presents how the occupants of office buildings notice and evaluate the hygrothermic comfort regarding temperature, humidity, and air movement, considering the cooling systems presented at the buildings studied, analyzed by real occupants in areas of hot and humid climate. The paper presents results collected over a long time from 3 office buildings in the cities of Rio de Janeiro and Niteroi (Brazil) in 2015 and 2016, from daily questionnaires with eight questions answered by 114 people between 3 to 5 weeks per building, twice a day (10 a.m. and 3 p.m.). The paper analyses 6 out of 8 questions, emphasizing on the perception of temperature, humidity, and air movement. Statistics analyses were made crossing participant answers and humidity and temperature data related to time high time resolution time. Analyses were made from regressions comparing: internal and external temperature, and then compared with the answers of the participants. The results were put in graphics combining statistic graphics related to temperature and air humidity with the answers of the real occupants. Analysis related to the perception of the participants to humidity and air movements were also analyzed. The hygrothermal comfort statistic model of the European standard DIN EN 15251 and that from the Brazilian standard NBR 16401 were compared taking into account the perceptions of the hygrothermal comfort of the participants, with emphasis on air humidity, taking basis on prior studies published on this same research. The studies point out a relative tolerance for higher temperatures than the ones determined by the standards, besides a variation on the participants' perception concerning air humidity. The paper presents a group of detailed information that permits to improve the quality of the buildings based on the perception of occupants of the office buildings, contributing to the energy reduction without health damages and demands of necessary hygrothermal comfort, reducing the consumption of electricity on cooling.Keywords: thermal comfort, energy consumption, energy standards, comfort models
Procedia PDF Downloads 321164 Wind Energy Harvester Based on Triboelectricity: Large-Scale Energy Nanogenerator
Authors: Aravind Ravichandran, Marc Ramuz, Sylvain Blayac
Abstract:
With the rapid development of wearable electronics and sensor networks, batteries cannot meet the sustainable energy requirement due to their limited lifetime, size and degradation. Ambient energies such as wind have been considered as an attractive energy source due to its copious, ubiquity, and feasibility in nature. With miniaturization leading to high-power and robustness, triboelectric nanogenerator (TENG) have been conceived as a promising technology by harvesting mechanical energy for powering small electronics. TENG integration in large-scale applications is still unexplored considering its attractive properties. In this work, a state of the art design TENG based on wind venturi system is demonstrated for use in any complex environment. When wind introduces into the air gap of the homemade TENG venturi system, a thin flexible polymer repeatedly contacts with and separates from electrodes. This device structure makes the TENG suitable for large scale harvesting without massive volume. Multiple stacking not only amplifies the output power but also enables multi-directional wind utilization. The system converts ambient mechanical energy to electricity with 400V peak voltage by charging of a 1000mF super capacitor super rapidly. Its future implementation in an array of applications aids in environment friendly clean energy production in large scale medium and the proposed design performs with an exhaustive material testing. The relation between the interfacial micro-and nano structures and the electrical performance enhancement is comparatively studied. Nanostructures are more beneficial for the effective contact area, but they are not suitable for the anti-adhesion property due to the smaller restoring force. Considering these issues, the nano-patterning is proposed for further enhancement of the effective contact area. By considering these merits of simple fabrication, outstanding performance, robust characteristic and low-cost technology, we believe that TENG can open up great opportunities not only for powering small electronics, but can contribute to large-scale energy harvesting through engineering design being complementary to solar energy in remote areas.Keywords: triboelectric nanogenerator, wind energy, vortex design, large scale energy
Procedia PDF Downloads 213163 Optimal Allocation of Battery Energy Storage Considering Stiffness Constraints
Authors: Felipe Riveros, Ricardo Alvarez, Claudia Rahmann, Rodrigo Moreno
Abstract:
Around the world, many countries have committed to a decarbonization of their electricity system. Under this global drive, converter-interfaced generators (CIG) such as wind and photovoltaic generation appear as cornerstones to achieve these energy targets. Despite its benefits, an increasing use of CIG brings several technical challenges in power systems, especially from a stability viewpoint. Among the key differences are limited short circuit current capacity, inertia-less characteristic of CIG, and response times within the electromagnetic timescale. Along with the integration of CIG into the power system, one enabling technology for the energy transition towards low-carbon power systems is battery energy storage systems (BESS). Because of the flexibility that BESS provides in power system operation, its integration allows for mitigating the variability and uncertainty of renewable energies, thus optimizing the use of existing assets and reducing operational costs. Another characteristic of BESS is that they can also support power system stability by injecting reactive power during the fault, providing short circuit currents, and delivering fast frequency response. However, most methodologies for sizing and allocating BESS in power systems are based on economic aspects and do not exploit the benefits that BESSs can offer to system stability. In this context, this paper presents a methodology for determining the optimal allocation of battery energy storage systems (BESS) in weak power systems with high levels of CIG. Unlike traditional economic approaches, this methodology incorporates stability constraints to allocate BESS, aiming to mitigate instability issues arising from weak grid conditions with low short-circuit levels. The proposed methodology offers valuable insights for power system engineers and planners seeking to maintain grid stability while harnessing the benefits of renewable energy integration. The methodology is validated in the reduced Chilean electrical system. The results show that integrating BESS into a power system with high levels of CIG with stability criteria contributes to decarbonizing and strengthening the network in a cost-effective way while sustaining system stability. This paper potentially lays the foundation for understanding the benefits of integrating BESS in electrical power systems and coordinating their placements in future converter-dominated power systems.Keywords: battery energy storage, power system stability, system strength, weak power system
Procedia PDF Downloads 60162 Usage of Cyanobacteria in Battery: Saving Money, Enhancing the Storage Capacity, Making Portable, and Supporting the Ecology
Authors: Saddam Husain Dhobi, Bikrant Karki
Abstract:
The main objective of this paper is save money, balance ecosystem of the terrestrial organism, control global warming, and enhancing the storage capacity of the battery with requiring weight and thinness by using Cyanobacteria in the battery. To fulfill this purpose of paper we can use different methods: Analysis, Biological, Chemistry, theoretical and Physics with some engineering design. Using this different method, we can produce the special type of battery that has the long life, high storage capacity, and clean environment, save money so on and by using the byproduct of Cyanobacteria i.e. glucose. Cyanobacteria are a special type of bacteria that produces different types of extracellular glucoses and oxygen with the help of little sunlight, water, and carbon dioxide and can survive in freshwater, marine and in the land as well. In this process, O₂ is more in the comparison to plant due to rapid growth rate of Cyanobacteria. The required materials are easily available in this process to produce glucose with the help of Cyanobacteria. Since CO₂, is greenhouse gas that causes the global warming? We can utilize this gas and save our ecological balance and the byproduct (glucose) C₆H₁₂O₆ can be utilized for raw material for the battery where as O₂ escape is utilized by living organism. The glucose produce by Cyanobateria goes on Krebs's Cycle or Citric Acid Cycle, in which glucose is complete, oxidizes and all the available energy from glucose molecule has been release in the form of electron and proton as energy. If we use a suitable anodes and cathodes, we can capture these electrons and protons to produce require electricity current with the help of byproduct of Cyanobacteria. According to "Virginia Tech Bio-battery" and "Sony" 13 enzymes and the air is used to produce nearly 24 electrons from a single glucose unit. In this output power of 0.8 mW/cm, current density of 6 mA/cm, and energy storage density of 596 Ah/kg. This last figure is impressive, at roughly 10 times the energy density of the lithium-ion batteries in your mobile devices. When we use Cyanobacteria in battery, we are able to reduce Carbon dioxide, Stop global warming, and enhancing the storage capacity of battery more than 10 times that of lithium battery, saving money, balancing ecology. In this way, we can produce energy from the Cyanobacteria and use it in battery for different benefits. In addition, due to the mass, size and easy cultivation, they are better to maintain the size of battery. Hence, we can use Cyanobacteria for the battery having suitable size, enhancing the storing capacity of battery, helping the environment, portability and so on.Keywords: anode, byproduct, cathode, cyanobacteri, glucose, storage capacity
Procedia PDF Downloads 344161 Renewable Energy Storage Capacity Rating: A Forecast of Selected Load and Resource Scenario in Nigeria
Authors: Yakubu Adamu, Baba Alfa, Salahudeen Adamu Gene
Abstract:
As the drive towards clean, renewable and sustainable energy generation is gradually been reshaped by renewable penetration over time, energy storage has thus, become an optimal solution for utilities looking to reduce transmission and capacity cost, therefore the need for capacity resources to be adjusted accordingly such that renewable energy storage may have the opportunity to substitute for retiring conventional energy systems with higher capacity factors. Considering the Nigeria scenario, where Over 80% of the current Nigerian primary energy consumption is met by petroleum, electricity demand is set to more than double by mid-century, relative to 2025 levels. With renewable energy penetration rapidly increasing, in particular biomass, hydro power, solar and wind energy, it is expected to account for the largest share of power output in the coming decades. Despite this rapid growth, the imbalance between load and resources has created a hindrance to the development of energy storage capacity, load and resources, hence forecasting energy storage capacity will therefore play an important role in maintaining the balance between load and resources including supply and demand. Therefore, the degree to which this might occur, its timing and more importantly its sustainability, is the subject matter of the current research. Here, we forecast the future energy storage capacity rating and thus, evaluate the load and resource scenario in Nigeria. In doing so, We used the scenario-based International Energy Agency models, the projected energy demand and supply structure of the country through 2030 are presented and analysed. Overall, this shows that in high renewable (solar) penetration scenarios in Nigeria, energy storage with 4-6h duration can obtain over 86% capacity rating with storage comprising about 24% of peak load capacity. Therefore, the general takeaway from the current study is that most power systems currently used has the potential to support fairly large penetrations of 4-6 hour storage as capacity resources prior to a substantial reduction in capacity ratings. The data presented in this paper is a crucial eye-opener for relevant government agencies towards developing these energy resources in tackling the present energy crisis in Nigeria. However, if the transformation of the Nigeria. power system continues primarily through expansion of renewable generation, then longer duration energy storage will be needed to qualify as capacity resources. Hence, the analytical task from the current survey will help to determine whether and when long-duration storage becomes an integral component of the capacity mix that is expected in Nigeria by 2030.Keywords: capacity, energy, power system, storage
Procedia PDF Downloads 33160 Groundwater Influences Wellbeing of Farmers from Semi-Arid Areas of India: Assessment of Subjective Wellbeing
Authors: Seemabahen Dave, Maria Varua, Basant Maheshwari, Roger Packham
Abstract:
The declining groundwater levels and quality are acknowledged to be affecting the well-being of farmers especially those located in the semi-arid regions where groundwater is the only source of water for domestic and agricultural use. Further, previous studies have identified the need to examine the quality of life of farmers beyond economic parameters and for a shift in setting rural development policy goals to the perspective of beneficiaries. To address these gaps, this paper attempts to ascertain the subjective wellbeing of farmers from two semi-arid regions of India. The study employs the integrated conceptual framework for the assessment of individual and regional subjective wellbeing developed by Larson in 2009 at Australia. The method integrates three domains i.e. society, natural environment and economic services consisting of 37 wellbeing factors. The original set of 27 revised wellbeing factors identified by John Ward is further revised in current study to make it more region specific. Generally, researchers in past studies select factors of wellbeing based on literature and assign the weights arbitrary. In contrast, the present methodology employs a unique approach by asking respondents to identify the factors most important to their wellbeing and assign weights of importance based on their responses. This method minimises the selection bias and assesses the wellbeing from farmers’ perspectives. The primary objectives of this study are to identify key wellbeing attributes and to assess the influence of groundwater on subjective wellbeing of farmers. Findings from 507 farmers from 11 villages of two watershed areas of Rajasthan and Gujarat, India chosen randomly and were surveyed using a structured face-to-face questionnaire are presented in this paper. The results indicate that significant differences exist in the ranking of wellbeing factors at individual, village and regional levels. The top five most important factors in the study areas include electricity, irrigation infrastructure, housing, land ownership, and income. However, respondents are also most dissatisfied with these factors and correspondingly perceive a high influence of groundwater on them. The results thus indicate that intervention related to improvement of groundwater availability and quality will greatly improve the satisfaction level of well-being factors identified by the farmers.Keywords: groundwater, farmers, semi-arid regions, subjective wellbeing
Procedia PDF Downloads 258159 Wind Generator Control in Isolated Site
Authors: Glaoui Hachemi
Abstract:
Wind has been proven as a cost effective and reliable energy source. Technological advancements over the last years have placed wind energy in a firm position to compete with conventional power generation technologies. Algeria has a vast uninhabited land area where the south (desert) represents the greatest part with considerable wind regime. In this paper, an analysis of wind energy utilization as a viable energy substitute in six selected sites widely distributed all over the south of Algeria is presented. In this presentation, wind speed frequency distributions data obtained from the Algerian Meteorological Office are used to calculate the average wind speed and the available wind power. The annual energy produced by the Fuhrlander FL 30 wind machine is obtained using two methods. The analysis shows that in the southern Algeria, at 10 m height, the available wind power was found to vary between 160 and 280 W/m2, except for Tamanrasset. The highest potential wind power was found at Adrar, with 88 % of the time the wind speed is above 3 m/s. Besides, it is found that the annual wind energy generated by that machine lie between 33 and 61 MWh, except for Tamanrasset, with only 17 MWh. Since the wind turbines are usually installed at a height greater than 10 m, an increased output of wind energy can be expected. However, the wind resource appears to be suitable for power production on the south and it could provide a viable substitute to diesel oil for irrigation pumps and electricity generation. In this paper, a model of the wind turbine (WT) with permanent magnet generator (PMSG) and its associated controllers is presented. The increase of wind power penetration in power systems has meant that conventional power plants are gradually being replaced by wind farms. In fact, today wind farms are required to actively participate in power system operation in the same way as conventional power plants. In fact, power system operators have revised the grid connection requirements for wind turbines and wind farms, and now demand that these installations be able to carry out more or less the same control tasks as conventional power plants. For dynamic power system simulations, the PMSG wind turbine model includes an aerodynamic rotor model, a lumped mass representation of the drive train system and generator model. In this paper, we propose a model with an implementation in MATLAB / Simulink, each of the system components off-grid small wind turbines.Keywords: windgenerator systems, permanent magnet synchronous generator (PMSG), wind turbine (WT) modeling, MATLAB simulink environment
Procedia PDF Downloads 336158 An Analysis of the Strategic Pathway to Building a Successful Mobile Advertising Business in Nigeria: From Strategic Intent to Competitive Advantage
Authors: Pius A. Onobhayedo, Eugene A. Ohu
Abstract:
Nigeria has one of the fastest growing mobile telecommunications industry in the world. In the absence of fixed connection access to the Internet, access to the Internet is primarily via mobile devices. It, therefore, provides a test case for how to penetrate the mobile market in an emerging economy. We also hope to contribute to a sparse literature on strategies employed in building successful data-driven mobile businesses in emerging economies. We, therefore, sought to identify and analyse the strategic approach taken in a successful locally born mobile data-driven business in Nigeria. The analysis was carried out through the framework of strategic intent and competitive advantages developed from the conception of the company to date. This study is based on an exploratory investigation of an innovative digital company based in Nigeria specializing in the mobile advertising business. The projected growth and high adoption of mobile in this African country, coinciding with the smartphone revolution triggered by the launch of iPhone in 2007 opened a new entrepreneurial horizon for the founder of the company, who reached the conclusion that ‘the future is mobile’. This dream led to the establishment of three digital businesses, designed for convergence and complementarity of medium and content. The mobile Ad subsidiary soon grew to become a truly African network with operations and campaigns across West, East and South Africa, successfully delivering campaigns in several African countries including Nigeria, Kenya, South Africa, Ghana, Uganda, Zimbabwe, and Zambia amongst others. The company recently declared a 40% year-end profit which was nine times that of the previous financial year. This study drew from an in-depth interview with the company’s founder, analysis of primary and secondary data from and about the business, as well as case studies of digital marketing campaigns. We hinge our analysis on the strategic intent concept which has been proposed to be an engine that drives the quest for sustainable strategic advantage in the global marketplace. Our goal was specifically to identify the strategic intents of the founder and how these were transformed creatively into processes that may have led to some distinct competitive advantages. Along with the strategic intents, we sought to identify the respective absorptive capacities that constituted favourable antecedents to the creation of such competitive advantages. Our recommendations and findings will be pivotal information for anybody wishing to invest in the world’s fastest technology business space - Africa.Keywords: Africa, competitive advantage, competitive strategy, digital, mobile business, marketing, strategic intent
Procedia PDF Downloads 433157 Measuring the Embodied Energy of Construction Materials and Their Associated Cost Through Building Information Modelling
Authors: Ahmad Odeh, Ahmad Jrade
Abstract:
Energy assessment is an evidently significant factor when evaluating the sustainability of structures especially at the early design stage. Today design practices revolve around the selection of material that reduces the operational energy and yet meets their displinary need. Operational energy represents a substantial part of the building lifecycle energy usage but the fact remains that embodied energy is an important aspect unaccounted for in the carbon footprint. At the moment, little or no consideration is given to embodied energy mainly due to the complexity of calculation and the various factors involved. The equipment used, the fuel needed, and electricity required for each material vary with location and thus the embodied energy will differ for each project. Moreover, the method and the technique used in manufacturing, transporting and putting in place will have a significant influence on the materials’ embodied energy. This anomaly has made it difficult to calculate or even bench mark the usage of such energies. This paper presents a model aimed at helping designers select the construction materials based on their embodied energy. Moreover, this paper presents a systematic approach that uses an efficient method of calculation and ultimately provides new insight into construction material selection. The model is developed in a BIM environment targeting the quantification of embodied energy for construction materials through the three main stages of their life: manufacturing, transportation and placement. The model contains three major databases each of which contains a set of the most commonly used construction materials. The first dataset holds information about the energy required to manufacture any type of materials, the second includes information about the energy required for transporting the materials while the third stores information about the energy required by tools and cranes needed to place an item in its intended location. The model provides designers with sets of all available construction materials and their associated embodied energies to use for the selection during the design process. Through geospatial data and dimensional material analysis, the model will also be able to automatically calculate the distance between the factories and the construction site. To remain within the sustainability criteria set by LEED, a final database is created and used to calculate the overall construction cost based on R.M.S. means cost data and then automatically recalculate the costs for any modifications. Design criteria including both operational and embodied energies will cause designers to revaluate the current material selection for cost, energy, and most importantly sustainability.Keywords: building information modelling, energy, life cycle analysis, sustainablity
Procedia PDF Downloads 268156 Combustion Characteristics of Ionized Fuels for Battery System Safety
Authors: Hyeuk Ju Ko, Eui Ju Lee
Abstract:
Many electronic devices are powered by various rechargeable batteries such as lithium-ion today, but occasionally the batteries undergo thermal runaway and cause fire, explosion, and other hazards. If a battery fire should occur in an electronic device of vehicle and aircraft cabin, it is important to quickly extinguish the fire and cool the batteries to minimize safety risks. Attempts to minimize these risks have been carried out by many researchers but the number of study on the successful extinguishment is limited. Because most rechargeable batteries are operated on the ion state with electron during charge and discharge of electricity, and the reaction of this electrolyte has a big difference with normal combustion. Here, we focused on the effect of ions on reaction stability and pollutant emissions during combustion process. The other importance for understanding ionized fuel combustion could be found in high efficient and environment-friendly combustion technologies, which are used to be operated an extreme condition and hence results in unintended flame instability such as extinction and oscillation. The use of electromagnetic energy and non-equilibrium plasma is one of the way to solve the problems, but the application has been still limited because of lack of excited ion effects in the combustion process. Therefore, the understanding of ion role during combustion might be promised to the energy safety society including the battery safety. In this study, the effects of an ionized fuel on the flame stability and pollutant emissions were experimentally investigated in the hydrocarbon jet diffusion flames. The burner used in this experiment consisted of 7.5 mm diameter tube for fuel and the gaseous fuels were ionized with the ionizer (SUNJE, SPN-11). Methane (99.9% purity) and propane (commercial grade) were used as a fuel and open ambient air was used as an oxidizer. As the performance of ionizer used in the experiment was evaluated at first, ion densities of both propane and methane increased linearly with volume flow rate but the ion density of propane is slightly higher than that of methane. The results show that the overall flame stability and shape such as flame length has no significant difference even in the higher ion concentration. However, the fuel ionization affects to the pollutant emissions such as NOx and soot. NOx and CO emissions measured in post flame region decreased with increasing fuel ionization, especially at high fuel velocity, i.e. high ion density. TGA analysis and morphology of soot by TEM indicates that the fuel ionization makes soot to be matured.Keywords: battery fires, ionization, jet flames, stability, NOx and soot
Procedia PDF Downloads 184