Search results for: ultrasonic pulse velocity
831 Influence of Chelators, Zn Sulphate and Silicic Acid on Productivity and Meat Quality of Fattening Pigs
Authors: A. Raceviciute-Stupeliene, V. Sasyte, V. Viliene, V. Slausgalvis, J. Al-Saifi, R. Gruzauskas
Abstract:
The objective of this study was to investigate the influence of special additives such as chelators, zinc sulphate and silicic acid on productivity parameters, carcass characteristics and meat quality of fattening pigs. The test started with 40 days old fattening pigs (mongrel (mother) and Yorkshire (father)) and lasted up to 156 days of age. During the fattening period, 32 pigs were divided into 2 groups (control and experimental) with 4 replicates (total of 8 pens). The pigs were fed for 16 weeks’ ad libitum with a standard wheat-barley-soybean meal compound (Control group) supplemented with chelators, zinc sulphate and silicic acid (dosage 2 kg/t of feed, Experimental group). Meat traits in live pigs were measured by ultrasonic equipment Piglog 105. The results obtained throughout the experimental period suggest that supplementation of chelators, zinc sulphate and silicic acid tend to positively affect average daily gain and feed conversion ratio of pigs for fattening (p < 0.05). Pigs’ evaluation with Piglog 105 showed that thickness of fat in the first and second point was by 4% and 3% respectively higher in comparison to the control group (p < 0.05). Carcass weight, yield, and length, also thickness of fat showed no significant difference among the groups. The water holding capacity of meat in Experimental group was lower by 5.28%, and tenderness – lower by 12% compared with that of the pigs in the Control group (p < 0.05). Regarding pigs’ meat chemical composition of the experimental group, a statistically significant difference comparing with the data of the control group was not determined. Cholesterol concentration in muscles of pigs fed diets supplemented with chelators, zinc sulphate and silicic acid was lower by 7.93 mg/100 g of muscle in comparison to that of the control group. These results suggest that supplementation of chelators, zinc sulphate and silicic acid in the feed for fattening pigs had significant effect on pigs growing performance and meat quality.Keywords: silicic acid, chelators, meat quality, pigs, zinc sulphate
Procedia PDF Downloads 180830 Beam Coding with Orthogonal Complementary Golay Codes for Signal to Noise Ratio Improvement in Ultrasound Mammography
Authors: Y. Kumru, K. Enhos, H. Köymen
Abstract:
In this paper, we report the experimental results on using complementary Golay coded signals at 7.5 MHz to detect breast microcalcifications of 50 µm size. Simulations using complementary Golay coded signals show perfect consistence with the experimental results, confirming the improved signal to noise ratio for complementary Golay coded signals. For improving the success on detecting the microcalcifications, orthogonal complementary Golay sequences having cross-correlation for minimum interference are used as coded signals and compared to tone burst pulse of equal energy in terms of resolution under weak signal conditions. The measurements are conducted using an experimental ultrasound research scanner, Digital Phased Array System (DiPhAS) having 256 channels, a phased array transducer with 7.5 MHz center frequency and the results obtained through experiments are validated by Field-II simulation software. In addition, to investigate the superiority of coded signals in terms of resolution, multipurpose tissue equivalent phantom containing series of monofilament nylon targets, 240 µm in diameter, and cyst-like objects with attenuation of 0.5 dB/[MHz x cm] is used in the experiments. We obtained ultrasound images of monofilament nylon targets for the evaluation of resolution. Simulation and experimental results show that it is possible to differentiate closely positioned small targets with increased success by using coded excitation in very weak signal conditions.Keywords: coded excitation, complementary golay codes, DiPhAS, medical ultrasound
Procedia PDF Downloads 263829 Multiphase Flow Model for 3D Numerical Model Using ANSYS for Flow over Stepped Cascade with End Sill
Authors: Dheyaa Wajid Abbood, Hanan Hussien Abood
Abstract:
Stepped cascade has been utilized as a hydraulic structure for years. It has proven to be the least costly aeration system in replenishing dissolved oxygen. Numerical modeling of stepped cascade with end sill is very complicated and challenging because of the high roughness and velocity re circulation regions. Volume of fluid multiphase flow model (VOF) is used .The realizable k-ξ model is chosen to simulate turbulence. The computational results are compared with lab-scale stepped cascade data. The lab –scale model was constructed in the hydraulic laboratory, Al-Mustansiriya University, Iraq. The stepped cascade was 0.23 m wide and consisted of 3 steps each 0.2m high and 0.6 m long with variable end sill. The discharge was varied from 1 to 4 l/s. ANSYS has been employed to simulate the experimental data and their related results. This study shows that ANSYS is able to predict results almost the same as experimental findings in some regions of the structure.Keywords: stepped cascade weir, aeration, multiphase flow model, ansys
Procedia PDF Downloads 336828 Measuring Investigation and Computational Simulation of Cavitation Phenomenon Effects on the Industrial Centrifugal Pump Vibration
Authors: Mahdi Hamzehei, Homan Alimoradzadeh, Mahdi Shahriyari
Abstract:
In this paper, vibration of the industrial centrifugal pumps studied by measuring analysis and computational simulation. Effects of different parameters on pump vibration were investigated. Also, simulation of cavitation in the centrifugal pump was down. First, via CF-TURBO software, the pump impeller and the fluid passing through the pump is modelled and finally, the phenomenon of cavitation in the impeller has been modelled by Ansys software. Also, the effects of changes in the amount of NPSH and bubbles generation in the pump impeller were investigated. By simulation of piping with pipe flow software, effect of fluid velocity and pressure on hydraulics and vibration were studied computationally by applying Computational Fluid Dynamic (CFD) techniques, fluent software and experimentally. Furthermore, this comparison showed that the model can predict hydraulics and vibration behaviour.Keywords: cavitation, vibration, centrifugal pumps, performance curves, NPSH
Procedia PDF Downloads 543827 Evaluation of Particle Settling in Flow Chamber
Authors: Abdulrahman Alenezi, B. Stefan
Abstract:
Abstract— The investigation of fluids containing particles or filaments includes a category of complex fluids and is vital in both theory and application. The forecast of particle behaviors plays a significant role in the existing technology as well as future technology. This paper focuses on the prediction of the particle behavior through the investigation of the particle disentrainment from a pipe on a horizontal air stream. This allows for examining the influence of the particle physical properties on its behavior when falling on horizontal air stream. This investigation was conducted on a device located at the University of Greenwich's Medway Campus. Two materials were selected to carry out this study: Salt and Glass Beads particles. The shape of the Slat particles is cubic where the shape of the Glass Beads is almost spherical. The outcome from the experimental work were presented in terms of distance travelled by the particles according to their diameters as After that, the particles sizes were measured using Laser Diffraction device and used to determine the drag coefficient and the settling velocity.Keywords: flow experiment, drag coefficient, Particle Settling, Flow Chamber
Procedia PDF Downloads 136826 Direct Conversion of Crude Oils into Petrochemicals under High Severity Conditions
Authors: Anaam H. Al-ShaikhAli, Mansour A. Al-Herz
Abstract:
The research leverages the proven HS-FCC technology to directly crack crude oils into petrochemical building blocks. Crude oils were subjected to an optimized hydro-processing process where metal contaminants and sulfur were reduced to an acceptable level for feeding the crudes into the HS-FCC technology. The hydro-processing is achieved through a fixed-bed reactor which is composed of 3 layers of catalysts. The crude oil is passed through a dementalization catalyst followed by a desulfurization catalyst and finally a de-aromatization catalyst. The hydroprocessing was conducted at an optimized liquid hourly space velocity (LHSV), temperature, and pressure for an optimal reduction of metals and sulfur from the crudes. The hydro-processed crudes were then fed into a micro activity testing (MAT) unit to simulate the HS-FCC technology. The catalytic cracking of crude oils was conducted over tailored catalyst formulations under an optimized catalyst/oil ratio and cracking temperature for optimal production of total light olefins.Keywords: petrochemical, catalytic cracking, catalyst synthesis, HS-FCC technology
Procedia PDF Downloads 93825 Numerical Simulation of Magnetohydrodynamic (MHD) Blood Flow in a Stenosed Artery
Authors: Sreeparna Majee, G. C. Shit
Abstract:
Unsteady blood flow has been numerically investigated through stenosed arteries to achieve an idea about the physiological blood flow pattern in diseased arteries. The blood is treated as Newtonian fluid and the arterial wall is considered to be rigid having deposition of plaque in its lumen. For direct numerical simulation, vorticity-stream function formulation has been adopted to solve the problem using implicit finite difference method by developing well known Peaceman-Rachford Alternating Direction Implicit (ADI) scheme. The effects of magnetic parameter and Reynolds number on velocity and wall shear stress are being studied and presented quantitatively over the entire arterial segment. The streamlines have been plotted to understand the flow pattern in the stenosed artery, which has significant alterations in the downstream of the stenosis in the presence of magnetic field. The results show that there are nominal changes in the flow pattern when magnetic field strength is enhanced upto 8T which can have remarkable usage to MRI machines.Keywords: magnetohydrodynamics, blood flow, stenosis, energy dissipation
Procedia PDF Downloads 274824 Development of a Laboratory Laser-Produced Plasma “Water Window” X-Ray Source for Radiobiology Experiments
Authors: Daniel Adjei, Mesfin Getachew Ayele, Przemyslaw Wachulak, Andrzej Bartnik, Luděk Vyšín, Henryk Fiedorowicz, Inam Ul Ahad, Lukasz Wegrzynski, Anna Wiechecka, Janusz Lekki, Wojciech M. Kwiatek
Abstract:
Laser produced plasma light sources, emitting high intensity pulses of X-rays, delivering high doses are useful to understand the mechanisms of high dose effects on biological samples. In this study, a desk-top laser plasma soft X-ray source, developed for radio biology research, is presented. The source is based on a double-stream gas puff target, irradiated with a commercial Nd:YAG laser (EKSPLA), which generates laser pulses of 4 ns time duration and energy up to 800 mJ at 10 Hz repetition rate. The source has been optimized for maximum emission in the “water window” wavelength range from 2.3 nm to 4.4 nm by using pure gas (argon, nitrogen and krypton) and spectral filtering. Results of the source characterization measurements and dosimetry of the produced soft X-ray radiation are shown and discussed. The high brightness of the laser produced plasma soft X-ray source and the low penetration depth of the produced X-ray radiation in biological specimen allows a high dose rate to be delivered to the specimen of over 28 Gy/shot; and 280 Gy/s at the maximum repetition rate of the laser system. The source has a unique capability for irradiation of cells with high pulse dose both in vacuum and He-environment. Demonstration of the source to induce DNA double- and single strand breaks will be discussed.Keywords: laser produced plasma, soft X-rays, radio biology experiments, dosimetry
Procedia PDF Downloads 587823 Meteorological Effect on Exergetic and Exergoeconomics Parameters of a Wind Turbine
Authors: Muhammad Abid
Abstract:
In this study, we performed the comparative exergetic and exergoeconomic analyses of a wind turbine over a period of twelve months from 1st January to 30th December 2011. The turbine is part of a wind-PV hybrid system with hydrogen storage, located on the roof of Mechanical Engineering Department, King Saud University, Riyadh, Saudi Arabia. The rated power output from this turbine is 1.7 W with a rated wind speed of 12 m/s and cut-in/cut-out wind speeds of 3/14 m/s. We utilize a wide range of experimental data in the analysis and assessment. We determine exergy efficiencies and their relation with meteorological variables, such as temperature and density. We also calculate exergoeconomic parameter R ̇_ex and its dependence on the temperature, using the average values for twelve months of the year considered for comparison purposes. The exergy efficiency changes from 0.12 to 0.31 while the density varies between 1.31 and 1.2 kg/m3 for different temperature values. The R ̇_ex has minimum and maximum values of 0.02 and 0.81, respectively, while the temperature is in the range of 8-24°C for various wind velocity values.Keywords: exergy, efficiency, renewable energy, wind energy, meteorological variables
Procedia PDF Downloads 240822 Forecasting of Scaffolding Work Comfort Parameters Based on Data from Meteorological Stations
Authors: I. Szer, J. Szer, M. Pieńko, A. Robak, P. Jamińska-Gadomska
Abstract:
Work at height, such as construction works on scaffoldings, is associated with a considerable risk. Scaffolding workers are usually exposed to changing weather conditions what can additionally increase the risk of dangerous situations. Therefore, it is very important to foresee the risk of adverse conditions to which the worker may be exposed. The data from meteorological stations may be used to asses this risk. However, the dependency between weather conditions on a scaffolding and in the vicinity of meteorological station, should be determined. The paper presents an analysis of two selected environmental parameters which have influence on the behavior of workers – air temperature and wind speed. Measurements of these parameters were made between April and November of 2016 on ten scaffoldings located in different parts of Poland. They were compared with the results taken from the meteorological stations located closest to the studied scaffolding. The results gathered from the construction sites and meteorological stations were not the same, but statistical analyses have shown that they were correlated.Keywords: scaffolding, health and safety at work, temperature, wind velocity
Procedia PDF Downloads 173821 Effect of CuO, Al₂O₃ and ZnO Nanoparticles on the Response Time for Natural Convection
Authors: Mefteh Bouhalleb
Abstract:
With the recent progress in nanotechnology, nanofluids have excellent potentiality in many modern engineering processes, particularly for solar systems such as concentrated solar power plants (CSP). In this context, a numerical simulation is performed to investigate laminar natural convection nanofluids in an inclined rectangular enclosure. Mass conservation, momentum, and energy equations are numerically solved by the finite volume element method using the SIMPLER algorithm for pressure-velocity coupling. In this work, we tested the acting factors on the system response time, such as the particle volume fraction of nanoparticles, particle material, particle size, an inclination angle of enclosure and Rayleigh number. The results show that the diameter of solid particles and Rayleigh number plays an important role in the system response time. The orientation angle of the cavity affects the system response time. A phenomenon of hysteresis appears when the system does not return to its initial state.Keywords: nanofluid, nanoparticles, heat transfer, time response
Procedia PDF Downloads 92820 Numerical Study on Self-Confined Plasmoid Transport Phenomena in an Electrodeless Plasma Thruster for Space Propulsion
Authors: Xiaodong Wen, Lijuan Liu, Xinfeng Sun
Abstract:
A high power electrodeless plasma thruster is being developed at Lanzhou Institute of Physics. In this thruster, a rotating magnetic field (RMF) driven by two radio-frequency coils which dephased by 90 degrees are applied both for propellant ionization and plasma acceleration. In the ionization stage, a very high azimuthal current can be driven by RMF and then makes plasma forms a field reversed configuration, namely self-confined plasmoid. Profoundly understanding the transport characteristics of the plasmoid in the following acceleration stage is the key to improve the thruster performances. In this paper, a 3D MHD model is established and the influences of the RMF and an applied magnetic field on the self-confined plasmoid acceleration are investigated. The simulation results show that, by applying a RMF with strength and frequency of 250 G and 370 kHz, the plasmoid can be accelerated to an average velocity of 17 km/s at the exit of the thruster.Keywords: electric space propulsion, field reversed configuration, rotating magnetic field, transport phenomena
Procedia PDF Downloads 138819 Numerical Crashworthiness Investigations of a Full-Scale Composite Fuselage Section
Authors: Redouane Lombarkia
Abstract:
To apply a new material model developed and validated for plain weave fabric CFRP composites usually used in stanchions in sub-cargo section in aircrafts. This work deals with the development of a numerical model of the fuselage section of commercial aircraft based on the pure explicit finite element method FEM within Abaqus/Explicit commercial code. The aim of this work is the evaluation of the energy absorption capabilities of a full-scale composite fuselage section, including sub-cargo stanchions, Drop tests were carried out from a free fall height of about 5 m and impact velocity of about 6 m∕s. To asses, the prediction efficiency of the proposed numerical modeling procedure, a comparison with literature existed experimental results was performed. We demonstrate the efficiency of the proposed methodology to well capture crash damage mechanisms compared to experimental resultsKeywords: crashworthiness, fuselage section, finite elements method (FEM), stanchions, specific energy absorption SEA
Procedia PDF Downloads 95818 Monitoring of Belt-Drive Defects Using the Vibration Signals and Simulation Models
Authors: A. Nabhan, Mohamed R. El-Sharkawy, A. Rashed
Abstract:
The main aim of this paper is to dedicate the belt drive system faults like cogs missing, misalignment and belt worm using vibration analysis technique. Experimentally, the belt drive test-rig is equipped to measure vibrations signals under different operating conditions. Finite element 3D model of belt drive system is created and vibration response analyzed using commercial finite element software ABAQUS/CAE. Root mean square (RMS) and Crest Factor will serve as indicators of average amplitude of envelope analysis signals. The vibration signals pattern obtained from the simulation model and experimental data have the same characteristics. It can be concluded that each case of the RMS is more effective in detecting the defect for acceleration response. While Crest Factor parameter has a response with the displacement and velocity of vibration signals. Also it can be noticed that the model has difficulty in completing the solution when the misalignment angle is higher than 1 degree.Keywords: simulation model, misalignment, cogs missing, vibration analysis
Procedia PDF Downloads 284817 Thin-Layer Drying Characteristics and Modelling of Instant Coffee Solution
Authors: Apolinar Picado, Ronald Solís, Rafael Gamero
Abstract:
The thin-layer drying characteristics of instant coffee solution were investigated in a laboratory tunnel dryer. Drying experiments were carried out at three temperatures (80, 100 and 120 °C) and an air velocity of 1.2 m/s. Drying experimental data obtained are fitted to six (6) thin-layer drying models using the non-linear least squares regression analysis. The acceptability of the thin-layer drying model has been based on a value of the correlation coefficient that should be close to one, and low values for root mean square error (RMSE) and chi-square (x²). According to this evaluation, the most suitable model for describing drying process of thin-layer instant coffee solution is the Page model. Further, the effective moisture diffusivity and the activation energy were computed employing the drying experimental data. The effective moisture diffusivity values varied from 1.6133 × 10⁻⁹ to 1.6224 × 10⁻⁹ m²/s over the temperature range studied and the activation energy was estimated to be 162.62 J/mol.Keywords: activation energy, diffusivity, instant coffee, thin-layer models
Procedia PDF Downloads 262816 Theoretical Investigation of the Structural, Electronic, Optical and Elastic Properties of the Perovskite ScRhO₃
Authors: L. Foudia, K. Haddadi, M. Reffas
Abstract:
First principles study of structural, elastic, electronic and optical properties of the monoclinic perovskite type ScRhO₃ has been reported using the pseudo-potential plane wave method within the local density approximation. The calculated lattice parameters, including the lattice constants and angle β are in excellent agreement with the available experimental data, which proving the reliability of the chosen theoretical approach. Pressure dependence up to 20 GPa of the single crystal and polycrystalline elastic constants has been investigated in details using the strain-stress approach. The mechanical stability, ductility, average elastic wave velocity, Debye temperature and elastic anisotropy were also assessed. Electronic band structure and density of states (DOS) demonstrated its semiconducting nature showing a direct band gap of 1.38 eV. Furthermore, several optical properties, such as absorption coefficient, reflectivity, refractive index, dielectric function, optical conductivity and electron energy loss function have been calculated for radiation up to 40 eV.Keywords: ab-initio, perovskite, DFT, band gap.
Procedia PDF Downloads 74815 Modeling of the Friction Behavior of Carbon/Epoxy Prepreg Composite
Authors: David Aveiga, Carlos Gonzalez
Abstract:
Thermoforming of pre-impregnated composites (prepreg) is the most employed process to build high-performance composite structures due to their visible advantage over alternative manufacturing techniques. This method allows easy shape moulding with a simple manufacturing system and a more refined outcome. The achievement of complex geometries can be exposed to undesired defects such as wrinkles. It is known that interply and ply-mould sliding behavior governs this defect generation. This work analyses interply and ply-mould friction coefficients for UD AS4/8552 Carbon/Epoxy prepreg. Friction coefficients are determined by a pull-out test method considering actual velocity, pressure and temperature conditions employed in a thermoforming process of an aeronautical composite component. A Stribeck curve is then constructed to find a mathematical expression that relates all the friction coefficients with the test variables through the Hersey number parameter. Two expressions are proposed to model ply-ply and ply-tool friction behaviors.Keywords: friction, prepreg composite, stribeck curve, thermoforming.
Procedia PDF Downloads 184814 Evaluation of Antimicrobial Efficacy of Nanofluid Containing Carbon Nanotubes Functionalized with Antibiotic on Urinary Tract Infection
Authors: Erfan Rahimi, Hadi Bahari Far, Mojgan Shikhpour
Abstract:
Background: Urinary tract infection is one of the most common nosocomial infections, especially among women. E. coli is one of the main causes of urinary tract infections and one of the most common antibiotics to fight this bacterium is ampicillin. As conventional antibiotics led to bacterial antibiotic resistance, modification of the pure drugs can address this issue. The aim of this study was to prepare nanofluids containing carbon nanotubes conjugated with ampicillin to improve drug performance and reduce antibiotic resistance. Methods: Multi-walled carbon nanotubes (MWCNTs) were activated with thionyl chloride by reflux system and nanofluids containing antibiotics were prepared by ultrasonic method. The properties of the prepared nano-drug were investigated by general element analysis, infrared spectroscopy, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. After the treatment of the desired strain with nanofluid, microbial studies were performed to evaluate the antibacterial effects and molecular studies were carried out to measure the expression of the resistance gene AcrAB. Result: We have shown that the antimicrobial effect of ampicillin-functionalized MWCNTs at low concentrations performed better than that of the conventional drug in both resistant and ATCC strains. Also, a decrease in antibiotic resistance of bacteria treated with ampicillin-functionalized MWCNTs compared to the pure drug was observed. Also, ampicillin-functionalized MWCNTs downregulated the expression of AcrAB in treated bacteria. Conclusion: Because carbon nanotubes are capable of destroying the bacterial wall, which provides antibiotic resistance features in bacteria, their usage in the form of nanofluids can make lower dosages (about three times less) than that of the pure drug more effective. Additionally, the expression of the bacterial resistance gene AcrAB decreased, thereby reducing antibiotic resistance and improving drug performance against bacteria.Keywords: urinary tract infection, antibiotic resistance, carbon nanotube, nanofluid
Procedia PDF Downloads 146813 Influence of Nanoparticles Phenomena on the Peristaltic Flow of Pseudoplastic Fluid in an Inclined Asymmetric Channel with Different Wave Forms
Authors: Safia Akram
Abstract:
The influence of nanofluid with different waveforms in the presence of inclined asymmetric channel on peristaltic transport of a pseudoplastic fluid is examined. The governing equations for two-dimensional and two directional flows of a pseudoplastic fluid along with nanofluid are modeled and then simplified under the assumptions of long wavelength and low Reynolds number approximation. The exact solutions for temperature and nanoparticle volume fraction are calculated. Series solution of the stream function and pressure gradient are carried out using perturbation technique. The flow quantities have been examined for various physical parameters of interest. It was found, that the magnitude value of the velocity profile decreases with an increase in volume flow rate (Q) and relaxation times (ζ) and increases in sinusoidal, multisinusoidal, trapezoidal and triangular waves. It was also observed that the size of the trapping bolus decreases with the drop of the width of the channel ‘d’ and increases with a rise of relaxation times ζ.Keywords: nanofluid particles, peristaltic flow, pseudoplastic fluid, different waveforms, inclined asymmetric channel
Procedia PDF Downloads 237812 MRI R2* of Liver in an Animal Model
Authors: Chiung-Yun Chang, Po-Chou Chen, Jiun-Shiang Tzeng, Ka-Wai Mac, Chia-Chi Hsiao, Jo-Chi Jao
Abstract:
This study aimed to measure R2* relaxation rates in the liver of New Zealand White (NZW) rabbits. R2* relaxation rate has been widely used in various hepatic diseases for iron overload by quantifying iron contents in liver. R2* relaxation rate is defined as the reciprocal of T2* relaxation time and mainly depends on the composition of tissue. Different tissues would have different R2* relaxation rates. The signal intensity decay in Magnetic resonance imaging (MRI) may be characterized by R2* relaxation rates. In this study, a 1.5T GE Signa HDxt whole body MR scanner equipped with an 8-channel high resolution knee coil was used to observe R2* values in NZW rabbit’s liver and muscle. Eight healthy NZW rabbits weighted 2 ~ 2.5 kg were recruited. After anesthesia using Zoletil 50 and Rompun 2% mixture, the abdomen of rabbit was landmarked at the center of knee coil to perform 3-plane localizer scan using fast spoiled gradient echo (FSPGR) pulse sequence. Afterward, multi-planar fast gradient echo (MFGR) scans were performed with 8 various echo times (TEs) (2/4/6/8/10/12/14/16 ms) to acquire images for R2* calculations. Regions of interest (ROIs) at liver and muscle were measured using Advantage workstation. Finally, the R2* was obtained by a linear regression of ln(SI) on TE. The results showed that the longer the echo time, the smaller the signal intensity. The R2* values of liver and muscle were 44.8 10.9 s-1 and 37.4 9.5 s-1, respectively. It implies that the iron concentration of liver is higher than that of muscle. In conclusion, R2* is correlated with iron contents in tissue. The correlations between R2* and iron content in NZW rabbit might be valuable for further exploration.Keywords: liver, magnetic resonance imaging, muscle, R2* relaxation rate
Procedia PDF Downloads 436811 Dynamic Analysis of Transmission Line Towers
Authors: L. Srikanth, D. Neelima Satyam
Abstract:
The transmission line towers are one of the important life line structures in the distribution of power from the source to the various places for several purposes. The predominant external loads which act on these towers are wind and earthquake loads. In this present study tower is analyzed using Indian Standards IS: 875:1987 (Wind Load), IS: 802:1995 (Structural Steel), IS:1893:2002 (Earthquake) and dynamic analysis of tower has been performed considering ground motion of 2001 Bhuj Earthquake (India). The dynamic analysis was performed considering a tower system consisting two towers spaced 800m apart and 35m height each. This analysis has been performed using numerical time stepping finite difference method which is central difference method were employed by a developed MATLAB program to get the normalized ground motion parameters includes acceleration, frequency, velocity which are important in designing the tower. The tower is analyzed using response spectrum analysis.Keywords: response spectra, dynamic analysis, central difference method, transmission tower
Procedia PDF Downloads 398810 3D Numerical Studies on External Aerodynamics of a Flying Car
Authors: Sasitharan Ambicapathy, J. Vignesh, P. Sivaraj, Godfrey Derek Sams, K. Sabarinath, V. R. Sanal Kumar
Abstract:
The external flow simulation of a flying car at take off phase is a daunting task owing to the fact that the prediction of the transient unsteady flow features during its deployment phase is very complex. In this paper 3D numerical simulations of external flow of Ferrari F430 proposed flying car with different NACA 9618 rectangular wings have been carried. Additionally, the aerodynamics characteristics have been generated for optimizing its geometry for achieving the minimum take off velocity with better overall performance in both road and air. The three-dimensional standard k-omega turbulence model has been used for capturing the intrinsic flow physics during the take off phase. In the numerical study, a fully implicit finite volume scheme of the compressible, Reynolds-Averaged, Navier-Stokes equations is employed. Through the detailed parametric analytical studies we have conjectured that Ferrari F430 flying car facilitated with high wings having three different deployment histories during the take off phase is the best choice for accomplishing its better performance for the commercial applications.Keywords: aerodynamics of flying car, air taxi, negative lift, roadable airplane
Procedia PDF Downloads 420809 An Indoor Positioning System in Wireless Sensor Networks with Measurement Delay
Authors: Pyung Soo Kim, Eung Hyuk Lee, Mun Suck Jang
Abstract:
In the current paper, an indoor positioning system is proposed with consideration of measurement delay. Firstly, an estimation filter with a measurement delay is designed for the indoor positioning mechanism under a weighted least square criterion, which utilizes only finite measurements on the most recent window. The proposed estimation filtering based scheme gives the filtered estimates for position, velocity and acceleration of moving target in real-time, while removing undesired noisy effects and preserving desired moving positions. Secondly, the proposed scheme is shown to have good inherent properties such as unbiasedness, efficiency, time-invariance, deadbeat, and robustness due to the finite memory structure. Finally, computer simulations shows that the performance of the proposed estimation filtering based scheme can outperform to the existing infinite memory filtering based mechanism.Keywords: indoor positioning system, wireless sensor networks, measurement delay
Procedia PDF Downloads 482808 Modelling of Polymeric Fluid Flows between Two Coaxial Cylinders Taking into Account the Heat Dissipation
Authors: Alexander Blokhin, Ekaterina Kruglova, Boris Semisalov
Abstract:
Mathematical model based on the mesoscopic theory of polymer dynamics is developed for numerical simulation of the flows of polymeric liquid between two coaxial cylinders. This model is a system of nonlinear partial differential equations written in the cylindrical coordinate system and coupled with the heat conduction equation including a specific dissipation term. The stationary flows similar to classical Poiseuille ones are considered, and the resolving equations for the velocity of flow and for the temperature are obtained. For solving them, a fast pseudospectral method is designed based on Chebyshev approximations, that enables one to simulate the flows through the channels with extremely small relative values of the radius of inner cylinder. The numerical analysis of the dependance of flow on this radius and on the values of dissipation constant is done.Keywords: dynamics of polymeric liquid, heat dissipation, singularly perturbed problem, pseudospectral method, Chebyshev polynomials, stabilization technique
Procedia PDF Downloads 290807 Electrokinetic Transport of Power Law Fluid through Hydrophobic Micro-Slits
Authors: Ainul Haque, Ameeye Kumar Nayak
Abstract:
Flow enhancement and species transport in a slit hydrophobic microchannel is studied for non-Newtonian fluids with the externally imposed electric field and pressure gradient. The incompressible Poisson-Nernst-Plank equations and the Navier-Stokes equations are approximated by lubrication theory to quantify the flow structure due to hydrophobic and hydrophilic surfaces. The analytical quantification of velocity and pressure of electroosmotic flow (EOF) is made with the numerical results due to the staggered grid based finite volume method for flow governing equations. The resistance force due to fluid friction and shear force along the surface are decreased by the hydrophobicity, enables the faster movement of fluid particles. The resulting flow enhancement factor Ef is increased with the low viscous fluid and provides maximum species transport. Also, the analytical comparison of EOF with pressure driven EOF justifies the flow enhancement due to hydrophobicity and shear impact on flow variation.Keywords: electroosmotic flow, hydrophobic surface, power-law fluid, shear effect
Procedia PDF Downloads 377806 Application of a Hybrid Modified Blade Element Momentum Theory/Computational Fluid Dynamics Approach for Wine Turbine Aerodynamic Performances Prediction
Authors: Samah Laalej, Abdelfattah Bouatem
Abstract:
In the field of wind turbine blades, it is complicated to evaluate the aerodynamic performances through experimental measurements as it requires a lot of computing time and resources. Therefore, in this paper, a hybrid BEM-CFD numerical technique is developed to predict power and aerodynamic forces acting on the blades. Computational fluid dynamics (CFD) simulation was conducted to calculate the drag and lift forces through Ansys software using the K-w model. Then an enhanced BEM code was created to predict the power outputs generated by the wind turbine using the aerodynamic properties extracted from the CFD approach. The numerical approach was compared and validated with experimental data. The power curves calculated from this hybrid method were in good agreement with experimental measurements for all velocity ranges.Keywords: blade element momentum, aerodynamic forces, wind turbine blades, computational fluid dynamics approach
Procedia PDF Downloads 64805 Electrochemical Detection of the Chemotherapy Agent Methotrexate in vitro from Physiological Fluids Using Functionalized Carbon Nanotube past Electrodes
Authors: Shekher Kummari, V. Sunil Kumar, K. Vengatajalabathy Gobi
Abstract:
A simple, cost-effective, reusable and reagent-free electrochemical biosensor is developed with functionalized multiwall carbon nanotube paste electrode (f-CNTPE) for the sensitive and selective determination of the important chemotherapeutic drug methotrexate (MTX), which is widely used for the treatment of various cancer and autoimmune diseases. The electrochemical response of the fabricated electrode towards the detection of MTX is examined by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and square wave voltammetry (SWV). CV studies have shown that f-CNTPE electrode system exhibited an excellent electrocatalytic activity towards the oxidation of MTX in phosphate buffer (0.2 M) compared with a conventional carbon paste electrode (CPE). The oxidation peak current is enhanced by nearly two times in magnitude. Applying the DPV method under optimized conditions, a linear calibration plot is achieved over a wide range of concentration from 4.0×10⁻⁷ M to 5.5×10⁻⁶ M with the detection limit 1.6×10⁻⁷ M. further, by applying the SWV method a parabolic calibration plot was achieved starting from a very low concentration of 1.0×10⁻⁸ M, and the sensor could detect as low as 2.9×10⁻⁹ M MTX in 10 s and 10 nM were detected in steady state current-time analysis. The f-CNTPE shows very good selectivity towards the specific recognition of MTX in the presence of important biological interference. The electrochemical biosensor detects MTX in-vitro directly from pharmaceutical sample, undiluted urine and human blood serum samples at a concentration range 5.0×10⁻⁷ M with good recovery limits.Keywords: amperometry, electrochemical detection, human blood serum, methotrexate, MWCNT, SWV
Procedia PDF Downloads 309804 Effect of Slip Condition and Magnetic Field on Unsteady MHD Thin Film Flow of a Third Grade Fluid with Heat Transfer down an Inclined Plane
Authors: Y. M. Aiyesimi, G. T. Okedayo, O. W. Lawal
Abstract:
The analysis has been carried out to study unsteady MHD thin film flow of a third grade fluid down an inclined plane with heat transfer when the slippage between the surface of plane and the lower surface of the fluid is valid. The governing nonlinear partial differential equations involved are reduced to linear partial differential equations using regular perturbation method. The resulting equations were solved analytically using method of separation of variable and eigenfunctions expansion. The solutions obtained were examined and discussed graphically. It is interesting to find that the variation of the velocity and temperature profile with the slip and magnetic field parameter depends on time.Keywords: non-Newtonian fluid, MHD flow, thin film flow, third grade fluid, slip boundary condition, heat transfer, separation of variable, eigenfunction expansion
Procedia PDF Downloads 383803 Genome-Wide Expression Profiling of Cicer arietinum Heavy Metal Toxicity
Authors: B. S. Yadav, A. Mani, S. Srivastava
Abstract:
Chickpea (Cicer arietinum L.) is an annual, self-pollinating, diploid (2n = 2x = 16) pulse crop that ranks second in world legume production after common bean (Phaseolus vulgaris). ICC 4958 flowers approximately 39 days after sowing under peninsular Indian conditions and the crop matures in less than 90 days in rained environments. The estimated collective yield losses due to abiotic stresses (6.4 million t) have been significantly higher than for biotic stresses (4.8 million t). Most legumes are known to be salt sensitive, and therefore, it is becoming increasingly important to produce cultivars tolerant to high-salinity in addition to other abiotic and biotic stresses for sustainable chickpea production. Our aim was to identify the genes that are involved in the defence mechanism against heavy metal toxicity in chickpea and establish the biological network of heavy metal toxicity in chickpea. ICC4958 variety of chick pea was taken and grown in normal condition and 150µM concentration of different heavy metal salt like CdCl₂, K₂Cr2O₇, NaAsO₂. At 15th day leave samples were collected and stored in RNA Later solution microarray was performed for checking out differential gene expression pattern. Our studies revealed that 111 common genes that involved in defense mechanism were up regulated and 41 genes were commonly down regulated during treatment of 150µM concentration of CdCl₂, K₂Cr₂O₇, and NaAsO₂. Biological network study shows that the genes which are differentially expressed are highly connected and having high betweenness and centrality.Keywords: abiotic stress, biological network, chickpea, microarray
Procedia PDF Downloads 197802 Wind Turbine Powered Car Uses 3 Single Big C-Section Blades
Authors: K. Youssef, Ç. Hüseyin
Abstract:
The blades of a wind turbine have the most important job of any wind turbine component; they must capture the wind and convert it into usable mechanical energy. The objective of this work is to determine the mechanical power of single big C-section of vertical wind turbine for wind car in a two-dimensional model. The wind car has a vertical axis with 3 single big C-section blades mounted at an angle of 120°. Moreover, the three single big C-section blades are directly connected to wheels by using various kinds of links. Gears are used to convert the wind energy to mechanical energy to overcome the load exercised on the main shaft under low speed. This work allowed a comparison of drag characteristics and the mechanical power between the single big C-section blades with the previous work on 3 C-section and 3 double C-section blades for wind car. As a result obtained from the flow chart the torque and power curves of each case study are illustrated and compared with each other. In particular, drag force and torque acting on each types of blade was taken at an airflow speed of 4 m/s, and an angular velocity of 13.056 rad/s.Keywords: blade, vertical wind turbine, drag characteristics, mechanical power
Procedia PDF Downloads 520