Search results for: statistical data analysis
41179 The Comparison between Public's Social Distances against Syrian Refugees and Perceptions of Access to Healthcare Services: Istanbul Sample
Authors: Pinar Dogan, Merve Tarhan, Ahu Kurklu
Abstract:
Syrian refugees who sheltering due to war has protected by the Government of Turkey since 2011. Since Syria was a medium-low income country prior to the war, it is known that chronic health problems weren’t common among citizens. However, it is also known that they frequently use health services in our country because of the spread of infectious and acute diseases due to insufficient sanitation and crowding after the war. This study was planned to compare the social distances of the community against the Syrian refugees and the perceptions of accessing health care services. The descriptive-cross sectional study was carried out on 1262 individuals living in Istanbul. A questionnaire form consisted of Personal Information Form, The Bogardus Social Distance Scale (BSDS) and The Survey of Access to Healthcare Services (AHS) was used as data collection tool. Descriptive tests and chi-square test were used for statistical analysis. It was found that the majorities of participants was satisfied with the health services and were waiting for more than 40 minutes to be examined. It was determined that participants have high scores from BSDS. At the same time, the majority of participants stated that their level of access to health care is diminishing due to refugees. Participants who experienced disruption in access to health services due to refugees were found to have higher scores from BSDS. The data collection process in the study will continue until 2400 individuals are reached. With these conclusions, it is considered necessary that the effect of the presence of the refugees in reaching the health services and nursing care of the society should be revealed through extensive researches to be conducted in Turkey.Keywords: health care services, nursing care, social distances, Syrian refugees
Procedia PDF Downloads 13741178 The Influence of Environmental Factors on Honey Bee Activities: A Quantitative Analysis
Authors: Hung-Jen Lin, Chien-Hao Wang, Chien-Peng Huang, Yu-Sheng Tseng, En-Cheng Yang, Joe-Air Jiang
Abstract:
Bees’ incoming and outgoing behavior is a decisive index which can indicate the health condition of a colony. Traditional methods for monitoring the behavior of honey bees (Apis mellifera) take too much time and are highly labor-intensive, and the lack of automation and synchronization disables researchers and beekeepers from obtaining real-time information of beehives. To solve these problems, this study proposes to use an Internet of Things (IoT)-based system for counting honey bees’ incoming and outgoing activities using an infrared interruption technique, while environmental factors are recorded simultaneously. The accuracy of the established system is verified by comparing the counting results with the outcomes of manual counting. Moreover, this highly -accurate device is appropriate for providing quantitative information regarding honey bees’ incoming and outgoing behavior. Different statistical analysis methods, including one-way ANOVA and two-way ANOVA, are used to investigate the influence of environmental factors, such as temperature, humidity, illumination and ambient pressure, on bees’ incoming and outgoing behavior. With the real-time data, a standard model is established using the outcomes from analyzing the relationship between environmental factors and bees’ incoming and outgoing behavior. In the future, smart control systems, such as a temperature control system, can also be combined with the proposed system to create an appropriate colony environment. It is expected that the proposed system will make a considerable contribution to the apiculture and researchers.Keywords: ANOVA, environmental factors, honey bee, incoming and outgoing behavior
Procedia PDF Downloads 36541177 Traditional Chinese Medicine Treatment for Coronary Heart Disease: a Meta-Analysis
Abstract:
Traditional Chinese medicine has been used in the treatment of coronary heart disease (CHD) for centuries, and in recent years, the research data on the efficacy of traditional Chinese medicine through clinical trials has gradually increased to explore its real efficacy and internal pharmacology. However, due to the complexity of traditional Chinese medicine prescriptions, the efficacy of each component is difficult to clarify, and pharmacological research is challenging. This study aims to systematically review and clarify the clinical efficacy of traditional Chinese medicine in the treatment of coronary heart disease through a meta-analysis. Based on PubMed, CNKI database, Wanfang data, and other databases, eleven randomized controlled trials and 1091 CHD subjects were included. Two researchers conducted a systematic review of the papers and conducted a meta-analysis supporting the positive therapeutic effect of traditional Chinese medicine in the treatment of CHD.Keywords: coronary heart disease, Chinese medicine, treatment, meta-analysis
Procedia PDF Downloads 12141176 Reliability Modeling of Repairable Subsystems in Semiconductor Fabrication: A Virtual Age and General Repair Framework
Authors: Keshav Dubey, Swajeeth Panchangam, Arun Rajendran, Swarnim Gupta
Abstract:
In the semiconductor capital equipment industry, effective modeling of repairable system reliability is crucial for optimizing maintenance strategies and ensuring operational efficiency. However, repairable system reliability modeling using a renewal process is not as popular in the semiconductor equipment industry as it is in the locomotive and automotive industries. Utilization of this approach will help optimize maintenance practices. This paper presents a structured framework that leverages both parametric and non-parametric approaches to model the reliability of repairable subsystems based on operational data, maintenance schedules, and system-specific conditions. Data is organized at the equipment ID level, facilitating trend testing to uncover failure patterns and system degradation over time. For non-parametric modeling, the Mean Cumulative Function (Mean Cumulative Function) approach is applied, offering a flexible method to estimate the cumulative number of failures over time without assuming an underlying statistical distribution. This allows for empirical insights into subsystem failure behavior based on historical data. On the parametric side, virtual age modeling, along with Homogeneous and Non-Homogeneous Poisson Process (Homogeneous Poisson Process and Non-Homogeneous Poisson Process) models, is employed to quantify the effect of repairs and the aging process on subsystem reliability. These models allow for a more structured analysis by characterizing repair effectiveness and system wear-out trends over time. A comparison of various Generalized Renewal Process (GRP) approaches highlights their utility in modeling different repair effectiveness scenarios. These approaches provide a robust framework for assessing the impact of maintenance actions on system performance and reliability. By integrating both parametric and non-parametric methods, this framework offers a comprehensive toolset for reliability engineers to better understand equipment behavior, assess the effectiveness of maintenance activities, and make data-driven decisions that enhance system availability and operational performance in semiconductor fabrication facilities.Keywords: reliability, maintainability, homegenous poission process, repairable system
Procedia PDF Downloads 1841175 Development of a Passive Solar Tomato Dryer with Movable Heat Storage System
Authors: Jacob T. Liberty, Wilfred I. Okonkwo
Abstract:
The present study designed and constructed a post-harvest passive solar tomato dryer of dimension 176 x 152 x 54cm for drying tomato. Quality of the dried crop was evaluated and compared with the fresh ones. The solar dryer consist of solar collector (air heater), 110 x 61 x 10 x 10cm, the drying chamber, 102 x54cm, removal heat storage unit, 40 x 35 x 13cm and drying trays, 43 x 42cm. The physicochemical properties of this crop were evaluated before and after drying. Physicochemical properties evaluated includes moisture, protein, fat, fibre, ash, carbohydrate and vitamin C, contents. The fresh, open and solar dried samples were analysed for their proximate composition using the recommended method of AOAC. Also, statistical analysis of the data was conducted using analysis of variance (ANOVA) using completely Randomize Design (CRD) and means were separated by Duncan’s New Multiple Range test (DNMRT). Proximate analysis showed that solar dried tomato had significantly (P < 0.05) higher protein, fibre, ash, carbohydrate and vitamin C except for the fat content that was significantly (P < 0.05) higher for all the open sun dried samples than the solar dried and fresh product. The nutrient which is highly affected by sun drying is vitamin C. Result indicates that moisture loss in solar dried tomato was faster and lower than the open dried samples and as such makes the solar dried products of lesser tendency to mould and bacterial growth. Also, the open sun dried samples had to be carried into the sheltered place each time it rained. The solar dried produce is of high quality. Further processing of the dried crops will involve packaging for commercial purposes. This will also help in making these agricultural product available in a relatively cheap price in off season and also avert micronutrient deficiencies in diet especially among the low-income groups in Nigeria.Keywords: tomato, passive solar dryer, physicochemical properties, removal heat storage
Procedia PDF Downloads 30541174 Government Big Data Ecosystem: A Systematic Literature Review
Authors: Syed Iftikhar Hussain Shah, Vasilis Peristeras, Ioannis Magnisalis
Abstract:
Data that is high in volume, velocity, veracity and comes from a variety of sources is usually generated in all sectors including the government sector. Globally public administrations are pursuing (big) data as new technology and trying to adopt a data-centric architecture for hosting and sharing data. Properly executed, big data and data analytics in the government (big) data ecosystem can be led to data-driven government and have a direct impact on the way policymakers work and citizens interact with governments. In this research paper, we conduct a systematic literature review. The main aims of this paper are to highlight essential aspects of the government (big) data ecosystem and to explore the most critical socio-technical factors that contribute to the successful implementation of government (big) data ecosystem. The essential aspects of government (big) data ecosystem include definition, data types, data lifecycle models, and actors and their roles. We also discuss the potential impact of (big) data in public administration and gaps in the government data ecosystems literature. As this is a new topic, we did not find specific articles on government (big) data ecosystem and therefore focused our research on various relevant areas like humanitarian data, open government data, scientific research data, industry data, etc.Keywords: applications of big data, big data, big data types. big data ecosystem, critical success factors, data-driven government, egovernment, gaps in data ecosystems, government (big) data, literature review, public administration, systematic review
Procedia PDF Downloads 22741173 Enhancing Intra-Organizational Supply Chain Relationships in Manufacturing Companies: A Case Study in Tigray, Ethiopia
Authors: Weldeabrha Kiros Kidanemaryam
Abstract:
The investigation is to examine intra-organizational supply chain relationships of firms, which will help to look at and give an emphasis on internal processes and operations strength and achievements to make an influence even for external relationship management and outstanding performances of organizations. The purpose of the study is to scrutinize the internal supply chain relationships within manufacturing companies located in Tigray. The qualitative and quantitative data analysis methods were employed during the study by applying the primary data sources (questionnaires & interviews) and secondary data sources (organizational reports and documents) with the purposive sampling method. Thus, a descriptive research design was also applied in the research project in line with the cross-sectional research design which portrays simply the magnitude of the issues and problems by collecting the required and necessary data once from the sample respondents. This is because the study variables don’t have any cause-and-effect relationship in the research project that requires other types of research design than a descriptive research design; it already needs to be assessed and analyzed with a detailed description of the results after quantifying the outcomes and degree of the issues and problems based on the data gathered from respondents. The collected data was also analyzed by using the statistical package for social sciences (SPSS Version 20). The intra-organizational relationships of the companies are moderately accomplished, which requires an improvement for enhancing the performances of each unit or department within the firms so as to upgrade and ensure the progress of the companies’ effectiveness and efficiency. Moreover, the manufacturing companies have low industrial discipline and working culture, weak supervision of manpower, delayed delivery in the process within the companies, unsatisfactory quality of products, underutilization of capacity, and low productivity and profitability, which in turn results in minimizing the performance of intra-organizational supply chain relationships and to reduce the companies’ organizational efficiency, effectiveness and sustainability. Hence, the companies should have to give emphasize building and managing the intra-organizational supply chain relationships effectively because nothing can be done without creating successful and progressive relationships with internal units or functional areas and individuals for the production and provision of the required and qualified products that permits to meet the intended customers’ desires. The study contributes to improving the practical applications and gives an emphasis on the policy measurements and implications of the manufacturing companies with regard to intra-organizational supply chain relationships.Keywords: supply chain, supply chain relationships, intra-organizational relationships, manufacturing companies
Procedia PDF Downloads 3341172 Three-Stage Least Squared Models of a Station-Level Subway Ridership: Incorporating an Analysis on Integrated Transit Network Topology Measures
Authors: Jungyeol Hong, Dongjoo Park
Abstract:
The urban transit system is a critical part of a solution to the economic, energy, and environmental challenges. Furthermore, it ultimately contributes the improvement of people’s quality of lives. For taking these kinds of advantages, the city of Seoul has tried to construct an integrated transit system including both subway and buses. The effort led to the fact that approximately 6.9 million citizens use the integrated transit system every day for their trips. Diagnosing the current transit network is a significant task to provide more convenient and pleasant transit environment. Therefore, the critical objective of this study is to establish a methodological framework for the analysis of an integrated bus-subway network and to examine the relationship between subway ridership and parameters such as network topology measures, bus demand, and a variety of commercial business facilities. Regarding a statistical approach to estimate subway ridership at a station level, many previous studies relied on Ordinary Least Square regression, but there was lack of studies considering the endogeneity issues which might show in the subway ridership prediction model. This study focused on both discovering the impacts of integrated transit network topology measures and endogenous effect of bus demand on subway ridership. It could ultimately contribute to developing more accurate subway ridership estimation accounting for its statistical bias. The spatial scope of the study covers Seoul city in South Korea, and it includes 243 subway stations and 10,120 bus stops with the temporal scope set during twenty-four hours with one-hour interval time panels each. The subway and bus ridership information in detail was collected from the Seoul Smart Card data in 2015 and 2016. First, integrated subway-bus network topology measures which have characteristics regarding connectivity, centrality, transitivity, and reciprocity were estimated based on the complex network theory. The results of integrated transit network topology analysis were compared to subway-only network topology. Also, the non-recursive approach which is Three-Stage Least Square was applied to develop the daily subway ridership model as capturing the endogeneity between bus and subway demands. Independent variables included roadway geometry, commercial business characteristics, social-economic characteristics, safety index, transit facility attributes, and dummies for seasons and time zone. Consequently, it was found that network topology measures were significant size effect. Especially, centrality measures showed that the elasticity was a change of 4.88% for closeness centrality, 24.48% for betweenness centrality while the elasticity of bus ridership was 8.85%. Moreover, it was proved that bus demand and subway ridership were endogenous in a non-recursive manner as showing that predicted bus ridership and predicted subway ridership is statistically significant in OLS regression models. Therefore, it shows that three-stage least square model appears to be a plausible model for efficient subway ridership estimation. It is expected that the proposed approach provides a reliable guideline that can be used as part of the spectrum of tools for evaluating a city-wide integrated transit network.Keywords: integrated transit system, network topology measures, three-stage least squared, endogeneity, subway ridership
Procedia PDF Downloads 17741171 A Machine Learning Decision Support Framework for Industrial Engineering Purposes
Authors: Anli Du Preez, James Bekker
Abstract:
Data is currently one of the most critical and influential emerging technologies. However, the true potential of data is yet to be exploited since, currently, about 1% of generated data are ever actually analyzed for value creation. There is a data gap where data is not explored due to the lack of data analytics infrastructure and the required data analytics skills. This study developed a decision support framework for data analytics by following Jabareen’s framework development methodology. The study focused on machine learning algorithms, which is a subset of data analytics. The developed framework is designed to assist data analysts with little experience, in choosing the appropriate machine learning algorithm given the purpose of their application.Keywords: Data analytics, Industrial engineering, Machine learning, Value creation
Procedia PDF Downloads 16641170 A Construction Management Tool: Determining a Project Schedule Typical Behaviors Using Cluster Analysis
Authors: Natalia Rudeli, Elisabeth Viles, Adrian Santilli
Abstract:
Delays in the construction industry are a global phenomenon. Many construction projects experience extensive delays exceeding the initially estimated completion time. The main purpose of this study is to identify construction projects typical behaviors in order to develop a prognosis and management tool. Being able to know a construction projects schedule tendency will enable evidence-based decision-making to allow resolutions to be made before delays occur. This study presents an innovative approach that uses Cluster Analysis Method to support predictions during Earned Value Analyses. A clustering analysis was used to predict future scheduling, Earned Value Management (EVM), and Earned Schedule (ES) principal Indexes behaviors in construction projects. The analysis was made using a database with 90 different construction projects. It was validated with additional data extracted from literature and with another 15 contrasting projects. For all projects, planned and executed schedules were collected and the EVM and ES principal indexes were calculated. A complete linkage classification method was used. In this way, the cluster analysis made considers that the distance (or similarity) between two clusters must be measured by its most disparate elements, i.e. that the distance is given by the maximum span among its components. Finally, through the use of EVM and ES Indexes and Tukey and Fisher Pairwise Comparisons, the statistical dissimilarity was verified and four clusters were obtained. It can be said that construction projects show an average delay of 35% of its planned completion time. Furthermore, four typical behaviors were found and for each of the obtained clusters, the interim milestones and the necessary rhythms of construction were identified. In general, detected typical behaviors are: (1) Projects that perform a 5% of work advance in the first two tenths and maintain a constant rhythm until completion (greater than 10% for each remaining tenth), being able to finish on the initially estimated time. (2) Projects that start with an adequate construction rate but suffer minor delays culminating with a total delay of almost 27% of the planned time. (3) Projects which start with a performance below the planned rate and end up with an average delay of 64%, and (4) projects that begin with a poor performance, suffer great delays and end up with an average delay of a 120% of the planned completion time. The obtained clusters compose a tool to identify the behavior of new construction projects by comparing their current work performance to the validated database, thus allowing the correction of initial estimations towards more accurate completion schedules.Keywords: cluster analysis, construction management, earned value, schedule
Procedia PDF Downloads 26241169 Undergraduate Students' Attitude towards the Statistics Course
Authors: Somruay Apichatibutarapong
Abstract:
The purpose of this study was to address and comparison of the attitudes towards the statistics course for undergraduate students. Data were collected from 120 students in Faculty of Sciences and Technology, Suan Sunandha Rajabhat University who enrolled in the statistics course. The quantitative approach was used to investigate the assessment and comparison of attitudes towards statistics course. It was revealed that the overall attitudes somewhat agree both in pre-test and post-test. In addition, the comparison of students’ attitudes towards the statistic course (Form A) has no difference in the overall attitudes. However, there is statistical significance in all dimensions and overall attitudes towards the statistics course (Form B).Keywords: statistics attitude, student’s attitude, statistics, attitude test
Procedia PDF Downloads 45741168 Preliminary Result on the Impact of Anthropogenic Noise on Understory Bird Population in Primary Forest of Gaya Island
Authors: Emily A. Gilbert, Jephte Sompud, Andy R. Mojiol, Cynthia B. Sompud, Alim Biun
Abstract:
Gaya Island of Sabah is known for its wildlife and marine biodiversity. It has marks itself as one of the hot destinations of tourists from all around the world. Gaya Island tourism activities have contributed to Sabah’s economy revenue with the high number of tourists visiting the island. However, it has led to the increased anthropogenic noise derived from tourism activities. This may greatly interfere with the animals such as understory birds that rely on acoustic signals as a tool for communication. Many studies in other parts of the regions reveal that anthropogenic noise does decrease species richness of avian community. However, in Malaysia, published research regarding the impact of anthropogenic noise on the understory birds is still very lacking. This study was conducted in order to fill up this gap. This study aims to investigate the anthropogenic noise’s impact towards understory bird population. There were three sites within the Primary forest of Gaya Island that were chosen to sample the level of anthropogenic noise in relation to the understory bird population. Noise mapping method was used to measure the anthropogenic noise level and identify the zone with high anthropogenic noise level (> 60dB) and zone with low anthropogenic noise level (< 60dB) based on the standard threshold of noise level. The methods that were used for this study was solely mist netting and ring banding. This method was chosen as it can determine the diversity of the understory bird population in Gaya Island. The preliminary study was conducted from 15th to 26th April and 5th to 10th May 2015 whereby there were 2 mist nets that were set up at each of the zones within the selected site. The data was analyzed by using the descriptive analysis, presence and absence analysis, diversity indices and diversity t-test. Meanwhile, PAST software was used to analyze the obtain data. The results from this study present a total of 60 individuals that consisted of 12 species from 7 families of understory birds were recorded in three of the sites in Gaya Island. The Shannon-Wiener index shows that diversity of species in high anthropogenic noise zone and low anthropogenic noise zone were 1.573 and 2.009, respectively. However, the statistical analysis shows that there was no significant difference between these zones. Nevertheless, based on the presence and absence analysis, it shows that the species at the low anthropogenic noise zone was higher as compared to the high anthropogenic noise zone. Thus, this result indicates that there is an impact of anthropogenic noise on the population diversity of understory birds. There is still an urgent need to conduct an in-depth study by increasing the sample size in the selected sites in order to fully understand the impact of anthropogenic noise towards the understory birds population so that it can then be in cooperated into the wildlife management for a sustainable environment in Gaya Island.Keywords: anthropogenic noise, biodiversity, Gaya Island, understory bird
Procedia PDF Downloads 36341167 Role of Vitamin-D in Reducing Need for Supplemental Oxygen Among COVID-19 Patients
Authors: Anita Bajpai, Sarah Duan, Ashlee Erskine, Shehzein Khan, Raymond Kramer
Abstract:
Introduction: This research focuses on exploring the beneficial effects if any, of Vitamin-D in reducing the need for supplemental oxygen among hospitalized COVID-19 patients. Two questions are investigated – Q1)Doeshaving a healthy level of baselineVitamin-D 25-OH (≥ 30ng/ml) help,andQ2) does administering Vitamin-D therapy after-the-factduring inpatient hospitalization help? Methods/Study Design: This is a comprehensive, retrospective, observational study of all inpatients at RUHS from March through December 2020 who tested positive for COVID-19 based on real-time reverse transcriptase–polymerase chain reaction assay of nasal and pharyngeal swabs and rapid assay antigen test. To address Q1, we looked atall N1=182 patients whose baseline plasma Vitamin-D 25-OH was known and who needed supplemental oxygen. Of this, a total of 121 patients had a healthy Vitamin-D level of ≥30 ng/mlwhile the remaining 61 patients had low or borderline (≤ 29.9ng/ml)level. Similarly, for Q2, we looked at a total of N2=893 patients who were given supplemental oxygen, of which713 were not given Vitamin-D and 180 were given Vitamin-D therapy. The numerical value of the maximum amount of oxygen flow rate(dependent variable) administered was recorded for each patient. The mean values and associated standard deviations for each group were calculated. Thesetwo sets of independent data served as the basis for independent, two-sample t-Test statistical analysis. To be accommodative of any reasonable benefitof Vitamin-D, ap-value of 0.10(α< 10%) was set as the cutoff point for statistical significance. Results: Given the large sample sizes, the calculated statistical power for both our studies exceeded the customary norm of 80% or better (β< 0.2). For Q1, the mean value for maximumoxygen flow rate for the group with healthybaseline level of Vitamin-D was 8.6 L/min vs.12.6L/min for those with low or borderline levels, yielding a p-value of 0.07 (p < 0.10) with the conclusion that those with a healthy level of baseline Vitamin-D needed statistically significant lower levels of supplemental oxygen. ForQ2, the mean value for a maximum oxygen flow rate for those not administered Vitamin-Dwas 12.5 L/min vs.12.8L/min for those given Vitamin-D, yielding a p-valueof 0.87 (p > 0.10). We thereforeconcludedthat there was no statistically significant difference in the use of oxygen therapy between those who were or were not administered Vitamin-D after-the-fact in the hospital. Discussion/Conclusion: We found that patients who had healthy levels of Vitamin-D at baseline needed statistically significant lower levels of supplemental oxygen. Vitamin-D is well documented, including in a recent article in the Lancet, for its anti-inflammatory role as an adjuvant in the regulation of cytokines and immune cells. Interestingly, we found no statistically significant advantage for giving Vitamin-D to hospitalized patients. It may be a case of “too little too late”. A randomized clinical trial reported in JAMA also did not find any reduction in hospital stay of patients given Vitamin-D. Such conclusions come with a caveat that any delayed marginal benefits may not have materialized promptly in the presence of a significant inflammatory condition. Since Vitamin-D is a low-cost, low-risk option, it may still be useful on an inpatient basis until more definitive findings are established.Keywords: COVID-19, vitamin-D, supplemental oxygen, vitamin-D in primary care
Procedia PDF Downloads 15241166 Educational Leadership and Artificial Intelligence
Authors: Sultan Ghaleb Aldaihani
Abstract:
- The environment in which educational leadership takes place is becoming increasingly complex due to factors like globalization and rapid technological change. - This is creating a "leadership gap" where the complexity of the environment outpaces the ability of leaders to effectively respond. - Educational leadership involves guiding teachers and the broader school system towards improved student learning and achievement. 2. Implications of Artificial Intelligence (AI) in Educational Leadership: - AI has great potential to enhance education, such as through intelligent tutoring systems and automating routine tasks to free up teachers. - AI can also have significant implications for educational leadership by providing better information and data-driven decision-making capabilities. - Computer-adaptive testing can provide detailed, individualized data on student learning that leaders can use for instructional decisions and accountability. 3. Enhancing Decision-Making Processes: - Statistical models and data mining techniques can help identify at-risk students earlier, allowing for targeted interventions. - Probability-based models can diagnose students likely to drop out, enabling proactive support. - These data-driven approaches can make resource allocation and decision-making more effective. 4. Improving Efficiency and Productivity: - AI systems can automate tasks and change processes to improve the efficiency of educational leadership and administration. - Integrating AI can free up leaders to focus more on their role's human, interactive elements.Keywords: Education, Leadership, Technology, Artificial Intelligence
Procedia PDF Downloads 4141165 Impact of Educational Intervention on Hygiene-knowledge and Practices of Sanitation Workers Globally: A Systematic Review
Authors: Alive Ntunja, Wilma ten Ham-Baloyi, June Teare, Oyedele Opeoluwa, Paula Melariri
Abstract:
Sanitation workers are also known as “garbage workers” who play a significant role in the sanitation chain. For many generations sanitation workers’ level of knowledge regarding hygiene practices remains low due to a lack of educational programs on hygiene. As a result, they are widely exposed to hygiene-related diseases such as cholera, skin infections and various other diseases, increasing their risk of mortality to 40%. This review aimed to explore the global impact of educational programs on the hygiene knowledge and practices of sanitation workers. The systematic literature search was conducted for studies published between 2013 and 2023 using the following databases: MEDLINE (via EBSCOHost), PubMed, and Google Scholar to identify quantitative studies on the subject. Study quality was assessed using the Joanna Briggs Institute Critical Evaluation Instruments. Data extracted from the included articles was presented using a summary of findings table and presented graphically through charts and tables, employing both descriptive and inferential statistical methods. A one-way repeated measures ANOVA assessed the pooled effect of the intervention on mean scores across studies. Statistical analysis was performed using Microsoft Office 365 (2019 version), with significance set at p<0.05. The PRISMA flow diagram was used to present the article selection process. The systematic review included 15 eligible studies from a total of 2 777 articles. At least 60% (n=9) of the reviewed studies found educational program relating to hygiene to have a positive impact on sanitation workers’ hygiene knowledge and practices. The findings further showed that the stages (pre-post) of knowledge intervention used lead to statistically significant differences in mean score obtained [F (1,7) = 22.166, p = 0.002]. Likewise, it can be observed that the stages of practice intervention used lead to statistically significant differences in mean score obtained [F (1,7) = 21.857, p = 0.003]. However, most (n=7) studies indicated that, the efficacy of programs on hygiene knowledge and practices is indirectly influenced by educational background, age and work experience (predictor factors). Educational programs regarding hygiene have the potential to significantly improve sanitation workers knowledge and practices. Findings also suggest the implementation of active and intensive intervention programs, to improve sanitation workers hygiene knowledge and practices.Keywords: educational programs, hygiene knowledge, practices, sanitation workers
Procedia PDF Downloads 1941164 Comparative Study of Water Quality Parameters in the Proximity of Various Landfills Sites in India
Authors: Abhishek N. Srivastava, Rahul Singh, Sumedha Chakma
Abstract:
The rapid urbanization in the developing countries is generating an enormous amount of waste leading to the creation of unregulated landfill sites at various places at its disposal. The liquid waste, known as leachate, produced from these landfills sites is severely affecting the surrounding water quality. The water quality in the proximity areas of the landfill is found affected by various physico-chemical parameters of leachate such as pH, alkalinity, total hardness, conductivity, chloride, total dissolved solids (TDS), total suspended solids (TSS), sulphate, nitrate, phosphate, fluoride, sodium and potassium, biological parameters such as biochemical oxygen demand (BOD), chemical oxygen demand (COD), Faecal coliform, and heavy metals such as cadmium (Cd), lead (Pb), iron (Fe), mercury (Hg), arsenic (As), cobalt (Co), manganese (Mn), zinc (Zn), copper (Cu), chromium (Cr), nickel (Ni). However, all these parameters are distributive in leachate that produced according to the nature of waste being dumped at various landfill sites, therefore, it becomes very difficult to predict the main responsible parameter of leachate for water quality contamination. The present study is endeavour the comparative analysis of the physical, chemical and biological parameters of various landfills in India viz. Okhla landfill, Ghazipur landfill, Bhalswa ladfill in NCR Delhi, Deonar landfill in Mumbai, Dhapa landfill in Kolkata and Kodungayaiyur landfill, Perungudi landfill in Chennai. The statistical analysis of the parameters was carried out using the Statistical Packages for the Social Sciences (SPSS) and LandSim 2.5 model to simulate the long term effect of various parameters on different time scale. Further, the uncertainties characterization of various input parameters has also been analysed using fuzzy alpha cut (FAC) technique to check the sensitivity of various water quality parameters at the proximity of numerous landfill sites. Finally, the study would help to suggest the best method for the prevention of pollution migration from the landfill sites on priority basis.Keywords: landfill leachate, water quality, LandSim, fuzzy alpha cut
Procedia PDF Downloads 12441163 Classifying and Predicting Efficiencies Using Interval DEA Grid Setting
Authors: Yiannis G. Smirlis
Abstract:
The classification and the prediction of efficiencies in Data Envelopment Analysis (DEA) is an important issue, especially in large scale problems or when new units frequently enter the under-assessment set. In this paper, we contribute to the subject by proposing a grid structure based on interval segmentations of the range of values for the inputs and outputs. Such intervals combined, define hyper-rectangles that partition the space of the problem. This structure, exploited by Interval DEA models and a dominance relation, acts as a DEA pre-processor, enabling the classification and prediction of efficiency scores, without applying any DEA models.Keywords: data envelopment analysis, interval DEA, efficiency classification, efficiency prediction
Procedia PDF Downloads 16441162 Multivariate Assessment of Mathematics Test Scores of Students in Qatar
Authors: Ali Rashash Alzahrani, Elizabeth Stojanovski
Abstract:
Data on various aspects of education are collected at the institutional and government level regularly. In Australia, for example, students at various levels of schooling undertake examinations in numeracy and literacy as part of NAPLAN testing, enabling longitudinal assessment of such data as well as comparisons between schools and states within Australia. Another source of educational data collected internationally is via the PISA study which collects data from several countries when students are approximately 15 years of age and enables comparisons in the performance of science, mathematics and English between countries as well as ranking of countries based on performance in these standardised tests. As well as student and school outcomes based on the tests taken as part of the PISA study, there is a wealth of other data collected in the study including parental demographics data and data related to teaching strategies used by educators. Overall, an abundance of educational data is available which has the potential to be used to help improve educational attainment and teaching of content in order to improve learning outcomes. A multivariate assessment of such data enables multiple variables to be considered simultaneously and will be used in the present study to help develop profiles of students based on performance in mathematics using data obtained from the PISA study.Keywords: cluster analysis, education, mathematics, profiles
Procedia PDF Downloads 12341161 Investigating the Relationship between Iranian EFL Teachers' Motivation, Creativity and Job Stress
Authors: Mehrab Karimian
Abstract:
This study investigates the intricate relationships among Iranian EFL teachers’ motivation, creativity, and job stress in Shiraz and Fasa institutes. The primary aim is to explore these links using quantitative methods, providing a comprehensive understanding of how these factors interact within the educational context. The research employed convenient sampling, gathering data from 101 EFL teachers through three specific questionnaires: the Motivation to Teach Questionnaire, Teacher Creativity Questionnaire, and Job Stress Questionnaire. The methodology involved rigorous statistical analyses, including Pearson correlation and multiple regression, to interpret the collected data. The findings revealed positive relationships between motivation and creativity, as well as between motivation and job stress. However, no significant link was observed between creativity and job stress. Notably, creativity emerged as a strong predictor of motivation, highlighting its crucial role in the motivational dynamics of EFL teachers. The theoretical importance of this study lies in its contribution to understanding how motivation can influence both creativity and job stress among EFL teachers. By emphasizing the complex interplay of these factors, the study provides valuable insights that can inform future research and educational practices. The data collection process was thorough, utilizing well-established questionnaires to ensure the reliability and validity of the findings. Statistical analyses such as Pearson correlation and multiple regression were employed to interpret the relationships between motivation, creativity, and job stress. These analyses provided a detailed understanding of how these variables interact, offering a nuanced view of the motivational and stress dynamics in the teaching profession. The study addressed key questions regarding the influence of motivation on creativity and job stress, underscoring the predictive power of creativity on motivation. The conclusion drawn from the study suggests that motivated EFL teachers may experience higher levels of job stress. This finding highlights the need for targeted interventions to support teacher well-being and maintain their motivation. Such interventions could include professional development programs, stress management workshops, and creative teaching strategies to help teachers manage stress while fostering their motivation and creativity. Reviewers have commended the study for its contribution to the field, particularly in revealing the intricate dynamics between motivation, creativity, and job stress in EFL teachers. They recommend enhancing the methodology by considering potential confounding variables and incorporating qualitative approaches to complement the quantitative findings. These suggestions aim to provide a more comprehensive understanding of the factors influencing EFL teachers’ motivation, creativity, and job stress.Keywords: creativity, Job stress, gender, years of teaching experience
Procedia PDF Downloads 1541160 Retrospective Analysis of Facial Skin Cancer Patients Treated in the Department of Oral and Maxillofacial Surgery Kiel
Authors: Abdullah Saeidi, Aydin Gülses, Christan Flörke
Abstract:
Skin cancer of the face region is the most common type of malignancy and surgical excision is the preferred approach. However, the clinical long term results reported in the literature are still controversial. Objectives: To describe; 1. Demographical characteristics 2. Affected site, distribution and TNM classification regarding tumor type 3. Surgical aspects • Surgical removal: excision principles, safety margins, the need for secondary resection, primary reconstruction/ defect closure, anesthesia protocol, duration of hospital stay (if any) • Secondary intervention for defect closure/reconstruction: Flap technique, anesthesia protocol, duration of hospital stay (if any), postoperative wound management etc. 4. Tumor recurrences 5. Clinical outcomes 6. Studying the possible therapy approach throw Biostatistical relation and correlation between multiple Histological, diagnostics and clinical Faktors. following surgical ablation of the skin cancer of the head and neck region. Methods: Selection and statistical analysis of medical records of patients who had admitted to the Department of Oral and Maxillofacial Surgery, Universitätsklinikum Schleswig Holstein, Campus Kiel during the period of 2015-2019 will be retrospectively evaluated. Data will be collected via ORBIS Information-Management-System (ORBIS AG, Saarbrücken, Germany).Keywords: non melanoma skin cancer, face skin cancer, skin reconstruction, non melanoma skin cancer recurrence, non melanoma skin cancer metastases
Procedia PDF Downloads 10541159 A Comparison of Image Data Representations for Local Stereo Matching
Authors: André Smith, Amr Abdel-Dayem
Abstract:
The stereo matching problem, while having been present for several decades, continues to be an active area of research. The goal of this research is to find correspondences between elements found in a set of stereoscopic images. With these pairings, it is possible to infer the distance of objects within a scene, relative to the observer. Advancements in this field have led to experimentations with various techniques, from graph-cut energy minimization to artificial neural networks. At the basis of these techniques is a cost function, which is used to evaluate the likelihood of a particular match between points in each image. While at its core, the cost is based on comparing the image pixel data; there is a general lack of consistency as to what image data representation to use. This paper presents an experimental analysis to compare the effectiveness of more common image data representations. The goal is to determine the effectiveness of these data representations to reduce the cost for the correct correspondence relative to other possible matches.Keywords: colour data, local stereo matching, stereo correspondence, disparity map
Procedia PDF Downloads 36841158 Optimum Performance of the Gas Turbine Power Plant Using Adaptive Neuro-Fuzzy Inference System and Statistical Analysis
Authors: Thamir K. Ibrahim, M. M. Rahman, Marwah Noori Mohammed
Abstract:
This study deals with modeling and performance enhancements of a gas-turbine combined cycle power plant. A clean and safe energy is the greatest challenges to meet the requirements of the green environment. These requirements have given way the long-time governing authority of steam turbine (ST) in the world power generation, and the gas turbine (GT) will replace it. Therefore, it is necessary to predict the characteristics of the GT system and optimize its operating strategy by developing a simulation system. The integrated model and simulation code for exploiting the performance of gas turbine power plant are developed utilizing MATLAB code. The performance code for heavy-duty GT and CCGT power plants are validated with the real power plant of Baiji GT and MARAFIQ CCGT plants the results have been satisfactory. A new technology of correlation was considered for all types of simulation data; whose coefficient of determination (R2) was calculated as 0.9825. Some of the latest launched correlations were checked on the Baiji GT plant and apply error analysis. The GT performance was judged by particular parameters opted from the simulation model and also utilized Adaptive Neuro-Fuzzy System (ANFIS) an advanced new optimization technology. The best thermal efficiency and power output attained were about 56% and 345MW respectively. Thus, the operation conditions and ambient temperature are strongly influenced on the overall performance of the GT. The optimum efficiency and power are found at higher turbine inlet temperatures. It can be comprehended that the developed models are powerful tools for estimating the overall performance of the GT plants.Keywords: gas turbine, optimization, ANFIS, performance, operating conditions
Procedia PDF Downloads 42441157 Modeling of System Availability and Bayesian Analysis of Bivariate Distribution
Authors: Muhammad Farooq, Ahtasham Gul
Abstract:
To meet the desired standard, it is important to monitor and analyze different engineering processes to get desired output. The bivariate distributions got a lot of attention in recent years to describe the randomness of natural as well as artificial mechanisms. In this article, a bivariate model is constructed using two independent models developed by the nesting approach to study the effect of each component on reliability for better understanding. Further, the Bayes analysis of system availability is studied by considering prior parametric variations in the failure time and repair time distributions. Basic statistical characteristics of marginal distribution, like mean median and quantile function, are discussed. We use inverse Gamma prior to study its frequentist properties by conducting Monte Carlo Markov Chain (MCMC) sampling scheme.Keywords: reliability, system availability Weibull, inverse Lomax, Monte Carlo Markov Chain, Bayesian
Procedia PDF Downloads 7041156 Relationship between Driving under the Influence and Traffic Safety
Authors: Eun Hak Lee, Young-Hyun Seo, Hosuk Shin, Seung-Young Kho
Abstract:
Among traffic crashes, driving under the influence (DUI) of alcohol is the most dangerous behavior in Seoul, South Korea. In 2016 alone 40 deaths occurred on of 2,857 cases of DUI. Since DUI is one of the major factors in increasing the severity of crashes, the intensive management of DUI required to reduce traffic crash deaths and the crash damages. This study aims to investigate the relationship between DUI and traffic safety in order to establish countermeasures for traffic safety improvement. The analysis was conducted on the habitual drivers who drove under the influence. Information of habitual drivers is matched to crash data and fine data. The descriptive statistics on data used in this study, which consists of driver license acquisition, traffic fine, and crash data provided by the Korean National Police Agency, are described. The drivers under the influence are classified by statistically significant criteria, such as driver’s age, license type, driving experience, and crash reasons. With the results of the analysis, we propose some countermeasures to enhance traffic safety.Keywords: driving under influence, traffic safety, traffic crash, traffic fine
Procedia PDF Downloads 21941155 Public-Private Partnership Transportation Projects: An Exploratory Study in the US
Authors: Medya Fathi
Abstract:
When public transportation projects were delivered through design-bid-build and later design-build, governments found a serious issue: inadequate funding. With population growth, governments began to develop new arrangements in which the private sectors were involved to cut the financial burden. This arrangement, known as Public-Private Partnership (PPP), has its own risks; however, performance outputs can motivate or discourage its use. On top of such output's list are time and budget, which can be affected by the type of project delivery methods. Project completion within or ahead of schedule as well as within or under budget is among any owner’s objectives. With a higher application of PPP in the highway industry in the US and insufficient PPP research, the current study addresses the schedule and cost performance of PPP highway projects and determines which one outperforms the other. To meet this objective, after collecting performance data of all PPP projects, schedule growth and cost growth are calculated, and finally, statistical analysis is conducted to evaluate the PPP performance. The results and conclusions will be provided. This study can assist practitioners in applying PPP for transportation projects by showing its ability to save time and/or cost.Keywords: cost, delivery method, highway, public-private partnership, schedule, transportation
Procedia PDF Downloads 17541154 Can Career Advancement and Job Security Act as Collaterals for Commitment? Evidence from the Hotel Industry of Malaysia
Authors: Aizzat Md. Nasurdin, Noor Hazlina Ahmad, Cheng Ling Tan
Abstract:
This study aims to examine the role of career advancement and job security as predictors of employee commitment to their organization. Data was collected from 580 frontline employees attached to two departments of 29 luxury hotels in Peninsular Malaysia. Statistical results using Partial Least Squares technique provided support for the proposed hypotheses. In view of the findings, theoretical and practical implications are discussed.Keywords: organizational commitment, career advancement, job security, frontline employees, luxury hotels, Malaysia
Procedia PDF Downloads 38941153 Timing and Noise Data Mining Algorithm and Software Tool in Very Large Scale Integration (VLSI) Design
Authors: Qing K. Zhu
Abstract:
Very Large Scale Integration (VLSI) design becomes very complex due to the continuous integration of millions of gates in one chip based on Moore’s law. Designers have encountered numerous report files during design iterations using timing and noise analysis tools. This paper presented our work using data mining techniques combined with HTML tables to extract and represent critical timing/noise data. When we apply this data-mining tool in real applications, the running speed is important. The software employs table look-up techniques in the programming for the reasonable running speed based on performance testing results. We added several advanced features for the application in one industry chip design.Keywords: VLSI design, data mining, big data, HTML forms, web, VLSI, EDA, timing, noise
Procedia PDF Downloads 25341152 Impact of Climate Change on Flow Regime in Himalayan Basins, Nepal
Authors: Tirtha Raj Adhikari, Lochan Prasad Devkota
Abstract:
This research studied the hydrological regime of three glacierized river basins in Khumbu, Langtang and Annapurna regions of Nepal using the Hydraologiska Byrans Vattenbalansavde (HBV), HVB-light 3.0 model. Future scenario of discharge is also studied using downscaled climate data derived from statistical downscaling method. General Circulation Models (GCMs) successfully simulate future climate variability and climate change on a global scale; however, poor spatial resolution constrains their application for impact studies at a regional or a local level. The dynamically downscaled precipitation and temperature data from Coupled Global Circulation Model 3 (CGCM3) was used for the climate projection, under A2 and A1B SRES scenarios. In addition, the observed historical temperature, precipitation and discharge data were collected from 14 different hydro-metrological locations for the implementation of this study, which include watershed and hydro-meteorological characteristics, trends analysis and water balance computation. The simulated precipitation and temperature were corrected for bias before implementing in the HVB-light 3.0 conceptual rainfall-runoff model to predict the flow regime, in which Groups Algorithms Programming (GAP) optimization approach and then calibration were used to obtain several parameter sets which were finally reproduced as observed stream flow. Except in summer, the analysis showed that the increasing trends in annual as well as seasonal precipitations during the period 2001 - 2060 for both A2 and A1B scenarios over three basins under investigation. In these river basins, the model projected warmer days in every seasons of entire period from 2001 to 2060 for both A1B and A2 scenarios. These warming trends are higher in maximum than in minimum temperatures throughout the year, indicating increasing trend of daily temperature range due to recent global warming phenomenon. Furthermore, there are decreasing trends in summer discharge in Langtang Khola (Langtang region) which is increasing in Modi Khola (Annapurna region) as well as Dudh Koshi (Khumbu region) river basin. The flow regime is more pronounced during later parts of the future decades than during earlier parts in all basins. The annual water surplus of 1419 mm, 177 mm and 49 mm are observed in Annapurna, Langtang and Khumbu region, respectively.Keywords: temperature, precipitation, water discharge, water balance, global warming
Procedia PDF Downloads 34341151 Phase II Monitoring of First-Order Autocorrelated General Linear Profiles
Authors: Yihua Wang, Yunru Lai
Abstract:
Statistical process control has been successfully applied in a variety of industries. In some applications, the quality of a process or product is better characterized and summarized by a functional relationship between a response variable and one or more explanatory variables. A collection of this type of data is called a profile. Profile monitoring is used to understand and check the stability of this relationship or curve over time. The independent assumption for the error term is commonly used in the existing profile monitoring studies. However, in many applications, the profile data show correlations over time. Therefore, we focus on a general linear regression model with a first-order autocorrelation between profiles in this study. We propose an exponentially weighted moving average charting scheme to monitor this type of profile. The simulation study shows that our proposed methods outperform the existing schemes based on the average run length criterion.Keywords: autocorrelation, EWMA control chart, general linear regression model, profile monitoring
Procedia PDF Downloads 45941150 Measuring Development through Extreme Observations: An Archetypal Analysis Approach to Index Construction
Authors: Claudeline D. Cellan
Abstract:
Development is multifaceted, and efforts to hasten growth in all these facets have been gaining traction in recent years. Thus, producing a composite index that is reflective of these multidimensional impacts captures the interests of policymakers. The problem lies in going through a mixture of theoretical, methodological and empirical decisions and complexities which, when done carelessly, can lead to inconsistent and unreliable results. This study looks into index computation from a different and less complex perspective. Borrowing the idea of archetypes or ‘pure types’, archetypal analysis looks for points in the convex hull of the multivariate data set that captures as much information in the data as possible. The archetypes or 'pure types' are estimated such that they are convex combinations of all the observations, which in turn are convex combinations of the archetypes. This ensures that the archetypes are realistically observable, therefore achievable. In the sense of composite indices, we look for the best among these archetypes and use this as a benchmark for index computation. Its straightforward and simplistic approach does away with aggregation and substitutability problems which are commonly encountered in index computation. As an example of the application of archetypal analysis in index construction, the country data for the Human Development Index (HDI 2017) of the United Nations Development Programme (UNDP) is used. The goal of this exercise is not to replicate the result of the UNDP-computed HDI, but to illustrate the usability of archetypal analysis in index construction. Here best is defined in the context of life, education and gross national income sub-indices. Results show that the HDI from the archetypal analysis has a linear relationship with the UNDP-computed HDI.Keywords: archetypes, composite index, convex combination, development
Procedia PDF Downloads 126