Search results for: idling conditions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9966

Search results for: idling conditions

8436 Honey Bee (Apis Mellifera) Drone Flight Behavior Revealed by Radio Frequency Identification: Short Trips That May Help Drones Survey Weather Conditions

Authors: Vivian Wu

Abstract:

During the mating season, honeybee drones make mating fights to congregation areas where they face fierce competition to mate with a queen. Drones have developed distinct anatomical and functional features in order to optimize their chances of success. Flight activities of western honeybee (Apis mellifera) drones and foragers were monitored using radio frequency identification (RFID) to test if drones have also developed distinct flight behaviors. Drone flight durations showed a bimodal distribution dividing the flights into short flights and long flights while forager flight durations showed a left-skewed unimodal distribution. Interestingly, the short trips occurred prior to the long trips on a daily basis. The first trips of the day the drones made were primarily short trips, and the distribution significantly shifted to long trips as the drones made more trips. In contrast, forager trips showed no such shift of distribution. In addition, drones made short trips but no long mating trips on days associated with a significant drop in temperature and increase of clouds compared to the previous day. These findings suggest that drones may have developed a unique flight behavior making short trips first to survey the weather conditions before flying out to the congregation area to pursue a successful mating.

Keywords: apis mellifera, drone, flight behavior, weather, RFID

Procedia PDF Downloads 81
8435 Degradation of 2,4-D through Photo-Fenton

Authors: Jonathan K. Baeza, Bryan Monzón, Yair Cruz, José J. Castro

Abstract:

While agriculture is essential for feeding the world, it's also heavily reliant on herbicides. The overuse of these chemicals poses a significant global problem. In this context, 2,4-dichlorophenoxyacetic acid (2,4-D) is one of the most commonly used herbicides, especially in grain crops. This study investigates the removal of 2,4-D from water using an advanced oxidation process, specifically the homogeneous photo-fenton process. We used iron salts and hydrogen peroxide as primary reactants under controlled conditions: 24 ultraviolet LEDs, a commercial herbicide called 'hierbamina,' an initial 2,4-D concentration of 100 mg/L, a pH of 2.5, and a reaction volume of 350 ml. Through exploratory experiments and analytical techniques like UV-vis spectrophotometry and HPLC chromatography, we found that the concentrations of iron and hydrogen peroxide are critical for optimizing the process. Surprisingly, temperature didn't significantly affect the degradation rate. However, ultraviolet light was essential; without it (the classic Fenton process), the degradation efficiency was much lower. We also conducted plant toxicity tests, which showed a significant reduction in the toxicity of the treated wastewater. Additionally, using a high-resolution FT-ICR-MS mass spectrometer, we searched for 2,4-D and its toxic byproduct, 2,4-dichlorophenol (2,4-DCP), but found neither at the end of the reaction. These results indicate a degradation efficiency of over 99% in all exploratory tests with a 90-minute reaction time. However, we need to complement these results with a total organic carbon (TOC) analysis to measure the extent of contaminant mineralization. These analyses will be conducted in future research once we've optimized the reaction conditions.

Keywords: agriculture, herbicide, photo-fenton, water

Procedia PDF Downloads 7
8434 Optimizing Microwave Assisted Extraction of Anti-Diabetic Plant Tinospora cordifolia Used in Ayush System for Estimation of Berberine Using Taguchi L-9 Orthogonal Design

Authors: Saurabh Satija, Munish Garg

Abstract:

Present work reports an efficient extraction method using microwaves based solvent–sample duo-heating mechanism, for the extraction of an important anti-diabetic plant Tinospora cordifolia from AYUSH system for estimation of berberine content. The process is based on simultaneous heating of sample matrix and extracting solvent under microwave energy. Methanol was used as the extracting solvent, which has excellent berberine solubilizing power and warms up under microwave attributable to its great dispersal factor. Extraction conditions like time of irradition, microwave power, solute-solvent ratio and temperature were optimized using Taguchi design and berberine was quantified using high performance thin layer chromatography. The ranked optimized parameters were microwave power (rank 1), irradiation time (rank 2) and temperature (rank 3). This kind of extraction mechanism under dual heating provided choice of extraction parameters for better precision and higher yield with significant reduction in extraction time under optimum extraction conditions. This developed extraction protocol will lead to extract higher amounts of berberine which is a major anti-diabetic moiety in Tinospora cordifolia which can lead to development of cheaper formulations of the plant Tinospora cordifolia and can help in rapid prevention of diabetes in the world.

Keywords: berberine, microwave, optimization, Taguchi

Procedia PDF Downloads 348
8433 Optimality Conditions for Weak Efficient Solutions Generated by a Set Q in Vector Spaces

Authors: Elham Kiyani, S. Mansour Vaezpour, Javad Tavakoli

Abstract:

In this paper, we first introduce a new distance function in a linear space not necessarily endowed with a topology. The algebraic concepts of interior and closure are useful to study optimization problems without topology. So, we define Q-weak efficient solutions generated by the algebraic interior of a set Q, where Q is not necessarily convex. Studying nonconvex vector optimization is valuable since, for a convex cone K in topological spaces, we have int(K)=cor(K), which means that topological interior of a convex cone K is equal to the algebraic interior of K. Moreover, we used the scalarization technique including the distance function generated by the vectorial closure of a set to characterize these Q-weak efficient solutions. Scalarization is a useful approach for solving vector optimization problems. This technique reduces the optimization problem to a scalar problem which tends to be an optimization problem with a real-valued objective function. For instance, Q-weak efficient solutions of vector optimization problems can be characterized and computed as solutions of appropriate scalar optimization problems. In the convex case, linear functionals can be used as objective functionals of the scalar problems. But in the nonconvex case, we should present a suitable objective function. It is the aim of this paper to present a new distance function that be useful to obtain sufficient and necessary conditions for Q-weak efficient solutions of general optimization problems via scalarization.

Keywords: weak efficient, algebraic interior, vector closure, linear space

Procedia PDF Downloads 228
8432 Parametric Study on Dynamic Analysis of Composite Laminated Plate

Authors: Junaid Kameran Ahmed

Abstract:

A laminated plate composite of graphite/epoxy has been analyzed dynamically in the present work by using a quadratic element (8-node diso-parametric), and by depending on 1st order shear deformation theory, every node in this element has 6-degrees of freedom (displacement in x, y, and z axis and twist about x, y, and z axis). The dynamic analysis in the present work covered parametric studies on a composite laminated plate (square plate) to determine its effect on the natural frequency of the plate. The parametric study is represented by set of changes (plate thickness, number of layers, support conditions, layer orientation), and the plates have been simulated by using ANSYS package 12. The boundary conditions considered in this study, at all four edges of the plate, are simply supported and fixed boundary condition. The results obtained from ANSYS program show that the natural frequency for both fixed and simply supported increases with increasing the number of layers, but this increase in the natural frequency for the first five modes will be neglected after 10 layers. And it is observed that the natural frequency of a composite laminated plate will change with the change of ply orientation, the natural frequency increases and it will be at maximum with angle 45 of ply for simply supported laminated plate, and maximum natural frequency will be with cross-ply (0/90) for fixed laminated composite plate. It is also observed that the natural frequency increase is approximately doubled when the thickness is doubled.

Keywords: laminated plate, orthotropic plate, square plate, natural frequency (free vibration), composite (graphite / epoxy)

Procedia PDF Downloads 351
8431 Urban Dust Influence on the Foliar Surface and Biochemical Constituents of Selected Plants in the National Capital Region of Delhi, India

Authors: G. P. Gupta, B. Kumar, S. Singh, U. C. Kulshrestha

Abstract:

Very high loadings of atmospheric dust in the Indian region contribute to remarkably higher levels of particulate matter. During dry weather conditions which prevail most of the year, dustfall is deposited onto the foliar surfaces affecting their morphology, stomata and biochemical constituents. This study reports chemical characteristics of dustfall, its effect on foliar morphology and biochemical constituents of two medicinal plants i.e. Morus (Morus alba) and Arjun (Terminalia arjuna) in the urban environment of National Capital Region (NCR) of Delhi at two sites i.e. Jawaharlal Nehru University (residential) and Sahibabad (industrial). Atmospheric dust was characterized for major anions (F-, Cl-, NO3-, SO4--) and cations (Na+, NH4+, K+, Mg++, Ca++) along with the biochemical parameters Chl a, Chl b, total chlorophyll, carotenoid, total soluble sugar, relative water content (RWC), pH, and ascorbic acid. The results showed that the concentrations of major ions in dustfall were higher at the industrial site as compared to the residential site due to the higher level of anthropogenic activities. Both the plant species grown at industrial site had significantly lower values of chlorophyll ‘a’, chlorophyll ‘b’, total chlorophyll, carotenoid but relatively higher values of total soluble sugar and ascorbic acid indicating stressful conditions due to industrial and vehicular emissions.

Keywords: dustfall, urban environment, biochemical constituents, atmospheric dust

Procedia PDF Downloads 305
8430 Emotion Expression of the Leader and Collective Efficacy: Pride and Guilt

Authors: Hsiu-Tsu Cho

Abstract:

Collective efficacy refers to a group’s sense of its capacity to complete a task successfully or to reach objectives. Little effort has been expended on investigating the relationship between the emotion expression of a leader and collective efficacy. In this study, we examined the impact of the different emotions and emotion expression of a group leader on collective efficacy and explored whether the emotion–expressive effects differed under conditions of negative and positive emotions. A total of 240 undergraduate and graduate students recruited using Facebook and posters at a university participated in this research. The participants were separated randomly into 80 groups of four persons consisting of three participants and a confederate. They were randomly assigned to one of five conditions in a 2 (pride vs. guilt) × 2 (emotion expression of group leader vs. no emotion expression of group leader) factorial design and a control condition. Each four-person group was instructed to get the reward in a group competition of solving the five-disk Tower of Hanoi puzzle and making decisions on an investment case. We surveyed the participants by employing the emotional measure revised from previous researchers and collective efficacy questionnaire on a 5-point scale. To induce an emotion of pride (or guilt), the experimenter announced whether the group performance was good enough to have a chance of getting the reward (ranking the top or bottom 20% among all groups) after group task. The leader (confederate) could either express or not express a feeling of pride (or guilt) following the instruction according to the assigned condition. To check manipulation of emotion, we added a control condition under which the experimenter revealed no results regarding group performance in maintaining a neutral emotion. One-way ANOVAs and post hoc pairwise comparisons among the three emotion conditions (pride, guilt, and control condition) involved assigning pride and guilt scores (pride: F(1,75) = 32.41, p < .001; guilt: F(1,75) = 6.75, p < .05). The results indicated that manipulations of emotion were successful. A two-way between-measures ANOVA was conducted to examine the predictions of the main effects of emotion types and emotion expression as well as the interaction effect of these two variables on collective efficacy. The experimental findings suggest that pride did not affect collective efficacy (F(1,60) = 1.90, ns.) more than guilt did and that the group leader did not motivate collective efficacy regardless of whether he or she expressed emotion (F(1,60) = .89, ns.). However, the interaction effect of emotion types and emotion expression was statistically significant (F(1,60) = 4.27, p < .05, ω2 = .066); the effects accounted for 6.6% of the variance. Additional results revealed that, under the pride condition, the leader enhanced group efficacy when expressing emotion, whereas, under the guilt condition, an expression of emotion could reduce collective efficacy. Overall, these findings challenge the assumption that the effect of expression emotion are the same on all emotions and suggest that a leader should be cautious when expressing negative emotions toward a group to avoid reducing group effectiveness.

Keywords: collective efficacy, group leader, emotion expression, pride, guilty

Procedia PDF Downloads 331
8429 Effects of Drying Method and Seed Priming Duration on Coffee Seed and Seedling Quality

Authors: Taju Mohammednur, Tesfaye Megersa, Karta Kaske

Abstract:

Coffee is an economically important cash crop in Ethiopia. However, the conditions under which coffee seeds are dried and processed significantly affect the seedling quality and productivity. The objective of this study was to evaluate the effect of pre-sowing treatments and drying methods on the physiological quality of coffee seeds and seedlings. The study included two coffee varieties (74110, 75227), two drying conditions (under-shade drying room, open sun), and five durations of seed hydro priming (6, 8, 18, 24 hours, and an untreated control). Factorial combinations of the three factors were laid out in a Completely Randomized Design of three replications. Results indicated that the highest germination percentage (91%), emergence rate (90%), and seedling vigor index-I (2236 cm %) were recorded for seeds dried under-shade drying room. In contrast, the lowest values of germination percentage, emergence rate, and vigor index were observed for seeds dried under open sun. There was a significant difference in seed germination based on hydro priming time, with the highest germination percentage (83%) recorded for seeds soaked for 6 hours, followed by 24 hours (83%). The lowest germination percentage (77%) was recorded for un-soaked seeds. In conclusion, drying seeds under shade is better for coffee seed quality, and hydro priming has improved seedling vigor. However, further investigation into seed priming methods and preservation techniques for primed seeds is necessary to improve coffee seed quality.

Keywords: coffee, germination, seed drying, seed longevity, seed priming

Procedia PDF Downloads 30
8428 A Mixed Finite Element Formulation for Functionally Graded Micro-Beam Resting on Two-Parameter Elastic Foundation

Authors: Cagri Mollamahmutoglu, Aykut Levent, Ali Mercan

Abstract:

Micro-beams are one of the most common components of Nano-Electromechanical Systems (NEMS) and Micro Electromechanical Systems (MEMS). For this reason, static bending, buckling, and free vibration analysis of micro-beams have been the subject of many studies. In addition, micro-beams restrained with elastic type foundations have been of particular interest. In the analysis of microstructures, closed-form solutions are proposed when available, but most of the time solutions are based on numerical methods due to the complex nature of the resulting differential equations. Thus, a robust and efficient solution method has great importance. In this study, a mixed finite element formulation is obtained for a functionally graded Timoshenko micro-beam resting on two-parameter elastic foundation. In the formulation modified couple stress theory is utilized for the micro-scale effects. The equation of motion and boundary conditions are derived according to Hamilton’s principle. A functional, derived through a scientific procedure based on Gateaux Differential, is proposed for the bending and buckling analysis which is equivalent to the governing equations and boundary conditions. Most important advantage of the formulation is that the mixed finite element formulation allows usage of C₀ type continuous shape functions. Thus shear-locking is avoided in a built-in manner. Also, element matrices are sparsely populated and can be easily calculated with closed-form integration. In this framework results concerning the effects of micro-scale length parameter, power-law parameter, aspect ratio and coefficients of partially or fully continuous elastic foundation over the static bending, buckling, and free vibration response of FG-micro-beam under various boundary conditions are presented and compared with existing literature. Performance characteristics of the presented formulation were evaluated concerning other numerical methods such as generalized differential quadrature method (GDQM). It is found that with less computational burden similar convergence characteristics were obtained. Moreover, formulation also includes a direct calculation of the micro-scale related contributions to the structural response as well.

Keywords: micro-beam, functionally graded materials, two-paramater elastic foundation, mixed finite element method

Procedia PDF Downloads 163
8427 Bi-Criteria Vehicle Routing Problem for Possibility Environment

Authors: Bezhan Ghvaberidze

Abstract:

A multiple criteria optimization approach for the solution of the Fuzzy Vehicle Routing Problem (FVRP) is proposed. For the possibility environment the levels of movements between customers are calculated by the constructed simulation interactive algorithm. The first criterion of the bi-criteria optimization problem - minimization of the expectation of total fuzzy travel time on closed routes is constructed for the FVRP. A new, second criterion – maximization of feasibility of movement on the closed routes is constructed by the Choquet finite averaging operator. The FVRP is reduced to the bi-criteria partitioning problem for the so called “promising” routes which were selected from the all admissible closed routes. The convenient selection of the “promising” routes allows us to solve the reduced problem in the real-time computing. For the numerical solution of the bi-criteria partitioning problem the -constraint approach is used. An exact algorithm is implemented based on D. Knuth’s Dancing Links technique and the algorithm DLX. The Main objective was to present the new approach for FVRP, when there are some difficulties while moving on the roads. This approach is called FVRP for extreme conditions (FVRP-EC) on the roads. Also, the aim of this paper was to construct the solving model of the constructed FVRP. Results are illustrated on the numerical example where all Pareto-optimal solutions are found. Also, an approach for more complex model FVRP with time windows was developed. A numerical example is presented in which optimal routes are constructed for extreme conditions on the roads.

Keywords: combinatorial optimization, Fuzzy Vehicle routing problem, multiple objective programming, possibility theory

Procedia PDF Downloads 489
8426 Strategies for Medium Sized Construction Firms to Survive the Current Economic Conditions That Is Compounded by the Most Recent COVID-19 Pandemic in Nigeria

Authors: Aloysius Colman Chukwuemeka Ezeabasili, Chibuike Patrick Ezeabasili

Abstract:

Medium Sized Construction Companies in Nigeria are those employing 50-250 workers that are mostly involved in roads, Commercial and domestic building Construction, among others. These companies are in the majority and contribute immensely to infrastructural development in Nigeria. Despite the last eight years of economic downturn and the past years of COVID-19 pandemic, signs of these Companies recovering from the economic recession and pandemic seem bright. Nigeria has recorded 213,000 confirmed cases 3968 deaths from COVID-19 as at now. These medium sized companies are currently trying to explore various opportunities to grow their businesses to achieve competitive advantages over others by studying and improving on their bidding efficiency, Strategies for selecting businesses, bidding markup Strategies, and cash flow. These strategies were studied through the recruitment of construction experts and professionals. Many of them have acquired new technologies that have impacted positively on their strategies. The impact of these technologies like the BIM, e-tendering, conditions of contract, and claim management strategies are advantages to them and has given them good advantages over their peers. Monte Carlo solution, Swot analysis, and average bid methods have also clearly added advantages to bidding practices. New and existing strategies are Scrutinized, and training of young Nigerians in advanced countries to acquire knowledge in best practices have elevated some of these companies. The Covid-19 has not been very harsh to Nigeria, and the country is surely not as devastated as the advanced countries. Nigeria has therefore been able to cope with the combination of the downturn and the pandemic.

Keywords: medium sized construction companies, competitive advantage, new bidding technologies, Nigeria

Procedia PDF Downloads 135
8425 Development and Control of Deep Seated Gravitational Slope Deformation: The Case of Colzate-Vertova Landslide, Bergamo, Northern Italy

Authors: Paola Comella, Vincenzo Francani, Paola Gattinoni

Abstract:

This paper presents the Colzate-Vertova landslide, a Deep Seated Gravitational Slope Deformation (DSGSD) located in the Seriana Valley, Northern Italy. The paper aims at describing the development as well as evaluating the factors that influence the evolution of the landslide. After defining the conceptual model of the landslide, numerical simulations were developed using a finite element numerical model, first with a two-dimensional domain, and later with a three-dimensional one. The results of the 2-D model showed a displacement field typical of a sackung, as a consequence of the erosion along the Seriana Valley. The analysis also showed that the groundwater flow could locally affect the slope stability, bringing about a reduction in the safety factor, but without reaching failure conditions. The sensitivity analysis carried out on the strength parameters pointed out that slope failures could be reached only for relevant reduction of the geotechnical characteristics. Such a result does not fit the real conditions observed on site, where a number of small failures often develop all along the hillslope. The 3-D model gave a more comprehensive analysis of the evolution of the DSGSD, also considering the border effects. The results showed that the convex profile of the slope favors the development of displacements along the lateral valley, with a relevant reduction in the safety factor, justifying the existing landslides.

Keywords: deep seated gravitational slope deformation, Italy, landslide, numerical modeling

Procedia PDF Downloads 365
8424 Behavior of Composite Reinforced Concrete Circular Columns with Glass Fiber Reinforced Polymer I-Section

Authors: Hiba S. Ahmed, Abbas A. Allawi, Riyadh A. Hindi

Abstract:

Pultruded materials made of fiber-reinforced polymer (FRP) come in a broad range of shapes, such as bars, I-sections, C-sections, and other structural sections. These FRP materials are starting to compete with steel as structural materials because of their great resistance, low self-weight, and cheap maintenance costs-especially in corrosive conditions. This study aimed to evaluate the effectiveness of Glass Fiber Reinforced Polymer (GFRP) of the hybrid columns built by combining (GFRP) profiles with concrete columns because of their low cost and high structural efficiency. To achieve the aims of this study, nine circular columns with a diameter of (150 mm) and a height of (1000mm) were cast using normal concrete with compression strength equal to (35 MPa). The research involved three different types of reinforcement: hybrid circular columns type (IG) with GFRP I-section and 1% of the reinforcement ratio of steel bars, hybrid circular columns type (IS) with steel I-section and 1% of the reinforcement ratio of steel bars, (where the cross-section area of I-section for GFRP and steel was the same), compared with reference column (R) without I-section. To investigate the ultimate capacity, axial and lateral deformation, strain in longitudinal and transverse reinforcement, and failure mode of the circular column under different loading conditions (concentric and eccentric) with eccentricities of 25 mm and 50 mm, respectively. In the second part, an analytical finite element model will be performed using ABAQUS software to validate the experimental results.

Keywords: composite, columns, reinforced concrete, GFRP, axial load

Procedia PDF Downloads 57
8423 Effect of Needle Height on Discharge Coefficient and Cavitation Number

Authors: Mohammadreza Nezamirad, Sepideh Amirahmadian, Nasim Sabetpour, Azadeh Yazdi, Amirmasoud Hamedi

Abstract:

Cavitation inside diesel injector nozzle is investigated using Reynolds-Stress-Navier Stokes equations. Schnerr-Sauer cavitation model is used for modeling cavitation inside diesel injector nozzle. The carrying fluid utilized in the current study is diesel fuel. The flow is verified at the beginning by comparing with the previous experimental data, and it was found that K-Epsilon turbulent model could lead to a better accuracy comparing to K-Omega turbulent model. Moreover, the mass flow rate obtained numerically is compared with the experimental value, and the discrepancy was found to be less than 5 percent which shows the accuracy of the current results. Finally, a real-size four-hole nozzle is investigated, and the flow inside it is visualized based on velocity profile, discharge coefficient, and cavitation number. It was found that the mesh density could be reduced significantly by utilizing periodic boundary conditions. Velocity contour at the mid nozzle showed that the maximum value of velocity occurs at the end of the needle before entering the orifice area. Last but not least, at the same boundary conditions, when different needle heights were utilized, it was found that as needle height increases with an increase in cavitation number, discharge coefficient increases, while the mentioned increases are more tangible at smaller values of needle heights.

Keywords: cavitation, diesel fuel, CFD, real size nozzle, mass flow rate

Procedia PDF Downloads 150
8422 Cognitive Model of Analogy Based on Operation of the Brain Cells: Glial, Axons and Neurons

Authors: Ozgu Hafizoglu

Abstract:

Analogy is an essential tool of human cognition that enables connecting diffuse and diverse systems with attributional, deep structural, casual relations that are essential to learning, to innovation in artificial worlds, and to discovery in science. Cognitive Model of Analogy (CMA) leads and creates information pattern transfer within and between domains and disciplines in science. This paper demonstrates the Cognitive Model of Analogy (CMA) as an evolutionary approach to scientific research. The model puts forward the challenges of deep uncertainty about the future, emphasizing the need for flexibility of the system in order to enable reasoning methodology to adapt to changing conditions. In this paper, the model of analogical reasoning is created based on brain cells, their fractal, and operational forms within the system itself. Visualization techniques are used to show correspondences. Distinct phases of the problem-solving processes are divided thusly: encoding, mapping, inference, and response. The system is revealed relevant to brain activation considering each of these phases with an emphasis on achieving a better visualization of the brain cells: glial cells, axons, axon terminals, and neurons, relative to matching conditions of analogical reasoning and relational information. It’s found that encoding, mapping, inference, and response processes in four-term analogical reasoning are corresponding with the fractal and operational forms of brain cells: glial, axons, and neurons.

Keywords: analogy, analogical reasoning, cognitive model, brain and glials

Procedia PDF Downloads 186
8421 Numerical Investigation of a New Two-Fluid Model for Semi-Dilute Polymer Solutions

Authors: Soroush Hooshyar, Mohamadali Masoudian, Natalie Germann

Abstract:

Many soft materials such as polymer solutions can develop localized bands with different shear rates, which are known as shear bands. Using the generalized bracket approach of nonequilibrium thermodynamics, we recently developed a new two-fluid model to study shear banding for semi-dilute polymer solutions. The two-fluid approach is an appropriate means for describing diffusion processes such as Fickian diffusion and stress-induced migration. In this approach, it is assumed that the local gradients in concentration and, if accounted for, also stress generate a nontrivial velocity difference between the components. Since the differential velocity is treated as a state variable in our model, the implementation of the boundary conditions arising from the derivative diffusive terms is straightforward. Our model is a good candidate for benchmark simulations because of its simplicity. We analyzed its behavior in cylindrical Couette flow, a rectilinear channel flow, and a 4:1 planar contraction flow. The latter problem was solved using the OpenFOAM finite volume package and the impact of shear banding on the lip and salient vortices was investigated. For the other smooth geometries, we employed a standard Chebyshev pseudospectral collocation method. The results showed that the steady-state solution is unique with respect to initial conditions, deformation history, and the value of the diffusivity constant. However, smaller the value of the diffusivity constant is, the more time it takes to reach the steady state.

Keywords: nonequilibrium thermodynamics, planar contraction, polymer solutions, shear banding, two-fluid approach

Procedia PDF Downloads 333
8420 Relationship Between Health Coverage and Emergency Disease Burden

Authors: Karim Hajjar, Luis Lillo, Diego Martinez, Manuel Hermosilla, Nicholas Risko

Abstract:

Objectives: This study examines the relationship between universal health coverage (UCH) and the burden of emergency diseases at a global level. Methods: Data on Disability-Adjusted Life Years (DALYs) from emergency conditions were extracted from the Institute for Health Metrics and Evaluation (IHME) database for the years 2015 and 2019. Data on UHC, measured using two variables, 1) coverage of essential health services and 2) proportion of population spending more than 10% of household income on out-of-pocket health care expenditure, was extracted from the World Bank Database for years preceding our outcome of interest. Linear regression was performed, analyzing the effect of the UHC variables on the DALYs of emergency diseases, controlling for other variables. Results: A total of 133 countries were included. 44.4% of the analyzed countries had coverage of essential health services index of at least 70/100, and 35.3% had at least 10% of their population spend greater than 10% of their household income on healthcare. For every point increase in the coverage of essential health services index, there was a 13-point reduction in DALYs of emergency medical diseases (95% CI -16, -11). Conversely, for every percent decrease in the population with large household expenditure on healthcare, there was a 0.48 increase in DALYs of emergency medical diseases (95% CI -5.6, 4.7). Conclusions: After adjusting for multiple variables, an increase in coverage of essential health services was significantly associated with improvement in DALYs for emergency conditions. There was, however, no association between catastrophic health expenditure and DALYs.

Keywords: emergency medicine, universal healthcare, global health, health economics

Procedia PDF Downloads 92
8419 Study of Storms on the Javits Center Green Roof

Authors: Alexander Cho, Harsho Sanyal, Joseph Cataldo

Abstract:

A quantitative analysis of the different variables on both the South and North green roofs of the Jacob K. Javits Convention Center was taken to find mathematical relationships between net radiation and evapotranspiration (ET), average outside temperature, and the lysimeter weight. Groups of datasets were analyzed, and the relationships were plotted on linear and semi-log graphs to find consistent relationships. Antecedent conditions for each rainstorm were also recorded and plotted against the volumetric water difference within the lysimeter. The first relation was the inverse parabolic relationship between the lysimeter weight and the net radiation and ET. The peaks and valleys of the lysimeter weight corresponded to valleys and peaks in the net radiation and ET respectively, with the 8/22/15 and 1/22/16 datasets showing this trend. The U-shaped and inverse U-shaped plots of the two variables coincided, indicating an inverse relationship between the two variables. Cross variable relationships were examined through graphs with lysimeter weight as the dependent variable on the y-axis. 10 out of 16 of the plots of lysimeter weight vs. outside temperature plots had R² values > 0.9. Antecedent conditions were also recorded for rainstorms, categorized by the amount of precipitation accumulating during the storm. Plotted against the change in the volumetric water weight difference within the lysimeter, a logarithmic regression was found with large R² values. The datasets were compared using the Mann Whitney U-test to see if the datasets were statistically different, using a significance level of 5%; all datasets compared showed a U test statistic value, proving the null hypothesis of the datasets being different from being true.

Keywords: green roof, green infrastructure, Javits Center, evapotranspiration, net radiation, lysimeter

Procedia PDF Downloads 115
8418 Benthic Cover in Coral Reef Environments under Influence of Submarine Groundwater Discharges

Authors: Arlett A. Rosado-Torres, Ismael Marino-Tapia

Abstract:

Changes in benthic cover of coral dominated systems to macroalgae dominance are widely studied worldwide. Watershed pollutants are potentially as important as overfishing causing phase shift. In certain regions of the world most of the continental inputs are through submarine groundwater discharges (SGD), which can play a significant ecological role because the concentration of its nutrients is usually greater that the one found in surface seawater. These stressors have adversely affected coral reefs, particularly in the Caribbean. Measurements of benthic cover (with video tracing, through a Go Pro camera), reef roughness (acoustic estimates with an Acoustic Doppler Current Velocity profiler and a differential GPS), thermohaline conditions (conductivity-temperature-depth (CTD) instrument) and nutrient measurements were taken in different sites in the reef lagoon of Puerto Morelos, Q. Roo, Mexico including those with influence of SGD and without it. The results suggest a link between SGD, macroalgae cover and structural complexity. Punctual water samples and data series from a CTD Diver confirm the presence of the SGD. On the site where the SGD is, the macroalgae cover is larger than in the other sites. To establish a causal link between this phase shift and SGD, the DELFT 3D hydrodynamic model (FLOW and WAVE modules) was performed under different environmental conditions and discharge magnitudes. The model was validated using measurements of oceanographic instruments anchored in the lagoon and forereef. The SGD is consistently favoring macroalgae populations and affecting structural complexity of the reef.

Keywords: hydrodynamic model, macroalgae, nutrients, phase shift

Procedia PDF Downloads 154
8417 Modeling and Simulation of Ship Structures Using Finite Element Method

Authors: Javid Iqbal, Zhu Shifan

Abstract:

The development in the construction of unconventional ships and the implementation of lightweight materials have shown a large impulse towards finite element (FE) method, making it a general tool for ship design. This paper briefly presents the modeling and analysis techniques of ship structures using FE method for complex boundary conditions which are difficult to analyze by existing Ship Classification Societies rules. During operation, all ships experience complex loading conditions. These loads are general categories into thermal loads, linear static, dynamic and non-linear loads. General strength of the ship structure is analyzed using static FE analysis. FE method is also suitable to consider the local loads generated by ballast tanks and cargo in addition to hydrostatic and hydrodynamic loads. Vibration analysis of a ship structure and its components can be performed using FE method which helps in obtaining the dynamic stability of the ship. FE method has developed better techniques for calculation of natural frequencies and different mode shapes of ship structure to avoid resonance both globally and locally. There is a lot of development towards the ideal design in ship industry over the past few years for solving complex engineering problems by employing the data stored in the FE model. This paper provides an overview of ship modeling methodology for FE analysis and its general application. Historical background, the basic concept of FE, advantages, and disadvantages of FE analysis are also reported along with examples related to hull strength and structural components.

Keywords: dynamic analysis, finite element methods, ship structure, vibration analysis

Procedia PDF Downloads 137
8416 A Green Process for Drop-In Liquid Fuels from Carbon Dioxide, Water, and Solar Energy

Authors: Jian Yu

Abstract:

Carbo dioxide (CO2) from fossil fuel combustion is a prime green-house gas emission. It can be mitigated by microalgae through conventional photosynthesis. The algal oil is a feedstock of biodiesel, a carbon neutral liquid fuel for transportation. The conventional CO2 fixation, however, is quite slow and affected by the intermittent solar irradiation. It is also a technical challenge to reform the bio-oil into a drop-in liquid fuel that can be directly used in the modern combustion engines with expected performance. Here, an artificial photosynthesis system is presented to produce a biopolyester and liquid fuels from CO2, water, and solar power. In this green process, solar energy is captured using photovoltaic modules and converted into hydrogen as a stable energy source via water electrolysis. The solar hydrogen is then used to fix CO2 by Cupriavidus necator, a hydrogen-oxidizing bacterium. Under the autotrophic conditions, CO2 was reduced to glyceraldehyde-3-phosphate (G3P) that is further utilized for cell growth and biosynthesis of polyhydroxybutyrate (PHB). The maximum cell growth rate reached 10.1 g L-1 day-1, about 25 times faster than that of a typical bio-oil-producing microalga (Neochloris Oleoabundans) under stable indoor conditions. With nitrogen nutrient limitation, a large portion of the reduced carbon is stored in PHB (C4H6O2)n, accounting for 50-60% of dry cell mass. PHB is a biodegradable thermoplastic that can find a variety of environmentally friendly applications. It is also a platform material from which small chemicals can be derived. At a high temperature (240 - 290 oC), the biopolyester is degraded into crotonic acid (C4H6O2). On a solid phosphoric acid catalyst, PHB is deoxygenated via decarboxylation into a hydrocarbon oil (C6-C18) at 240 oC or so. Aromatics and alkenes are the major compounds, depending on the reaction conditions. A gasoline-grade liquid fuel (77 wt% oil) and a biodiesel-grade fuel (23 wt% oil) were obtained from the hydrocarbon oil via distillation. The formation routes of hydrocarbon oil from crotonic acid, the major PHB degradation intermediate, are revealed and discussed. This work shows a novel green process from which biodegradable plastics and high-grade liquid fuels can be directly produced from carbon dioxide, water and solar power. The productivity of the green polyester (5.3 g L-1 d-1) is much higher than that of microalgal oil (0.13 g L-1 d-1). Other technical merits of the new green process may include continuous operation under intermittent solar irradiation and convenient scale up in outdoor.

Keywords: bioplastics, carbon dioxide fixation, drop-in liquid fuels, green process

Procedia PDF Downloads 189
8415 Simulation of the Collimator Plug Design for Prompt-Gamma Activation Analysis in the IEA-R1 Nuclear Reactor

Authors: Carlos G. Santos, Frederico A. Genezini, A. P. Dos Santos, H. Yorivaz, P. T. D. Siqueira

Abstract:

The Prompt-Gamma Activation Analysis (PGAA) is a valuable technique for investigating the elemental composition of various samples. However, the installation of a PGAA system entails specific conditions such as filtering the neutron beam according to the target and providing adequate shielding for both users and detectors. These requirements incur substantial costs, exceeding $100,000, including manpower. Nevertheless, a cost-effective approach involves leveraging an existing neutron beam facility to create a hybrid system integrating PGAA and Neutron Tomography (NT). The IEA-R1 nuclear reactor at IPEN/USP possesses an NT facility with suitable conditions for adapting and implementing a PGAA device. The NT facility offers a thermal flux slightly colder and provides shielding for user protection. The key additional requirement involves designing detector shielding to mitigate high gamma ray background and safeguard the HPGe detector from neutron-induced damage. This study employs Monte Carlo simulations with the MCNP6 code to optimize the collimator plug for PGAA within the IEA-R1 NT facility. Three collimator models are proposed and simulated to assess their effectiveness in shielding gamma and neutron radiation from nucleon fission. The aim is to achieve a focused prompt-gamma signal while shielding ambient gamma radiation. The simulation results indicate that one of the proposed designs is particularly suitable for the PGAA-NT hybrid system.

Keywords: MCNP6.1, neutron, prompt-gamma ray, prompt-gamma activation analysis

Procedia PDF Downloads 78
8414 Double Wishbone Pushrod Suspension Systems Co-Simulation for Racing Applications

Authors: Suleyman Ogul Ertugrul, Mustafa Turgut, Serkan Inandı, Mustafa Gorkem Coban, Mustafa Kıgılı, Ali Mert, Oguzhan Kesmez, Murat Ozancı, Caglar Uyulan

Abstract:

In high-performance automotive engineering, the realistic simulation of suspension systems is crucial for enhancing vehicle dynamics and handling. This study focuses on the double wishbone suspension system, prevalent in racing vehicles due to its superior control and stability characteristics. Utilizing MATLAB and Adams Car simulation software, we conduct a comprehensive analysis of displacement behaviors and damper sizing under various dynamic conditions. The initial phase involves using MATLAB to simulate the entire suspension system, allowing for the preliminary determination of damper size based on the system's response under simulated conditions. Following this, manual calculations of wheel loads are performed to assess the forces acting on the front and rear suspensions during scenarios such as braking, cornering, maximum vertical loads, and acceleration. Further dynamic force analysis is carried out using MATLAB Simulink, focusing on the interactions between suspension components during key movements such as bumps and rebounds. This simulation helps in formulating precise force equations and in calculating the stiffness of the suspension springs. To enhance the accuracy of our findings, we focus on a detailed kinematic and dynamic analysis. This includes the creation of kinematic loops, derivation of relevant equations, and computation of Jacobian matrices to accurately determine damper travel and compression metrics. The calculated spring stiffness is crucial in selecting appropriate springs to ensure optimal suspension performance. To validate and refine our results, we replicate the analyses using the Adams Car software, renowned for its detailed handling of vehicular dynamics. The goal is to achieve a robust, reliable suspension setup that maximizes performance under the extreme conditions encountered in racing scenarios. This study exemplifies the integration of theoretical mechanics with advanced simulation tools to achieve a high-performance suspension setup that can significantly improve race car performance, providing a methodology that can be adapted for different types of racing vehicles.

Keywords: FSAE, suspension system, Adams Car, kinematic

Procedia PDF Downloads 53
8413 Soft Computing Employment to Optimize Safety Stock Levels in Supply Chain Dairy Product under Supply and Demand Uncertainty

Authors: Riyadh Jamegh, Alla Eldin Kassam, Sawsan Sabih

Abstract:

In order to overcome uncertainty conditions and inability to meet customers' requests due to these conditions, organizations tend to reserve a certain safety stock level (SSL). This level must be chosen carefully in order to avoid the increase in holding cost due to excess in SSL or shortage cost due to too low SSL. This paper used soft computing fuzzy logic to identify optimal SSL; this fuzzy model uses the dynamic concept to cope with high complexity environment status. The proposed model can deal with three input variables, i.e., demand stability level, raw material availability level, and on hand inventory level by using dynamic fuzzy logic to obtain the best SSL as an output. In this model, demand stability, raw material, and on hand inventory levels are described linguistically and then treated by inference rules of the fuzzy model to extract the best level of safety stock. The aim of this research is to provide dynamic approach which is used to identify safety stock level, and it can be implanted in different industries. Numerical case study in the dairy industry with Yogurt 200 gm cup product is explained to approve the validity of the proposed model. The obtained results are compared with the current level of safety stock which is calculated by using the traditional approach. The importance of the proposed model has been demonstrated by the significant reduction in safety stock level.

Keywords: inventory optimization, soft computing, safety stock optimization, dairy industries inventory optimization

Procedia PDF Downloads 126
8412 Biosynthesis of Healthy Secondary Metabolites in Olive Fruit in Response to Different Agronomic Treatments

Authors: Anna Perrone, Federico Martinelli

Abstract:

Olive fruit is well-known for the high content in secondary metabolites with high interest at nutritional, nutraceutical, antioxidant, and healthy levels. The content of secondary metabolites in olive at harvest may be affected by different water regimes, with significant effects on olive oil composition and quality and, consequently, on its healthy and nutritional features. In this work, a summary of several research studies dealing with the biosynthesis of healthy and nutraceutical metabolites of the secondary metabolism in olive fruit will be reported. The phytochemical findings have been correlated with the expression of key genes involved in polyphenol, terpenoid, and carotenoid biosynthesis and metabolism in response to different development stages and water regimes. Flavonoids were highest in immature fruits, while anthocyanins increased at ripening. In epicarp tissue, this was clearly associated with an up-regulation of the UFGT gene. Olive fruits cultivated under different water regimes were analyzed by metabolomics. This method identified several hundred metabolites in the ripe mesocarp. Among them, 46 were differentially accumulated in the comparison between rain-fed and irrigated conditions. Well-known healthy metabolites were more abundant at a higher level of water regimes. Increased content of polyphenols was observed in the rain-fed fruit; particularly, anthocyanin concentration was higher at ripening. Several secondary metabolites were differentially accumulated between different irrigation conditions. These results showed that these metabolic approaches could be efficiently used to determine the effects of agronomic treatments on olive fruit physiology and, consequently, on nutritional and healthy properties of the obtained extra-virgin olive oil.

Keywords: olea europea, anthocyanins, polyphenols, water regimes

Procedia PDF Downloads 150
8411 Spatial Temporal Change of COVID-19 Vaccination Condition in the US: An Exploration Based on Space Time Cube

Authors: Yue Hao

Abstract:

COVID-19 vaccines not only protect individuals but society as a whole. In this case, having an understanding of the change and trend of vaccination conditions may shed some light on revising and making up-to-date policies regarding large-scale public health promotions and calls in order to lead and encourage the adoption of COVID-19 vaccines. However, vaccination status change over time and vary from place to place hidden patterns that were not fully explored in previous research. In our research, we took advantage of the spatial-temporal analytical methods in the domain of geographic information science and captured the spatial-temporal changes regarding COVID-19 vaccination status in the United States during 2020 and 2021. After conducting the emerging hot spots analysis on both the state level data of the US and county level data of California we found that: (1) at the macroscopic level, there is a continuously increasing trend of the vaccination rate in the US, but there is a variance on the spatial clusters at county level; (2) spatial hotspots and clusters with high vaccination amount over time were clustered around the west and east coast in regions like California and New York City where are densely populated with considerable economy conditions; (3) in terms of the growing trend of the daily vaccination among, Los Angeles County alone has very high statistics and dramatic increases over time. We hope that our findings can be valuable guidance for supporting future decision-making regarding vaccination policies as well as directing new research on relevant topics.

Keywords: COVID-19 vaccine, GIS, space time cube, spatial-temporal analysis

Procedia PDF Downloads 81
8410 An Assessment of Thermal Comfort and Air Quality in Educational Space: A Case Study of Design Studios in the Arab Academy for Science, Technology and Maritime Transport, Alexandria

Authors: Bakr Gomaa, Hana Awad

Abstract:

A stuffy room is one of the indicators of poor indoor air quality. Through working in an educational building in Alexandria, it is noticed that one of the rooms is smelly. A field study is conducted in a private university building in Alexandria to achieve indoor sustainable educational environment. Additionally, the indoor air quality is empirically assessed, and thermal comfort is identified in educational buildings, in studio halls specifically during lecture hours. The current research uses qualitative and quantitative methods in the form of literature review, investigation and test measurements. At a similar time that the teachers and students fill in a questionnaire regarding the concept of indoor climate, thermal comfort variables are determined. The indoor thermal conditions of the studio are assessed through three variables including Fanger’s comfort indicators (calculated using PMV, predicted mean vote and PPD, predicted percentage of dissatisfied people), the actual people clothing and metabolic rate. Actual measurements of air quality are obtained in a case study in an architectural building. Results have proved that indoor climatic conditions as air flow and temperature are inconvenient to inhabitants. Regarding questionnaire results, occupants appear to be uncomfortable in both seasons, with result percentages out of the acceptable range. Finally, further researches will center on how to preserve thermal comfort in school buildings since it has a vital influence on the student’s knowledge.

Keywords: educational buildings, Indoor air quality, productivity, thermal comfort

Procedia PDF Downloads 196
8409 The Combined Effect of Methane and Methanol on Growth and PHB Production in the Alphaproteobacterial Methanotroph Methylocystis Sp. Rockwell

Authors: Lazic Marina, Sugden Scott, Sharma Kanta Hem, Sauvageau Dominic, Stein Lisa

Abstract:

Methane is a highly potent greenhouse gas mostly released through anthropogenic activities. Methane represents a low-cost and sustainable feedstock used for the biological production of value-added compounds by bacteria known as methanotrophs. In addition to methane, these organisms can utilize methanol, another cheap carbon source that is a common industrial by-product. Alphaproteobacteria methanotrophs can utilize both methane and methanol to produce the biopolymer polyhydroxybutyrate. The goal of this study was to examine the effect of methanol on polyhydroxybutyrate production in Methylocystis sp. Rockwell and to identify the optimal methane: methanol ratio that will improve PHB without reducing biomass production. Three methane: methanol ratios (4, 2.5., and 0.5) and three nitrogen source (ammonium or nitrate) concentrations (10 mM, 1 mM, and 0.1 mM) were combined to generate 18 growing conditions (9 per carbon source). The production of polyhydroxybutyrate and biomass was analyzed at the end of growth. Overall, the methane: methanol ratios that promoted polyhydroxybutyrate synthesis without reducing biomass were 4 and 2.5 and the optimal nitrogen concentration was 1 mM for both ammonium and nitrate. The physiological mechanism behind the beneficial effect of combining methane and methanol as carbon sources remain to be discovered. One possibility is that methanol has a dual role as a carbon source at lower concentrations and as a stringent response trigger at higher concentrations. Nevertheless, the beneficial effect of methanol and optimal nitrogen concentration for PHB production was confirmed, providing a basis for future physiological analysis and conditions for process scale-up.

Keywords: methane, methanol, methanotrophs, polyhydroxybutyrate, methylocystis sp. rockwell, single carbon bioconversions

Procedia PDF Downloads 171
8408 Degradation of Heating, Ventilation, and Air Conditioning Components across Locations

Authors: Timothy E. Frank, Josh R. Aldred, Sophie B. Boulware, Michelle K. Cabonce, Justin H. White

Abstract:

Materials degrade at different rates in different environments depending on factors such as temperature, aridity, salinity, and solar radiation. Therefore, predicting asset longevity depends, in part, on the environmental conditions to which the asset is exposed. Heating, ventilation, and air conditioning (HVAC) systems are critical to building operations yet are responsible for a significant proportion of their energy consumption. HVAC energy use increases substantially with slight operational inefficiencies. Understanding the environmental influences on HVAC degradation in detail will inform maintenance schedules and capital investment, reduce energy use, and increase lifecycle management efficiency. HVAC inspection records spanning 14 years from 21 locations across the United States were compiled and associated with the climate conditions to which they were exposed. Three environmental features were explored in this study: average high temperature, average low temperature, and annual precipitation, as well as four non-environmental features. Initial insights showed no correlations between individual features and the rate of HVAC component degradation. Using neighborhood component analysis, however, the most critical features related to degradation were identified. Two models were considered, and results varied between them. However, longitude and latitude emerged as potentially the best predictors of average HVAC component degradation. Further research is needed to evaluate additional environmental features, increase the resolution of the environmental data, and develop more robust models to achieve more conclusive results.

Keywords: climate, degradation, HVAC, neighborhood component analysis

Procedia PDF Downloads 431
8407 Considerations upon Structural Health Monitoring of Small to Medium Wind Turbines

Authors: Nicolae Constantin, Ştefan Sorohan

Abstract:

The small and medium wind turbines are running in quite different conditions as compared to the big ones. Consequently, they need also a different approach concerning the structural health monitoring (SHM) issues. There are four main differences between the above mentioned categories: (i) significantly smaller dimensions, (ii) considerably higher rotation speed, (iii) generally small distance between the turbine and the energy consumer and (iv) monitoring assumed in many situations by the owner. In such conditions, nondestructive inspections (NDI) have to be made as much as possible with affordable, yet effective techniques, requiring portable and accessible equipment. Additionally, the turbines and accessories should be easy to mount, dispose and repair. As the materials used for such unit can be metals, composites and combined, the technologies should be adapted accordingly. An example in which the two materials co-exist is the situation in which the damaged metallic skin of a blade is repaired with a composite patch. The paper presents the inspection of the bonding state of the patch, using portable ultrasonic equipment, able to put in place the Lamb wave method, which proves efficient in global and local inspections as well. The equipment is relatively easy to handle and can be borrowed from specialized laboratories or used by a community of small wind turbine users, upon the case. This evaluation is the first in a row, aimed to evaluate efficiency of NDI performed with rather accessible, less sophisticated equipment and related inspection techniques, having field inspection capabilities. The main goal is to extend such inspection procedures to other components of the wind power unit, such as the support tower, water storage tanks, etc.

Keywords: structural health monitoring, small wind turbines, non-destructive inspection, field inspection capabilities

Procedia PDF Downloads 340