Search results for: root micro-geochemistry barrier
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1889

Search results for: root micro-geochemistry barrier

389 Utilization of Cervical Cancer Screening Among HIV Infected Women in Nairobi, Kenya

Authors: E. Njuguna, S. Ilovi, P. Muiruri, K. Mutai, J. Kinuthia, P. Njoroge

Abstract:

Introduction: Cervical cancer is the commonest cause of cancer-related morbidity and mortality among women in developing countries in Sub Saharan Africa. Screening for cervical cancer in all women regardless of HIV status is crucial for the early detection of cancer of the cervix when treatment is most effective in curing the disease. It is particularly more important to screen HIV infected women as they are more at risk of developing the disease and progressing faster once infected with HPV (Human Papilloma Virus). We aimed to determine the factors affecting the utilization of cervical cancer screenings among HIV infected women above 18 years of age at Kenyatta National Hospital (KNH) Comprehensive Care Center (CCC). Materials and Methods: A cross-sectional mixed quantitative and qualitative study involving randomly and purposefully selected HIV positive female respectively was conducted. Qualitative data collection involved 4 focus group discussions of eligible female participants while quantitative data were acquired by one to one interviewer administered structured questionnaires. The outcome variable was the utilization of cervical cancer screening. Data were entered into Access data base and analyzed using Stata version 11.1. Qualitative data were analyzed after coding for significant clauses and transcribing to determine themes arising. Results: We enrolled a total of 387 patients, mean age (IQ range) 40 years (36-44). Cervical cancer screening utilization was 46% despite a health care provider recommendation of 85%. The screening results were reported as normal in 72 of 81 (88.9%) and abnormal 7 of 81(8.6%) of the cases. Those who did not know their result were 2 of 81(2.5%). Patients were less likely to utilize the service with increasing number of years attending the clinic (OR 0.9, 95% CI 0.86-0.99, p-value 0.02), but more likely to utilize the service if recommendation by a staff was made (OR 10, 95% CI 4.2-23.9, p<0.001), and if cervical screening had been done before joining KNH CCC (OR 2.9, 95% CI 1.7-4.9, p < 0.001). Similarly, they were more likely to rate the services on cervical cancer screening as good (OR 5.0, 95% CI 1.7-3.4, p <0.001) and very good (OR 8.1, 95% CI 2.5-6.1, p<0.001) if they had utilized the service. The main barrier themes emerging from qualitative data included fear of screening due to excessive pain or bleeding, lack of proper communication on screening procedures and increased waiting time. Conclusions: Utilization of cervical cancer screening services was low despite health care recommendation. Patient socio-demographic characteristics did not influence whether or not they utilized the services, indicating the important role of the health care provider in the referral and provision of the service.

Keywords: cervical, cancer, HIV, women, comprehensive care center

Procedia PDF Downloads 275
388 Varying Frequency Application of Vermicast as Supplemented with 19-19-19+Me in the Agronomic Performance of Lettuce (Lactuca sativa)

Authors: Jesryl B. Paulite, Eixer Niel V. Enesco

Abstract:

Lettuce is not well known in the lowland locality in the tropical countries like Philippines. Farmers thought that this crop is not adaptable to the climate that we have in lowland. But some new varieties can tolerate warmer conditions. The massive use of pesticides in lettuce production might chronically affect human health and environment. The move of the Philippine government is toward organic. One of the organic material is vermicompost. It is an organic fertilizer that serves as soil conditioner and enhances soil fertility and promotes vigorous and healthy crop growth and Supplementation of 19-19-19+M.E. will make it better since it contains N-P-K and selected microelements to meet the nutritive requirements of the crop. The experiment was conducted at Purok 3, Brgy. Tiburcia, Kapalong, Davao del Norte from February 6, 2014 to March 4, 2014. The study was conducted to determine the effect of varying frequency application of vermicast as supplemented with 19-19-19+M.E. in lettuce. Specifically, this aimed to 1.) Identify the agronomic performance of lettuce as affected by varying frequency application of vermicast as supplemented with 19-19-19+M.E.; 2.) Assess the economic profitability of lettuce as applied with vermicast as supplemented with 19-19-19+M.E. The study was laid out in Randomized Complete Block Design (RCBD) with four treatments and three replications. The treatments were as follow: T1 – Untreated, T2 - Weekly Application, T3- Bi-weekly Application, and T4- Monthly Application. The data on percent (%) mortality were transformed using square root of transformation before Analysis of Variance (ANOVA). Results revealed not significant in terms of percent mortality in weekly and monthly application of the treatment having a mean of 1.76 % and 3.09 %. However, Significant differences were observed in agronomic performances such as; plant height with a mean of 10.63 cm in weekly application and 6.40 cm for the untreated, leaf width with a mean of 10.80 cm for the weekly application and 6.03 for the untreated, fresh weight with a mean of 25.67 g for the weekly application and 6.83 g for the untreated, and yield with a mean of 1,208.33 kg/ha for the weekly application and 327.08 kg/ha for the untreated, respectively. Results further exposed that profitability of lettuce in terms of Return of Production Cost (RPC) were; bi-weekly with 91.01 %, monthly with 68.20 %, weekly with 25.34 % and untreated (control) with 16.69 %.

Keywords: agronomic performance, economic profitability, vermicast, percent mortality, 19-19-19+ME

Procedia PDF Downloads 446
387 An Exploratory Study on the Level of Awareness and Common Barriers of Physicians on Overweight and Obesity Management in Bangladesh

Authors: Kamrun Nahar Koly, Saimul Islam

Abstract:

Overweight and obesity is increasing at an alarming rate and a leading risk factor for morbidity throughout the world. In a country like Bangladesh where under nutrition and overweight both co-exist at the same time, but this issue has been underexplored as expected. The aim of the present study was to assess the knowledge, attitudes and identify the barriers of the physicians regarding overweight and obesity management on an urban hospital of Dhaka city in Bangladesh. A simple cross sectional study was conducted at two selected government and two private hospital to assess the knowledge, attitude and common barriers regarding overweight and obesity management among healthcare professionals. One hundred and fifty five physicians were surveyed. A standard questionnaire was constructed in local language and interview was administrated. Among the 155 physicians, majority 53 (34.20%) were working on SMC, 36 (23.20%) from DMC, 33 (21.30%) were based on SSMC and the rest 33 (21.30%) were from HFRCMH. Mean age of the study physicians were 31.88±5.92. Majority of the physicians 80 (51.60%) were not able to answer the correct prevalence of obesity but also a substantial number of them 75(48.40%) could mark the right answer. Among the physicians 150 (96.77%) reported BMI as a diagnostic index for overweight and obesity, where as 43 (27.74%) waist circumference, 30 (19.35%) waist hip ratio and 26 (16.77%) marked mid-arm circumference. A substantial proportion 71 (46.70%) of the physicians thought that they do not have much to do controlling weight problem in Bangladesh context though it has been opposed by 42 (27.60%) of the physicians and 39(25.70%) was neutral to comment. The majority of them 147 (96.1%) thought that a family based education program would be beneficial followed by 145 (94.8%) physicians mentioned about raising awareness among mothers as she is the primary caregiver. The idea of a school based education program will also help to early intervene referred by 142 (92.8%) of the physicians. Community based education program was also appreciated by 136 (89.5%) of the physicians. About 74 (47.7%) of them think that the patients still lack in motivation to maintain their weight properly at the same time too many patients to deal with can be a barrier as well assumed by 73 (47.1%) of them. Lack of national policy or management guideline can act as an obstacle told by 60 (38.7%) of the physicians. The relationship of practicing as a part of the general examination and chronic disease management was statistically significant (p<0.05) with physician occupational status. As besides, perceived barriers like lack of parents support, lack of a national policy was statistically significant (p<0.05) with physician occupational status. For the young physician, more training programme will be needed to transform their knowledge and attitude into practice. However, several important barriers interface for the physician treatment efforts and need to address.

Keywords: obesity management, physician, awareness, barriers, Bangladesh

Procedia PDF Downloads 164
386 Chemotrophic Signal Exchange between the Host Plant Helianthemum sessiliflorum and Terfezia boudieri

Authors: S. Ben-Shabat, T. Turgeman, O. Leubinski, N. Roth-Bejerano, V. Kagan-Zur, Y. Sitrit

Abstract:

The ectomycorrhizal (ECM) desert truffle Terfezia boudieri produces edible fruit bodies and forms symbiosis with its host plant Helianthemum sessiliflorum (Cistaceae) in the Negev desert of Israel. The symbiosis is vital for both partners' survival under desert conditions. Under desert habitat conditions, ECMs must form symbiosis before entering the dry season. To secure a successful encounter, in the course of evolution, both partners have responded by evolving special signals exchange that facilitates recognition. Members of the Cistaceae family serve as host plants for many important truffles. Conceivably, during evolution a common molecule present in Cistaceae plants was recruited to facilitate successful encounter with ectomycorrhizas. Arbuscular vesicular fungi (AM) are promiscuous in host preferences, in contrast, ECM fungi show specificity to host plants. Accordingly, we hypothesize that H. sessiliflorum secretes a chemotrophic-signaling, which is common to plants hosting ECM fungi belonging to the Pezizales. However, thus far no signaling molecules have been identified in ECM fungi. We developed a bioassay for chemotrophic activity. Fractionation of root exudates revealed a substance with chemotrophic activity and molecular mass of 534. Following the above concept, screening the transcriptome of Terfezia, grown under chemoattraction, discovered genes showing high homology to G proteins-coupled receptors of plant pathogens involved in positive chemotaxis and chemotaxis suppression. This study aimed to identify the active molecule using analytical methods (LC-MS, NMR etc.). This should contribute to our understanding of how ECM fungi communicate with their hosts in the rhizosphere. In line with the ability of Terfezia to form also endomycorrhizal symbiosis like AM fungi, analysis of the mechanisms may likewise be applicable to AM fungi. Developing methods to manipulate fungal growth by the chemoattractant can open new ways to improve inoculation of plants.

Keywords: chemotrophic signal, Helianthemum sessiliflorum, Terfezia boudieri, ECM

Procedia PDF Downloads 409
385 Critical Factors Boosting the Future Economy of Eritrea: An Empirical Approach

Authors: Biniam Tedros Kahsay, Yohannes Yebabe Tesfay

Abstract:

Eritrea is a country in the East of Africa. The country is a neighbor of Djibouti, Ethiopia, and Sudan and is bordered by the Red Sea. The country declared its independence from Ethiopia in 1993. Thus, Eritrea has a lot of commonalities with the Northern Part of Ethiopia's tradition, religion, and languages. Many economists suggested that Eritrea is in a very strategic position for world trade roots and has an impact on geopolitics. This study focused on identifying the most important factor in boosting the Eritrean Economy. The paper collected big secondary data from the World Bank, International Trade and Tariff Data (WTO), East African Community (EAC), Ethiopian Statistical Agency (ESA), and the National Statistics Office (Eritrea). Economists consider economic and population growth in determining trade belts in East Africa. One of the most important Trade Belt that will potentially boost the Eritrean economy is the root of Eritrea (Massawa)->Eritea, (Asmara)->Tigray, (Humora)->Tigray, (Dansha)-> Gondar-> Gojjam-> Benshangual Gumuz => {Oromia, South Sudan}->Uganda. The estimate showed that this is one of the biggest trade roots in East Africa and has a participation of more than 150 million people. We employed various econometric analyses to predict the GDP of Eritrea, considering the future trade belts in East Africa. The result showed that the economy of Eritrea from the Trade Belt will have an elasticity estimate of 65.87% of the GDP of Ethiopia, 3.32% of the GDP of South Sudan, and 0.09% of the GDP of Uganda. The result showed that the existence of war has an elasticity of -93% to the GDP of the country. Thus, if Eritrea wants to strengthen its economy from the East African Trade Belt, the country needs to permanently avoid war in the region. Essentially, the country needs to establish a collaborative platform with the Northern part of Ethiopia (Tigray). Thus, establishing a mutual relationship with Tigray will boost the Eritrean economy. In that regard, Eritrean scholars and policymakers need to work on establishing the East African Trade Belt to boost their economy.

Keywords: Eritrea, east Africa trade belt, GDP, cointegration analysis, critical path analysis

Procedia PDF Downloads 58
384 The Challenges of Well Integrity on Plug and Abandoned Wells for Offshore Co₂ Storage Site Containment

Authors: Siti Noor Syahirah Mohd Sabri

Abstract:

The oil and gas industry is committed to net zero carbon emissions because the consequences of climate change could be catastrophic unless responded to very soon. One way of reducing CO₂ emissions is to inject it into a depleted reservoir buried underground. This greenhouse gas reduction technique significantly reduces CO₂ released into the atmosphere. In general, depleted oil and gas reservoirs provide readily available sites for the storage of CO₂ in offshore areas. This is mainly due to the hydrocarbons have been optimally produced and the existence of voids for effective CO₂ storage. Hence, make it a good candidate for a CO₂ well injector location. Geological storage sites are often evaluated in terms of capacity, injectivity and containment. Leakage through the cap rock or existing well is the main concern in the depleted fields. In order to develop these fields as CO₂ storage sites, the long-term integrity of wells drilled in these oil & gas fields must be ascertained to ensure good CO₂ containment. Well, integrity is often defined as the ability to contain fluids without significant leakage through the project lifecycle. Most plugged and abandoned (P & A) wells in Peninsular Malaysia have drilled 20 – 30 years ago and were not designed to withstand downhole conditions having >50%vol CO₂ and CO₂/H₂O mixture. In addition, Corrosive-Resistant Alloy (CRA) tubular and CO₂-resistant cement was not used during good construction. The reservoir pressure and temperature conditions may have further degraded the material strength and elevated the corrosion rate. Understanding all the uncertainties that may have affected cement-casing bonds, such as the quality of cement behind the casing, subsidence effect, corrosion rate, etc., is the first step toward well integrity evaluation. Secondly, proper quantification of all the uncertainties involved needs to be done to ensure long-term underground storage objectives of CO₂ are achieved. This paper will discuss challenges associated with estimating the performance of well barrier elements in existing P&A wells. Risk ranking of the existing P&A wells is to be carried out in order to ensure the integrity of the storage site is maintained for long-term CO₂ storage. High-risk existing P&A wells are to be re-entered to restore good integrity and to reduce future leakage that may happen. In addition, the requirement to design a fit-for-purpose monitoring and mitigation technology package for potential CO₂ leakage/seepage in the marine environment will be discussed accordingly. The holistic approach will ensure that the integrity is maintained, and CO₂ is contained underground for years to come.

Keywords: CCUS, well integrity, co₂ storage, offshore

Procedia PDF Downloads 90
383 The Study of the Absorption and Translocation of Chromium by Lygeum spartum in the Mining Region of Djebel Hamimat and Soil-Plant Interaction

Authors: H. Khomri, A. Bentellis

Abstract:

Since century of the Development Activities extraction and a dispersed mineral processing Toxic metals and much more contaminated vast areas occupied by what they natural outcrops. New types of metalliferous habitats are so appeared. A species that is Lygeum spartum attracted our curiosity because apart from its valuable role in desertification, it is apparently able to exclude antimony and other metals can be. This species, green leaf blades which are provided as cattle feed, would be a good subject for phytoremediation of mineral soils. The study of absorption and translocation of chromium by the Lygeum spartum in the mining region of Djebel Hamimat and the interaction soil-plant, revealed that soils of this species living in this region are alkaline, calcareous majority in their fine texture medium and saline in their minority. They have normal levels of organic matter. They are moderately rich in nitrogen. They contain total chromium content reaches a maximum of 66,80 mg Kg^(-1) and a total absence of soluble chromium. The results of the analysis of variance of the difference between bare soils and soils appear Lygeum spartum made a significant difference only for the silt and organic matter. But for the other variables analyzed this difference is not significant. Thus, this plant has only one action on the amendment, only the levels of silt and organic matter in soils. The results of the multiple regression of the chromium content of the roots according to all soil variables studied did appear that among the studied variables included in the model, only the electrical conductivity and clay occur in the explanation of contents chromium in roots. The chromium content of the aerial parts analyzed by regression based on all studied soil variables allows us to see only the variables: electrical conductivity and content of chromium in the root portion involved in the explanation of the content chromium in the aerial part.

Keywords: absorption, translocation, analysis of variance, chrome, Lygeum spartum, multiple regression, the soil variables

Procedia PDF Downloads 268
382 Molecular Interactions between Vicia Faba L. Cultivars and Plant Growth Promoting Rhizobacteria (PGPR), Utilized as Yield Enhancing 'Plant Probiotics'

Authors: Eleni Stefanidou, Nikolaos Katsenios, Ioanna Karamichali, Aspasia Efthimiadou, Panagiotis Madesis

Abstract:

The excessive use of pesticides and fertilizers has significant environmental and human health-related negative effects. In the frame of the development of sustainable agriculture practices, especially in the context of extreme environmental changes (climate change), it is important to develop alternative practices to increase productivity and biotic and abiotic stress tolerance. Beneficial bacteria, such as symbiotic bacteria in legumes (rhizobia) and symbiotic or free-living Plant Growth Promoting Rhizobacteria (PGPR), which could act as "plant probiotics", can promote plant growth and significantly increase the resistance of crops under adverse environmental conditions. In this study, we explored the symbiotic relationships between Faba bean (Vicia faba L.) cultivars with different PGPR bacteria, aiming to identify the possible influence on yield and biotic-abiotic phytoprotection benefits. Transcriptomic analysis of root and whole plant samples was executed for two Vicia faba L. cultivars (Polikarpi and Solon) treated with selected PGPR bacteria (6 treatments: B. subtilis + Rhizobium-mixture, A. chroococcum + Rhizobium-mixture, B. subtilis, A. chroococcum and Rhizobium-mixture). Preliminary results indicate a significant yield (Seed weight and Total number of pods) increase in both varieties, ranging around 25%, in comparison to the control, especially for the Solon cultivar. The increase was observed for all treatments, with the B. subtilis + Rhizobium-mixture treatment being the highest performing. The correlation of the physiological and morphological data with the transcriptome analysis revealed molecular mechanisms and molecular targets underlying the observed yield increase, opening perspectives for the use of nitrogen-fixing bacteria as a natural, more ecological enhancer of legume crop productivity.

Keywords: plant probiotics, PGPR, legumes, sustainable agriculture

Procedia PDF Downloads 80
381 Neurofeedback for Anorexia-RelaxNeuron-Aimed in Dissolving the Root Neuronal Cause

Authors: Kana Matsuyanagi

Abstract:

Anorexia Nervosa (AN) is a psychiatric disorder characterized by a relentless pursuit of thinness and strict restriction of food. The current therapeutic approaches for AN predominantly revolve around outpatient psychotherapies, which create significant financial barriers for the majority of affected patients, hindering their access to treatment. Nonetheless, AN exhibit one of the highest mortality and relapse rates among psychological disorders, underscoring the urgent need to provide patients with an affordable self-treatment tool, enabling those unable to access conventional medical intervention to address their condition autonomously. To this end, a neurofeedback software, termed RelaxNeuron, was developed with the objective of providing an economical and portable means to aid individuals in self-managing AN. Electroencephalography (EEG) was chosen as the preferred modality for RelaxNeuron, as it aligns with the study's goal of supplying a cost-effective and convenient solution for addressing AN. The primary aim of the software is to ameliorate the negative emotional responses towards food stimuli and the accompanying aberrant eye-tracking patterns observed in AN patient, ultimately alleviating the profound fear towards food an elemental symptom and, conceivably, the fundamental etiology of AN. The core functionality of RelaxNeuron hinges on the acquisition and analysis of EEG signals, alongside an electrocardiogram (ECG) signal, to infer the user's emotional state while viewing dynamic food-related imagery on the screen. Moreover, the software quantifies the user's performance in accurately tracking the moving food image. Subsequently, these two parameters undergo further processing in the subsequent algorithm, informing the delivery of either negative or positive feedback to the user. Preliminary test results have exhibited promising outcomes, suggesting the potential advantages of employing RelaxNeuron in the treatment of AN, as evidenced by its capacity to enhance emotional regulation and attentional processing through repetitive and persistent therapeutic interventions.

Keywords: Anorexia Nervosa, fear conditioning, neurofeedback, BCI

Procedia PDF Downloads 43
380 Barriers to Participation in Sport for Children without Disability: A Systematic Review

Authors: S. Somerset, D. J. Hoare

Abstract:

Participation in sport is linked to better mental and physical health in children and adults. Studies have shown children who participate in sports benefit from improved social skills, self-confidence, communication skills and a better quality of life. Children who participate in sports from a young age are also more likely to continue to have active lifestyles during adulthood. This is an important consideration with a nation where physical activity levels are declining and the incidences of obesity are rising. Getting children active and keeping them active can provide long term health benefits to the individual but also a potential reduction in health costs in the future. This systematic review aims to identify the barriers to participation in sport for children aged up to 18 years and encompasses both qualitative and quantitative studies. The bibliographic databases, EMBASE, Medline, CINAHL and SportDiscus were searched. Additional hand searches were carried out on review articles found in the searches to identify any studies that may have been missed. Studies involving children up to 18 years without additional needs focusing on barriers to participation in sport were included. Randomised control trials, policy guidelines, studies with sport as an intervention, studies focusing on the female athlete triad, tobacco abuse, alcohol abuse, drug abuse, pre exercise testing, and cardiovascular disease were excluded. Abstract review, full paper review and quality appraisal were conducted by two researchers. A consensus meeting took place to resolve any differences at the abstract, full text and data extraction / quality appraisal stages. The CASP qualitative studies appraisal tool and the CASP cohort studies tool (excluding question 3 and 4 which refer to interventions) were used for quality appraisal in this review. The review identified several salient barriers to participation in sport for children. These barriers ranged from the uniform worn during school physical education lessons to the weather during participation in sport. The most commonly identified barriers in the review include parental support, time allocation, location of the activity and the cost of the activity. Therefore, it would be beneficial for a greater provision to be made within the school environment for children to participate sport. This can reduce the cost and time commitment required from parents to encourage participation. This would help to increase activity levels of children, which ultimately can only be a good thing.

Keywords: barrier, children, participation, sport

Procedia PDF Downloads 361
379 The Evolution of the Israel Defence Forces’ Information Operations: A Case Study of the Israel Defence Forces' Activities in the Information Domain 2006–2014

Authors: Teemu Saressalo

Abstract:

This article examines the evolution of the Israel Defence Forces’ information operation activities during an eight-year timespan from the 2006 war with Hezbollah to more recent operations such as Pillar of Defence and Protective Edge. To this end, the case study will show a change in the Israel Defence Forces’ activities in the information domain. In the 2006 war with Hezbollah in Lebanon, Israel inflicted enormous damage on the Lebanese infrastructure, leaving more than 1,200 people dead and 4,400 injured. Casualties among Hezbollah, Israel’s main adversary, were estimated to range from 250 to 700 fighters. Damage to the Lebanese infrastructure was estimated at over USD 2.5bn, with almost 2,000 houses and buildings damaged and destroyed. Even this amount of destruction did not force Hezbollah to yield and while both sides were claiming victory in the war, Israel paid a heavier price in political backlashes and loss of reputation, mainly due to failures in the media and the way in which the war was portrayed and perceived in Israel and abroad. Much of this can be credited to Hezbollah’s efficient use of the media, and Israel’s failure to do so. Israel managed the next conflict it was engaged in completely differently – it had learnt its lessons and built up new ways to counter its adversary’s propaganda and media operations. In Operation Cast Lead at the turn of 2009, Hamas, Israel’s adversary and Gaza’s dominating faction, was not able to utilize the media in the same way that Hezbollah had. By creating a virtual and physical barrier around the Gaza Strip, Israel almost totally denied its adversary access to the worldwide media, and by restricting the movement of journalists in the area, Israel could let its voice be heard above all. The operation Cast Lead began with a deception operation, which caught Hamas totally off guard. The 21-day campaign left the Gaza Strip devastated, but did not cause as much protest in Israel during the operation as the 2006 war did, mainly due to almost total Israeli dominance in the information dimension. The most important outcome from the Israeli perspective was the fact that Operation Cast Lead was assessed to be a success and the operation enjoyed domestic support along with support from many western nations, which had condemned Israeli actions in the 2006 war. Later conflicts have shown the same tendency towards virtually total dominance in the information domain, which has had an impact on target audiences across the world. Thus, it is clear that well-planned and conducted information operations are able to shape public opinion and influence decision-makers, although Israel might have been outpaced by its rivals.

Keywords: Hamas, Hezbollah, information operations, Israel Defence Forces

Procedia PDF Downloads 237
378 Trip Reduction in Turbo Machinery

Authors: Pranay Mathur, Carlo Michelassi, Simi Karatha, Gilda Pedoto

Abstract:

Industrial plant uptime is top most importance for reliable, profitable & sustainable operation. Trip and failed start has major impact on plant reliability and all plant operators focussed on efforts required to minimise the trips & failed starts. The performance of these CTQs are measured with 2 metrics, MTBT(Mean time between trips) and SR (Starting reliability). These metrics helps to identify top failure modes and identify units need more effort to improve plant reliability. Baker Hughes Trip reduction program structured to reduce these unwanted trip 1. Real time machine operational parameters remotely available and capturing the signature of malfunction including related boundary condition. 2. Real time alerting system based on analytics available remotely. 3. Remote access to trip logs and alarms from control system to identify the cause of events. 4. Continuous support to field engineers by remotely connecting with subject matter expert. 5. Live tracking of key CTQs 6. Benchmark against fleet 7. Break down to the cause of failure to component level 8. Investigate top contributor, identify design and operational root cause 9. Implement corrective and preventive action 10. Assessing effectiveness of implemented solution using reliability growth models. 11. Develop analytics for predictive maintenance With this approach , Baker Hughes team is able to support customer in achieving their Reliability Key performance Indicators for monitored units, huge cost savings for plant operators. This Presentation explains these approach while providing successful case studies, in particular where 12nos. of LNG and Pipeline operators with about 140 gas compressing line-ups has adopted these techniques and significantly reduce the number of trips and improved MTBT

Keywords: reliability, availability, sustainability, digital infrastructure, weibull, effectiveness, automation, trips, fail start

Procedia PDF Downloads 76
377 Effect of Nanoparticles on Wheat Seed Germination and Seedling Growth

Authors: Pankaj Singh Rawat, Rajeew Kumar, Pradeep Ram, Priyanka Pandey

Abstract:

Wheat is an important cereal crop for food security. Boosting the wheat production and productivity is the major challenge across the nation. Good quality of seed is required for maintaining optimum plant stand which ultimately increases grain yield. Ensuring a good germination is one of the key steps to ensure proper plant stand and moisture assurance during seed germination may help to speed up the germination. The tiny size of nanoparticles may help in entry of water into seed without disturbing their internal structure. Considering above, a laboratory experiment was conducted during 2012-13 at G.B. Pant University of Agriculture and Technology, Pantnagar, India. The completely randomized design was used for statistical analysis. The experiment was conducted in two phases. In the first phase, the appropriate concentration of nanoparticles for seed treatment was screened. In second phase seed soaking hours of nanoparticles for better seed germination were standardized. Wheat variety UP2526 was taken as test crop. Four nanoparticles (TiO2, ZnO, nickel and chitosan) were taken for study. The crop germination studies were done in petri dishes and standard package and practices were used to raise the seedlings. The germination studies were done by following standard procedure. In first phase of the experiment, seeds were treated with 50 and 300 ppm of nanoparticles and control was also maintained for comparison. In the second phase of experiment, seeds were soaked for 4 hours, 6 hours and 8 hours with 50 ppm nanoparticles of TiO2, ZnO, nickel and chitosan along with control treatment to identify the soaking time for better seed germination. Experiment revealed that the application of nanoparticles help to enhance seed germination. The study revealed that seed treatment with  nanoparticles at 50 ppm concentration increases root length, shoot length, seedling length, shoot dry weight, seedling dry weight, seedling vigour index I and seedling vigour index II as compared to seed soaking at 300 ppm concentration. This experiment showed that seed soaking up to 4 hr was better as compared to 6 and 8 hrs. Seed soaking with nanoparticles specially TiO2, ZnO, and chitosan proved to enhance germination and seedling growth indices of wheat crop.

Keywords: nanoparticles, seed germination, seed soaking, wheat

Procedia PDF Downloads 227
376 Dust Particle Removal from Air in a Self-Priming Submerged Venturi Scrubber

Authors: Manisha Bal, Remya Chinnamma Jose, B.C. Meikap

Abstract:

Dust particles suspended in air are a major source of air pollution. A self-priming submerged venturi scrubber proven very effective in cases of handling nuclear power plant accidents is an efficient device to remove dust particles from the air and thus aids in pollution control. Venturi scrubbers are compact, have a simple mode of operation, no moving parts, easy to install and maintain when compared to other pollution control devices and can handle high temperatures and corrosive and flammable gases and dust particles. In the present paper, fly ash particles recognized as a high air pollutant substance emitted mostly from thermal power plants is considered as the dust particle. Its exposure through skin contact, inhalation and indigestion can lead to health risks and in severe cases can even root to lung cancer. The main focus of this study is on the removal of fly ash particles from polluted air using a self-priming venturi scrubber in submerged conditions using water as the scrubbing liquid. The venturi scrubber comprising of three sections: converging section, throat and diverging section is submerged inside a water tank. The liquid enters the throat due to the pressure difference composed of the hydrostatic pressure of the liquid and static pressure of the gas. The high velocity dust particles atomize the liquid droplets at the throat and this interaction leads to its absorption into water and thus removal of fly ash from the air. Detailed investigation on the scrubbing of fly ash has been done in this literature. Experiments were conducted at different throat gas velocities, water levels and fly ash inlet concentrations to study the fly ash removal efficiency. From the experimental results, the highest fly ash removal efficiency of 99.78% is achieved at the throat gas velocity of 58 m/s, water level of height 0.77m with fly ash inlet concentration of 0.3 x10⁻³ kg/Nm³ in the submerged condition. The effect of throat gas velocity, water level and fly ash inlet concentration on the removal efficiency has also been evaluated. Furthermore, experimental results of removal efficiency are validated with the developed empirical model.

Keywords: dust particles, fly ash, pollution control, self-priming venturi scrubber

Procedia PDF Downloads 164
375 Utilizing Spatial Uncertainty of On-The-Go Measurements to Design Adaptive Sampling of Soil Electrical Conductivity in a Rice Field

Authors: Ismaila Olabisi Ogundiji, Hakeem Mayowa Olujide, Qasim Usamot

Abstract:

The main reasons for site-specific management for agricultural inputs are to increase the profitability of crop production, to protect the environment and to improve products’ quality. Information about the variability of different soil attributes within a field is highly essential for the decision-making process. Lack of fast and accurate acquisition of soil characteristics remains one of the biggest limitations of precision agriculture due to being expensive and time-consuming. Adaptive sampling has been proven as an accurate and affordable sampling technique for planning within a field for site-specific management of agricultural inputs. This study employed spatial uncertainty of soil apparent electrical conductivity (ECa) estimates to identify adaptive re-survey areas in the field. The original dataset was grouped into validation and calibration groups where the calibration group was sub-grouped into three sets of different measurements pass intervals. A conditional simulation was performed on the field ECa to evaluate the ECa spatial uncertainty estimates by the use of the geostatistical technique. The grouping of high-uncertainty areas for each set was done using image segmentation in MATLAB, then, high and low area value-separate was identified. Finally, an adaptive re-survey was carried out on those areas of high-uncertainty. Adding adaptive re-surveying significantly minimized the time required for resampling whole field and resulted in ECa with minimal error. For the most spacious transect, the root mean square error (RMSE) yielded from an initial crude sampling survey was minimized after an adaptive re-survey, which was close to that value of the ECa yielded with an all-field re-survey. The estimated sampling time for the adaptive re-survey was found to be 45% lesser than that of all-field re-survey. The results indicate that designing adaptive sampling through spatial uncertainty models significantly mitigates sampling cost, and there was still conformity in the accuracy of the observations.

Keywords: soil electrical conductivity, adaptive sampling, conditional simulation, spatial uncertainty, site-specific management

Procedia PDF Downloads 132
374 Relativity in Toddlers' Understanding of the Physical World as Key to Misconceptions in the Science Classroom

Authors: Michael Hast

Abstract:

Within their first year, infants can differentiate between objects based on their weight. By at least 5 years children hold consistent weight-related misconceptions about the physical world, such as that heavy things fall faster than lighter ones because of their weight. Such misconceptions are seen as a challenge for science education since they are often highly resistant to change through instruction. Understanding the time point of emergence of such ideas could, therefore, be crucial for early science pedagogy. The paper thus discusses two studies that jointly address the issue by examining young children’s search behaviour in hidden displacement tasks under consideration of relative object weight. In both studies, they were tested with a heavy or a light ball, and they either had information about one of the balls only or both. In Study 1, 88 toddlers aged 2 to 3½ years watched a ball being dropped into a curved tube and were then allowed to search for the ball in three locations – one straight beneath the tube entrance, one where the curved tube lead to, and one that corresponded to neither of the previous outcomes. Success and failure at the task were not impacted by weight of the balls alone in any particular way. However, from around 3 years onwards, relative lightness, gained through having tactile experience of both balls beforehand, enhanced search success. Conversely, relative heaviness increased search errors such that children increasingly searched in the location immediately beneath the tube entry – known as the gravity bias. In Study 2, 60 toddlers aged 2, 2½ and 3 years watched a ball roll down a ramp and behind a screen with four doors, with a barrier placed along the ramp after one of four doors. Toddlers were allowed to open the doors to find the ball. While search accuracy generally increased with age, relative weight did not play a role in 2-year-olds’ search behaviour. Relative lightness improved 2½-year-olds’ searches. At 3 years, both relative lightness and relative heaviness had a significant impact, with the former improving search accuracy and the latter reducing it. Taken together, both studies suggest that between 2 and 3 years of age, relative object weight is increasingly taken into consideration in navigating naïve physical concepts. In particular, it appears to contribute to the early emergence of misconceptions relating to object weight. This insight from developmental psychology research may have consequences for early science education and related pedagogy towards early conceptual change.

Keywords: conceptual development, early science education, intuitive physics, misconceptions, object weight

Procedia PDF Downloads 190
373 The Effectiveness of Energy-related Tax in Curbing Transport-related Carbon Emissions: The Role of Green Finance and Technology in OECD Economies

Authors: Hassan Taimoor, Piotr Krajewski, Piotr Gabrielzcak

Abstract:

Being responsible for the largest source of energy-related emissions, the transportation sector is driven by more than half of global oil demand and total energy consumption, making it a crucial factor in tackling climate change and environmental degradation. The present study empirically tests the effectives of the energy-related tax (TXEN) in curbing transport-related carbon emissions (CO2TRANSP) in Organization for Economic Cooperation and Development (OECD) economies over the period of 1990-2020. Moreover, Green Finance (GF), Technology (TECH), and Gross domestic product (GDP) have also been added as explanatory factors which might affect CO2TRANSP emissions. The study employs the Method of Moment Quantile Regression (MMQR), an advance econometric technique to observe the variations along each quantile. Based on the results of the preliminary test, we confirm the presence of cross-sectional dependence and slope heterogeneity. Whereas the result of the panel unit root test report mixed order of variables’ integration. The findings reveal that rise in income level activates CO2TRANSP, confirming the first stage of Environmental Kuznet Hypothesis. Surprisingly, the present TXEN policies of OECD member states are not mature enough to tackle the CO2TRANSP emissions. However, the findings confirm that GF and TECH are solely responsible for the reduction in the CO2TRANSP. The outcomes of Bootstrap Quantile Regression (BSQR) further validate and support the earlier findings of MMQR. Based on the findings of this study, it is revealed that the current TXEN policies are too moderate, and an incremental and progressive rise in TXEN may help in a transition toward a cleaner and sustainable transportation sector in the study region.

Keywords: transport-related CO2 emissions, energy-related tax, green finance, technological development, oecd member states

Procedia PDF Downloads 77
372 Detection, Isolation, and Raman Spectroscopic Characterization of Acute and Chronic Staphylococcus aureus Infection in an Endothelial Cell Culture Model

Authors: Astrid Tannert, Anuradha Ramoji, Christina Ebert, Frederike Gladigau, Lorena Tuchscherr, Jürgen Popp, Ute Neugebauer

Abstract:

Staphylococcus aureus is a facultative intracellular pathogen, which by entering host cells may evade immunologic host response as well as antimicrobial treatment. In that way, S. aureus can cause persistent intracellular infections which are difficult to treat. Depending on the strain, S. aureus may persist at different intracellular locations like the phagolysosome. The first barrier invading pathogens from the blood stream that they have to cross are the endothelial cells lining the inner surface of blood and lymphatic vessels. Upon proceeding from an acute to a chronic infection, intracellular pathogens undergo certain biochemical and structural changes including a deceleration of metabolic processes to adopt for long-term intracellular survival and the development of a special phenotype designated as small colony variant. In this study, the endothelial cell line Ea.hy 926 was used as a model for acute and chronic S. aureus infection. To this end, Ea.hy 926 cells were cultured on QIAscout™ Microraft Arrays, a special graded cell culture substrate that contains around 12,000 microrafts of 200 µm edge length. After attachment to the substrate, the endothelial cells were infected with GFP-expressing S. aureus for 3 weeks. The acute infection and the development of persistent bacteria was followed by confocal laser scanning microscopy, scanning the whole Microraft Array for the presence and for detailed determination of the intracellular location of fluorescent intracellular bacteria every second day. After three weeks of infection representative microrafts containing infected cells, cells with protruded infections and cells that did never show any infection were isolated and fixed for Raman micro-spectroscopic investigation. For comparison, also microrafts with acute infection were isolated. The acquired Raman spectra are correlated with the fluorescence microscopic images to give hints about a) the molecular alterations in endothelial cells during acute and chronic infection compared to non-infected cells, and b) metabolic and structural changes within the pathogen when entering a mode of persistence within host cells. We thank Dr. Ruth Kläver from QIAGEN GmbH for her support regarding QIAscout technology. Financial support by the BMBF via the CSCC (FKZ 01EO1502) and from the DFG via the Jena Biophotonic and Imaging Laboratory (JBIL, FKZ PO 633/29-1, BA 1601/10-1) is highly acknowledged.

Keywords: correlative image analysis, intracellular infection, pathogen-host adaption, Raman micro-spectroscopy

Procedia PDF Downloads 181
371 Evaluation of the Effect of Milk Recording Intervals on the Accuracy of an Empirical Model Fitted to Dairy Sheep Lactations

Authors: L. Guevara, Glória L. S., Corea E. E, A. Ramírez-Zamora M., Salinas-Martinez J. A., Angeles-Hernandez J. C.

Abstract:

Mathematical models are useful for identifying the characteristics of sheep lactation curves to develop and implement improved strategies. However, the accuracy of these models is influenced by factors such as the recording regime, mainly the intervals between test day records (TDR). The current study aimed to evaluate the effect of different TDR intervals on the goodness of fit of the Wood model (WM) applied to dairy sheep lactations. A total of 4,494 weekly TDRs from 156 lactations of dairy crossbred sheep were analyzed. Three new databases were generated from the original weekly TDR data (7D), comprising intervals of 14(14D), 21(21D), and 28(28D) days. The parameters of WM were estimated using the “minpack.lm” package in the R software. The shape of the lactation curve (typical and atypical) was defined based on the WM parameters. The goodness of fit was evaluated using the mean square of prediction error (MSPE), Root of MSPE (RMSPE), Akaike´s Information Criterion (AIC), Bayesian´s Information Criterion (BIC), and the coefficient of correlation (r) between the actual and estimated total milk yield (TMY). WM showed an adequate estimate of TMY regardless of the TDR interval (P=0.21) and shape of the lactation curve (P=0.42). However, we found higher values of r for typical curves compared to atypical curves (0.9vs.0.74), with the highest values for the 28D interval (r=0.95). In the same way, we observed an overestimated peak yield (0.92vs.6.6 l) and underestimated time of peak yield (21.5vs.1.46) in atypical curves. The best values of RMSPE were observed for the 28D interval in both lactation curve shapes. The significant lowest values of AIC (P=0.001) and BIC (P=0.001) were shown by the 7D interval for typical and atypical curves. These results represent the first approach to define the adequate interval to record the regime of dairy sheep in Latin America and showed a better fitting for the Wood model using a 7D interval. However, it is possible to obtain good estimates of TMY using a 28D interval, which reduces the sampling frequency and would save additional costs to dairy sheep producers.

Keywords: gamma incomplete, ewes, shape curves, modeling

Procedia PDF Downloads 78
370 Sustainable Agriculture Practices Using Bacterial-mediated Alleviation of Salinity Stress in Crop Plants

Authors: Mohamed Trigui, Fatma Masmoudi, Imen Zouari

Abstract:

Massive utilizations of chemical fertilizer and chemical pesticides in agriculture sector to improve the farming productivity have created increasing environmental damages. Then, agriculture must become sustainable, focusing on production systems that respect the environment and help to reduce climate change. Isolation and microbial identification of new bacterial strains from naturally saline habitats and compost extracts could be a prominent way in pest management and crop production under saline conditions. In this study, potential mechanisms involved in plant growth promotion and suppressive activity against fungal diseases of a compost extract produced from poultry manure/olive husk compost and halotolerant and halophilic bacterial strains under saline stress were investigated. On the basis of the antimicrobial tests, different strains isolated from Sfax solar saltern (Tunisia) and from compost extracts were selected and tested for their plant growth promoting traits, such as siderophores production, nitrogen fixation, phosphate solubilization and the production of extracellular hydrolytic enzymes (protease and lipase) under in-vitro conditions. Among 450 isolated bacterial strains, 16 isolates showed potent antifungal activity against the tested plant pathogenic fungi. Their identification based on 16S rRNA gene sequence revealed they belonged to different species. Some of these strains were also characterized for their plant growth promoting capacities. Obtained results showed the ability of four strains belonging to Bacillus genesis to ameliorate germination rate and root elongation compared to the untreated positive controls. Combinatorial capacity of halotolerant bacteria with antimicrobial activity and plant growth promoting traits could be promising sources of interesting bioactive substances under saline stress.

Keywords: abiotic stress, biofertilizer, biotic stress, compost extract, halobacteria, plant growth promoting (PGP), soil fertility

Procedia PDF Downloads 91
369 Deregulation of Thorium for Room Temperature Superconductivity

Authors: Dong Zhao

Abstract:

Abstract—Extensive research on obtaining applicable room temperature superconductors meets the major barrier, and the record Tc of 135 K achieved via cuprate has been idling for decades. Even though, the accomplishment of higher Tc than the cuprate was made through pressurizing certain compounds composed of light elements, such as for the LaH10 and for the metallic hydrogen. Room temperature superconductivity under ambient pressure is still the preferred approach and is believed to be the ultimate solution for many applications. While racing to find the breakthrough method to achieve this room temperature Tc milestone in superconducting research, a report stated a discovery of a possible high-temperature superconductor, i.e., the thorium sulfide ThS. Apparently, ThS’s Tc can be at room temperature or even higher. This is because ThS revealed an unusual property of the ‘coexistence of high electrical conductivity and diamagnetism’. Noticed that this property of coexistence of high electrical conductivity and diamagnetism is in line with superconductors, meaning ThS is also at its superconducting state. Surprisingly, ThS owns the property of superconductivity at least at room temperature and under atmosphere pressure. Further study of the ThS’s electrical and magnetic properties in comparison with thorium di-iodide ThI2 concluded its molecular configuration as [Th4+(e-)2]S. This means the ThS’s cation is composed of a [Th4+(e-)2]2+ cation core. It is noticed that this cation core is built by an oxidation state +4 of thorium atom plus an electron pair on this thorium atom that resulted in an oxidation state +2 of this [Th4+(e-)2]2+ cation core. This special construction of [Th4+(e-)2]2+ cation core may lead to the ThS’s room temperature superconductivity because of this characteristic electron lone pair residing on the thorium atom. Since the study of thorium chemistry was carried out in the period of before 1970s. the exploration about ThS’s possible room temperature superconductivity would require resynthesizing ThS. This re-preparation of ThS will provide the sample and enable professionals to verify the ThS’s room temperature superconductivity. Regrettably, the current regulation prevents almost everyone from getting access to thorium metal or thorium compounds due to the radioactive nature of thorium-232 (Th-232), even though the radioactive level of Th-232 is extremely low with its half-life of 14.05 billion years. Consequently, further confirmation of ThS’s high-temperature superconductivity through experiments will be impossible unless the use of corresponding thorium metal and related thorium compounds can be deregulated. This deregulation would allow researchers to obtain the necessary starting materials for the study of ThS. Hopefully, the confirmation of ThS’s room temperature superconductivity can not only establish a method to obtain applicable superconductors but also to pave the way for fully understanding the mechanism of superconductivity.

Keywords: co-existence of high electrical conductivity and diamagnetism, electron pairing and electron lone pair, room temperature superconductivity, the special molecular configuration of thorium sulfide ThS

Procedia PDF Downloads 49
368 Trehalose Application Increased Membrane Stability and Cell Viability to Affect Growth of Wheat Genotypes under Heat Stress

Authors: S. K. Thind, Aparjot Kaur

Abstract:

Heat stress is one of the major environmental factors drastically reducing wheat production. Crop heat tolerance can be enhanced by preconditioning of plants by exogenous application of osmoprotectants. Presently, the effect of trehalose pretreatment (at 1 mM, and 1.5 nM) under heat stress of 35±2˚C (moderate) and 40±2˚ (severe) for four and eight hour was conducted in wheat (Tricticum aestivum L.) genotypes viz. HD2967, PBW 175, PBW 343, PBW 621, and PBW 590. Heat stress affects wide spectrum of physiological processes within plants that are irreversibly damaged by stress. Membrane thermal stability (MTS) and cell viability was significantly decreased under heat stress for eight hours. Pretreatment with trehalose improved MTS and cell viability under stress and this effect was more promotory with higher concentration. Thermal stability of photosynthetic apparatus differed markedly between genotypes and Hill reaction activity was recorded more in PBW621 followed by C306 as compared with others. In all genotypes photolysis of water showed decline with increase in temperature stress. Trehalose pretreatment helped in sustaining Hill reaction activity probably by stabilizing the photosynthetic apparatus against heat-induced photo inhibition. Both plant growth and development were affected by temperature in both shoot and root under heat stress. The reduction was compensated partially by trehalose (1.5 mM) application. Adaption to heat stress is associated with the metabolic adjustment which led to accumulation of soluble sugars including non-reducing and reducing for their role in adaptive mechanism. Higher acid invertase activity in shoot of tolerant genotypes appeared to be a characteristic for stress tolerance. As sucrose synthase play central role in sink strength and in studied wheat genotype was positively related to dry matter accumulation. The duration of heat stress for eight hours had more severe effect on these parameters and trehalose application at 1.5 mM ameliorated it to certain extent.

Keywords: heat stress, Triticum aestivum, trehalose, membrane thermal stability, triphenyl tetrazolium chloride, reduction test, growth, sugar metabolism

Procedia PDF Downloads 325
367 A Low-Cost Memristor Based on Hybrid Structures of Metal-Oxide Quantum Dots and Thin Films

Authors: Amir Shariffar, Haider Salman, Tanveer Siddique, Omar Manasreh

Abstract:

According to the recent studies on metal-oxide memristors, researchers tend to improve the stability, endurance, and uniformity of resistive switching (RS) behavior in memristors. Specifically, the main challenge is to prevent abrupt ruptures in the memristor’s filament during the RS process. To address this problem, we are proposing a low-cost hybrid structure of metal oxide quantum dots (QDs) and thin films to control the formation of filaments in memristors. We aim to use metal oxide quantum dots because of their unique electronic properties and quantum confinement, which may improve the resistive switching behavior. QDs have discrete energy spectra due to electron confinement in three-dimensional space. Because of Coulomb repulsion between electrons, only a few free electrons are contained in a quantum dot. This fact might guide the growth direction for the conducting filaments in the metal oxide memristor. As a result, it is expected that QDs can improve the endurance and uniformity of RS behavior in memristors. Moreover, we use a hybrid structure of intrinsic n-type quantum dots and p-type thin films to introduce a potential barrier at the junction that can smooth the transition between high and low resistance states. A bottom-up approach is used for fabricating the proposed memristor using different types of metal-oxide QDs and thin films. We synthesize QDs including, zinc oxide, molybdenum trioxide, and nickel oxide combined with spin-coated thin films of titanium dioxide, copper oxide, and hafnium dioxide. We employ fluorine-doped tin oxide (FTO) coated glass as the substrate for deposition and bottom electrode. Then, the active layer composed of one type of quantum dots, and the opposite type of thin films is spin-coated onto the FTO. Lastly, circular gold electrodes are deposited with a shadow mask by using electron-beam (e-beam) evaporation at room temperature. The fabricated devices are characterized using a probe station with a semiconductor parameter analyzer. The current-voltage (I-V) characterization is analyzed for each device to determine the conduction mechanism. We evaluate the memristor’s performance in terms of stability, endurance, and retention time to identify the optimal memristive structure. Finally, we assess the proposed hypothesis before we proceed to the optimization process for fabricating the memristor.

Keywords: memristor, quantum dot, resistive switching, thin film

Procedia PDF Downloads 122
366 Rheumatoid Arthritis, Periodontitis and the Subgingival Microbiome: A Circular Relationship

Authors: Isabel Lopez-Oliva, Akshay Paropkari, Shweta Saraswat, Stefan Serban, Paola de Pablo, Karim Raza, Andrew Filer, Iain Chapple, Thomas Dietrich, Melissa Grant, Purnima Kumar

Abstract:

Objective: We aimed to explicate the role of the subgingival microbiome in the causal link between rheumatoid arthritis (RA) and periodontitis (PD). Methods: Subjects with/without RA and with/without PD were randomized for treatment with scaling and root planing (SRP) or oral hygiene instructions. Subgingival biofilm, gingival crevicular fluid, and serum were collected at baseline and at 3- and 6-months post-operatively. Correlations were generated between 72 million 16S rDNA sequences, immuno-inflammatory mediators, circulating antibodies to oral microbial antigens, serum inflammatory molecules, and clinical metrics of RA. The dynamics of inter-microbial and host-microbial interactions were modeled using differential network analysis. Results: RA superseded periodontitis as a determinant of microbial composition, and DAS28 score superseded the severity of periodontitis as a driver of microbial assemblages (p=0.001, ANOSIM). RA subjects evidenced higher serum anti-PPAD (p=0.0013), anti-Pg-enolase (p=0.0031), anti-RPP3, anti- Pg-OMP and anti- Pi-OMP (p=0.001) antibodies than non-RA controls (with and without periodontitis). Following SRP, bacterial networks anchored by IL-1b, IL-4, IL-6, IL-10, IL-13, MIP-1b, and PDGF-b underwent ≥5-fold higher rewiring; and serum antibodies to microbial antigens decreased significantly. Conclusions: Our data suggest a circular relationship between RA and PD, beginning with an RA-influenced dysbiosis within the healthy subgingival microbiome that leads to exaggerated local inflammation in periodontitis and circulating antibodies to periodontal pathogens and positive correlation between severity of periodontitis and RA activity. Periodontal therapy restores host-microbial homeostasis, reduces local inflammation, and decreases circulating microbial antigens. Our data highlights the importance of integrating periodontal care into the management of RA patients.

Keywords: rheumatoid arthritis, periodontal, subgingival, DNA sequence analysis, oral microbiome

Procedia PDF Downloads 108
365 Examination of the South African Fire Legislative Framework

Authors: Mokgadi Julia Ngoepe-Ntsoane

Abstract:

The article aims to make a case for a legislative framework for the fire sector in South Africa. Robust legislative framework is essential for empowering those with obligatory mandate within the sector. This article contributes to the body of knowledge in the field of policy reviews particularly with regards to the legal framework. It has been observed overtime that the scholarly contributions in this field are limited. Document analysis was the methodology selected for the investigation of the various legal frameworks existing in the country. It has been established that indeed the national legislation on the fire industry does not exist in South Africa. From the documents analysed, it was revealed that the sector is dominated by cartels who are exploiting the new entrants to the market particularly SMEs. It is evident that these cartels are monopolising the system as they have long been operating in the system turning it into self- owned entities. Commitment to addressing the challenges faced by fire services and creating a framework for the evolving role that fire brigade services are expected to execute in building safer and sustainable communities is vital. Legislation for the fire sector ought to be concluded with immediate effect. The outdated national fire legislation has necessitated the monopolisation and manipulation of the system by dominating organisations which cause a painful discrimination and exploitation of smaller service providers to enter the market for trading in that occupation. The barrier to entry bears long term negative effects on national priority areas such as employment creation, poverty, and others. This monopolisation and marginalisation practices by cartels in the sector calls for urgent attention by government because if left attended, it will leave a lot of people particularly women and youth being disadvantaged and frustrated. The downcast syndrome exercised within the fire sector has wreaked havoc and is devastating. This is caused by cartels that have been within the sector for some time, who know the strengths and weaknesses of processes, shortcuts, advantages and consequences of various actions. These people take advantage of new entrants to the sector who in turn find it difficult to manoeuvre, find the market dissonant and end up giving up their good ideas and intentions. There are many pieces of legislation which are industry specific such as housing, forestry, agriculture, health, security, environmental which are used to regulate systems within the institutions involved. Other regulations exist as bi-laws for guiding the management within the municipalities.

Keywords: sustainable job creation, growth and development, transformation, risk management

Procedia PDF Downloads 173
364 CO₂ Conversion by Low-Temperature Fischer-Tropsch

Authors: Pauline Bredy, Yves Schuurman, David Farrusseng

Abstract:

To fulfill climate objectives, the production of synthetic e-fuels using CO₂ as a raw material appears as part of the solution. In particular, Power-to-Liquid (PtL) concept combines CO₂ with hydrogen supplied from water electrolysis, powered by renewable sources, which is currently gaining interest as it allows the production of sustainable fossil-free liquid fuels. The proposed process discussed here is an upgrading of the well-known Fischer-Tropsch synthesis. The concept deals with two cascade reactions in one pot, with first the conversion of CO₂ into CO via the reverse water gas shift (RWGS) reaction, which is then followed by the Fischer-Tropsch Synthesis (FTS). Instead of using a Fe-based catalyst, which can carry out both reactions, we have chosen the strategy to decouple the two functions (RWGS and FT) on two different catalysts within the same reactor. The FTS shall shift the equilibrium of the RWGS reaction (which alone would be limited to 15-20% of conversion at 250°C) by converting the CO into hydrocarbons. This strategy shall enable optimization of the catalyst pair and thus lower the temperature of the reaction thanks to the equilibrium shift to gain selectivity in the liquid fraction. The challenge lies in maximizing the activity of the RWGS catalyst but also in the ability of the FT catalyst to be highly selective. Methane production is the main concern as the energetic barrier of CH₄ formation is generally lower than that of the RWGS reaction, so the goal will be to minimize methane selectivity. Here we report the study of different combinations of copper-based RWGS catalysts with different cobalt-based FTS catalysts. We investigated their behaviors under mild process conditions by the use of high-throughput experimentation. Our results show that at 250°C and 20 bars, Cobalt catalysts mainly act as methanation catalysts. Indeed, CH₄ selectivity never drops under 80% despite the addition of various protomers (Nb, K, Pt, Cu) on the catalyst and its coupling with active RWGS catalysts. However, we show that the activity of the RWGS catalyst has an impact and can lead to longer hydrocarbons chains selectivities (C₂⁺) of about 10%. We studied the influence of the reduction temperature on the activity and selectivity of the tandem catalyst system. Similar selectivity and conversion were obtained at reduction temperatures between 250-400°C. This leads to the question of the active phase of the cobalt catalysts, which is currently investigated by magnetic measurements and DRIFTS. Thus, in coupling it with a more selective FT catalyst, better results are expected. This was achieved using a cobalt/iron FTS catalyst. The CH₄ selectivity dropped to 62% at 265°C, 20 bars, and a GHSV of 2500ml/h/gcat. We propose that the conditions used for the cobalt catalysts could have generated this methanation because these catalysts are known to have their best performance around 210°C in classical FTS, whereas the iron catalysts are more flexible but are also known to have an RWGS activity.

Keywords: cobalt-copper catalytic systems, CO₂-hydrogenation, Fischer-Tropsch synthesis, hydrocarbons, low-temperature process

Procedia PDF Downloads 57
363 Organ Dose Calculator for Fetus Undergoing Computed Tomography

Authors: Choonsik Lee, Les Folio

Abstract:

Pregnant patients may undergo CT in emergencies unrelated with pregnancy, and potential risk to the developing fetus is of concern. It is critical to accurately estimate fetal organ doses in CT scans. We developed a fetal organ dose calculation tool using pregnancy-specific computational phantoms combined with Monte Carlo radiation transport techniques. We adopted a series of pregnancy computational phantoms developed at the University of Florida at the gestational ages of 8, 10, 15, 20, 25, 30, 35, and 38 weeks (Maynard et al. 2011). More than 30 organs and tissues and 20 skeletal sites are defined in each fetus model. We calculated fetal organ dose-normalized by CTDIvol to derive organ dose conversion coefficients (mGy/mGy) for the eight fetuses for consequential slice locations ranging from the top to the bottom of the pregnancy phantoms with 1 cm slice thickness. Organ dose from helical scans was approximated by the summation of doses from multiple axial slices included in the given scan range of interest. We then compared dose conversion coefficients for major fetal organs in the abdominal-pelvis CT scan of pregnancy phantoms with the uterine dose of a non-pregnant adult female computational phantom. A comprehensive library of organ conversion coefficients was established for the eight developing fetuses undergoing CT. They were implemented into an in-house graphical user interface-based computer program for convenient estimation of fetal organ doses by inputting CT technical parameters as well as the age of the fetus. We found that the esophagus received the least dose, whereas the kidneys received the greatest dose in all fetuses in AP scans of the pregnancy phantoms. We also found that when the uterine dose of a non-pregnant adult female phantom is used as a surrogate for fetal organ doses, root-mean-square-error ranged from 0.08 mGy (8 weeks) to 0.38 mGy (38 weeks). The uterine dose was up to 1.7-fold greater than the esophagus dose of the 38-week fetus model. The calculation tool should be useful in cases requiring fetal organ dose in emergency CT scans as well as patient dose monitoring.

Keywords: computed tomography, fetal dose, pregnant women, radiation dose

Procedia PDF Downloads 140
362 Dry Modifications of PCL/Chitosan/PCL Tissue Scaffolds

Authors: Ozan Ozkan, Hilal Turkoglu Sasmazel

Abstract:

Natural polymers are widely used in tissue engineering applications, because of their biocompatibility, biodegradability and solubility in the physiological medium. On the other hand, synthetic polymers are also widely utilized in tissue engineering applications, because they carry no risk of infectious diseases and do not cause immune system reaction. However, the disadvantages of both polymer types block their individual usages as tissue scaffolds efficiently. Therefore, the idea of usage of natural and synthetic polymers together as a single 3D hybrid scaffold which has the advantages of both and the disadvantages of none has been entered to the literature. On the other hand, even though these hybrid structures support the cell adhesion and/or proliferation, various surface modification techniques applied to the surfaces of them to create topographical changes on the surfaces and to obtain reactive functional groups required for the immobilization of biomolecules, especially on the surfaces of synthetic polymers in order to improve cell adhesion and proliferation. In a study presented here, to improve the surface functionality and topography of the layer by layer electrospun 3D poly-epsilon-caprolactone/chitosan/poly-epsilon-caprolactone hybrid tissue scaffolds by using atmospheric pressure plasma method, thus to improve cell adhesion and proliferation of these tissue scaffolds were aimed. The formation/creation of the functional hydroxyl and amine groups and topographical changes on the surfaces of scaffolds were realized by using two different atmospheric pressure plasma systems (nozzle type and dielectric barrier discharge (DBD) type) carried out under different gas medium (air, Ar+O2, Ar+N2). The plasma modification time and distance for the nozzle type plasma system as well as the plasma modification time and the gas flow rate for DBD type plasma system were optimized with monitoring the changes in surface hydrophilicity by using contact angle measurements. The topographical and chemical characterizations of these modified biomaterials’ surfaces were carried out with SEM and ESCA, respectively. The results showed that the atmospheric pressure plasma modifications carried out with both nozzle type plasma and DBD plasma caused topographical and functionality changes on the surfaces of the layer by layer electrospun tissue scaffolds. However, the shelf life studies indicated that the hydrophilicity introduced to the surfaces was mainly because of the functionality changes. Therefore, according to the optimized results, samples treated with nozzle type air plasma modification applied for 9 minutes from a distance of 17 cm and Ar+O2 DBD plasma modification applied for 1 minute under 70 cm3/min O2 flow rate were found to have the highest hydrophilicity compared to pristine samples.

Keywords: biomaterial, chitosan, hybrid, plasma

Procedia PDF Downloads 276
361 Simulations to Predict Solar Energy Potential by ERA5 Application at North Africa

Authors: U. Ali Rahoma, Nabil Esawy, Fawzia Ibrahim Moursy, A. H. Hassan, Samy A. Khalil, Ashraf S. Khamees

Abstract:

The design of any solar energy conversion system requires the knowledge of solar radiation data obtained over a long period. Satellite data has been widely used to estimate solar energy where no ground observation of solar radiation is available, yet there are limitations on the temporal coverage of satellite data. Reanalysis is a “retrospective analysis” of the atmosphere parameters generated by assimilating observation data from various sources, including ground observation, satellites, ships, and aircraft observation with the output of NWP (Numerical Weather Prediction) models, to develop an exhaustive record of weather and climate parameters. The evaluation of the performance of reanalysis datasets (ERA-5) for North Africa against high-quality surface measured data was performed using statistical analysis. The estimation of global solar radiation (GSR) distribution over six different selected locations in North Africa during ten years from the period time 2011 to 2020. The root means square error (RMSE), mean bias error (MBE) and mean absolute error (MAE) of reanalysis data of solar radiation range from 0.079 to 0.222, 0.0145 to 0.198, and 0.055 to 0.178, respectively. The seasonal statistical analysis was performed to study seasonal variation of performance of datasets, which reveals the significant variation of errors in different seasons—the performance of the dataset changes by changing the temporal resolution of the data used for comparison. The monthly mean values of data show better performance, but the accuracy of data is compromised. The solar radiation data of ERA-5 is used for preliminary solar resource assessment and power estimation. The correlation coefficient (R2) varies from 0.93 to 99% for the different selected sites in North Africa in the present research. The goal of this research is to give a good representation for global solar radiation to help in solar energy application in all fields, and this can be done by using gridded data from European Centre for Medium-Range Weather Forecasts ECMWF and producing a new model to give a good result.

Keywords: solar energy, solar radiation, ERA-5, potential energy

Procedia PDF Downloads 211
360 Effect of Wheat Germ Agglutinin- and Lactoferrin-Grafted Catanionic Solid Lipid Nanoparticles on Targeting Delivery of Etoposide to Glioblastoma Multiforme

Authors: Yung-Chih Kuo, I-Hsin Wang

Abstract:

Catanionic solid lipid nanoparticles (CASLNs) with surface wheat germ agglutinin (WGA) and lactoferrin (Lf) were formulated for entrapping and releasing etoposide (ETP), crossing the blood–brain barrier (BBB), and inhibiting the growth of glioblastoma multiforme (GBM). Microemulsified ETP-CASLNs were modified with WGA and Lf for permeating a cultured monolayer of human brain-microvascular endothelial cells (HBMECs) regulated by human astrocytes and for treating malignant U87MG cells. Experimental evidence revealed that an increase in the concentration of catanionic surfactant from 5 μM to 7.5 μM reduced the particle size. When the concentration of catanionic surfactant increased from 7.5 μM to 12.5 μM, the particle size increased, yielding a minimal diameter of WGA-Lf-ETP-CASLNs at 7.5 μM of catanionic surfactant. An increase in the weight percentage of BW from 25% to 75% enlarged WGA-Lf-ETP-CASLNs. In addition, an increase in the concentration of catanionic surfactant from 5 to 15 μM increased the absolute value of zeta potential of WGA-Lf-ETP-CASLNs. It was intriguing that the increment of the charge as a function of the concentration of catanionic surfactant was approximately linear. WGA-Lf-ETP-CASLNs revealed an integral structure with smooth particle contour, displayed a lighter exterior layer of catanionic surfactant, WGA, and Lf and showed a rigid interior region of solid lipids. A variation in the concentration of catanionic surfactant between 5 μM and 15 μM yielded a maximal encapsulation efficiency of ETP ata 7.5 μM of catanionic surfactant. An increase in the concentration of Lf/WGA decreased the grafting efficiency of Lf/WGA. Also, an increase in the weight percentage of ETP decreased its encapsulation efficiency. Moreover, the release rate of ETP from WGA-Lf-ETP-CASLNs reduced with increasing concentration of catanionic surfactant, and WGA-Lf-ETP-CASLNs at 12.5 μM of catanionic surfactant exhibited a feature of sustained release. The order in the viability of HBMECs was ETP-CASLNs ≅ Lf-ETP-CASLNs ≅ WGA-Lf-ETP-CASLNs > ETP. The variation in the transendothelial electrical resistance (TEER) and permeability of propidium iodide (PI) was negligible when the concentration of Lf increased. Furthermore, an increase in the concentration of WGA from 0.2 to 0.6 mg/mL insignificantly altered the TEER and permeability of PI. When the concentration of Lf increased from 2.5 to 7.5 μg/mL and the concentration of WGA increased from 2.5 to 5 μg/mL, the enhancement in the permeability of ETP was minor. However, 10 μg/mL of Lf promoted the permeability of ETP using Lf-ETP-CASLNs, and 5 and 10 μg/mL of WGA could considerably improve the permeability of ETP using WGA-Lf-ETP-CASLNs. The order in the efficacy of inhibiting U87MG cells was WGA-Lf-ETP-CASLNs > Lf-ETP-CASLNs > ETP-CASLNs > ETP. As a result, WGA-Lf-ETP-CASLNs reduced the TEER, enhanced the permeability of PI, induced a minor cytotoxicity to HBMECs, increased the permeability of ETP across the BBB, and improved the antiproliferative efficacy of U87MG cells. The grafting of WGA and Lf is crucial to control the medicinal property of ETP-CASLNs and WGA-Lf-ETP-CASLNs can be promising colloidal carriers in GBM management.

Keywords: catanionic solid lipid nanoparticle, etoposide, glioblastoma multiforme, lactoferrin, wheat germ agglutinin

Procedia PDF Downloads 237