Search results for: patterns
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2858

Search results for: patterns

1358 Harnessing Train-Induced Airflows in Underground Metro Stations for Renewable Energy Generation: A Feasibility Study Using Bayesian Modeling and RETScreen

Authors: Lisha Tan, Yunbo Nie, Mohammad Rahnama

Abstract:

This study investigates the feasibility of harnessing train-induced airflows in underground metro stations as a source of renewable energy. Field measurements were conducted at multiple SkyTrain stations to assess wind speed distributions caused by passing trains. The data revealed significant airflow velocities with multimodal characteristics driven by varying train operations. These airflow velocities represent substantial kinetic energy that can be converted into usable power. Calculations showed that wind power densities within the underground tunnels ranged from 0.97 W/m² to 3.46 W/m², based on average cubed wind speeds, indicating considerable energy content available for harvesting. A Bayesian method was utilized to model these wind speed distributions, effectively capturing the complex airflow patterns. Further analysis using RETScreen evaluated the cost-benefit and environmental impact of implementing energy harvesting systems. Preliminary results suggest that the proposed system could result in substantial energy savings, reduce CO₂ emissions, and provide a favorable payback period, highlighting the economic and environmental viability of integrating wind turbines into metro stations.

Keywords: train-induced airflows, renewable energy generation, wind power density, RETScreen

Procedia PDF Downloads 16
1357 PathoPy2.0: Application of Fractal Geometry for Early Detection and Histopathological Analysis of Lung Cancer

Authors: Rhea Kapoor

Abstract:

Fractal dimension provides a way to characterize non-geometric shapes like those found in nature. The purpose of this research is to estimate Minkowski fractal dimension of human lung images for early detection of lung cancer. Lung cancer is the leading cause of death among all types of cancer and an early histopathological analysis will help reduce deaths primarily due to late diagnosis. A Python application program, PathoPy2.0, was developed for analyzing medical images in pixelated format and estimating Minkowski fractal dimension using a new box-counting algorithm that allows windowing of images for more accurate calculation in the suspected areas of cancerous growth. Benchmark geometric fractals were used to validate the accuracy of the program and changes in fractal dimension of lung images to indicate the presence of issues in the lung. The accuracy of the program for the benchmark examples was between 93-99% of known values of the fractal dimensions. Fractal dimension values were then calculated for lung images, from National Cancer Institute, taken over time to correctly detect the presence of cancerous growth. For example, as the fractal dimension for a given lung increased from 1.19 to 1.27 due to cancerous growth, it represents a significant change in fractal dimension which lies between 1 and 2 for 2-D images. Based on the results obtained on many lung test cases, it was concluded that fractal dimension of human lungs can be used to diagnose lung cancer early. The ideas behind PathoPy2.0 can also be applied to study patterns in the electrical activity of the human brain and DNA matching.

Keywords: fractals, histopathological analysis, image processing, lung cancer, Minkowski dimension

Procedia PDF Downloads 178
1356 Human Trafficking In North East India

Authors: Neimenuo Kengurusie

Abstract:

Human trafficking is considered a form of slavery in modern day era and a gross violation of human rights and one of the most organized crimes of the day transcending cultures, geography and time. Human trafficking is a highly complex phenomenon involving many actors like victims, survivors, their families, communities and third parties that recruit, transport and exploit the trafficked victims. It takes different forms such as child trafficking, trafficking for labour, trafficking for sexual exploitation, trafficking for organ transplantation etc. and affects virtually every corner of the world. This research draws on a variety of sources, including books, articles, journals, newspaper reports, human rights reports, online materials and interviews. In India, particularly the North East region, the issue of human trafficking has become a concern regionally, nationally and internationally. The focus of this paper is on the North Eastern part of India as it is a socially and economically backward region of the country which makes women and children susceptible to trafficking. Women and children from these regions are trafficked within and outside the state. Therefore, the paper seeks to explore the issue of human trafficking, especially trafficking of women and children in North East India, which receives insufficient attention in literature. The paper seeks to analyze and understand the trend and patterns of trafficking and the mechanisms that reinforces the process and perpetuates the phenomenon of trafficking considering the nature and scope of the problem. The paper also analyzes the anti-trafficking laws initiated by India and the North East states in particular for combating human trafficking in North East India.

Keywords: children, human trafficking, North East India, women

Procedia PDF Downloads 486
1355 Comparison of Physicochemical Properties of DNA-Ionic Liquids Complexes

Authors: Ewelina Nowak, Anna Wisla-Swider, Gohar Khachatryan, Krzysztof Danel

Abstract:

Complexes of ionic liquids with different heterocyclic-rings were synthesized by ion exchange reactions with pure salmon DNA. Ionic liquids (ILs) like 1-hexyl-3-methylimidazolium chloride, 1-butyl-4-methylpyridinium chloride and 1-ethyl-1-methylpyrrolidinium bromide were used. The ILs were built into helical state and confirmed by IR spectrometric techniques. Patterns of UV-Vis, photoluminescence, IR, and CD spectra indicated inclusion of small molecules into DNA structure. Molecular weight and radii of gyrations values of ILs-DNA complexes chains were established by HPSEC–MALLS–RI method. Modification DNA with 1-ethyl-1-methylpyrrolidinium bromide gives more uniform material and leads to elimination of high molecular weight chains. Thus, the incorporation DNA double helical structure with both 1-hexyl-3-methylimidazolium chloride and 1-butyl-4-methylpyridinium chloride exhibited higher molecular weight values. Scanning electron microscopy images indicate formation of nanofibre structures in all DNA complexes. Fluorescence depends strongly on the environment in which the chromophores are inserted and simultaneously on the molecular interactions with the biopolymer matrix. The most intensive emission was observed for DNA-imidazole ring complex. Decrease in intensity UV-Vis peak absorption is a consequence of a reduction in the spatial order of polynucleotide strands and provides different π–π stacking structure. Changes in optical properties confirmed by spectroscopy methods make DNA-ILs complexes potential biosensor applications.

Keywords: biopolymers, biosensors, cationic surfactant, DNA, DNA-gels

Procedia PDF Downloads 183
1354 Applying Artificial Neural Networks to Predict Speed Skater Impact Concussion Risk

Authors: Yilin Liao, Hewen Li, Paula McConvey

Abstract:

Speed skaters often face a risk of concussion when they fall on the ice floor and impact crash mats during practices and competitive races. Several variables, including those related to the skater, the crash mat, and the impact position (body side/head/feet impact), are believed to influence the severity of the skater's concussion. While computer simulation modeling can be employed to analyze these accidents, the simulation process is time-consuming and does not provide rapid information for coaches and teams to assess the skater's injury risk in competitive events. This research paper promotes the exploration of the feasibility of using AI techniques for evaluating skater’s potential concussion severity, and to develop a fast concussion prediction tool using artificial neural networks to reduce the risk of treatment delays for injured skaters. The primary data is collected through virtual tests and physical experiments designed to simulate skater-mat impact. It is then analyzed to identify patterns and correlations; finally, it is used to train and fine-tune the artificial neural networks for accurate prediction. The development of the prediction tool by employing machine learning strategies contributes to the application of AI methods in sports science and has theoretical involvements for using AI techniques in predicting and preventing sports-related injuries.

Keywords: artificial neural networks, concussion, machine learning, impact, speed skater

Procedia PDF Downloads 109
1353 The Association of Empirical Dietary Inflammatory Index with Musculoskeletal Pains in Elderlies

Authors: Mahshid Rezaei, Zahra Tajari, Zahra Esmaeily, Atefeh Eyvazkhani, Shahrzad Daei, Marjan Mansouri Dara, Mohaddesh Rezaei, Abolghassem Djazayeri, Ahmadreza Dorosti Motlagh

Abstract:

Background: Musculoskeletal pain is one of the most prevalent symptoms in elderly age. Nutrition and diet are considered important underlying factors that could affect chronic musculoskeletal pain. The purpose of this study was to identify the relationship between empirical dietary inflammatory patterns (EDII) and musculoskeletal pain. Method: In this cross-sectional study, 213 elderly individuals were selected from several health centers. The usual dietary intake was evaluated by a valid and reliable 147-items food frequency questionnaire (FFQ). To measure the intensity of pain, Visual Analogue Scale (VAS) was used. Multiple Linear Regression was applied to assess the association between EDII and musculoskeletal pain. Results: The results of multiple linear regression analysis indicate that a higher EDII score was associated with higher musculoskeletal pain (β= 0.21: 95% CI: 0.24-1.87: P= 0.003). These results stayed significant even after adjusting for covariates such as sex, marital status, height, family number, sleep, BMI, physical activity duration, waist circumference, protector, and medication use (β= 0.16: 95% CI: 0.11-1.04: P= 0.02). Conclusion: Study findings indicated that higher inflammation of diet might have a direct association with musculoskeletal pains in elderlies. However, further investigations are required to confirm these findings.

Keywords: musculoskeletal pain, empirical dietary inflammatory pattern, elderlies, dietary pattern

Procedia PDF Downloads 210
1352 Relationship between Personality Traits and Postural Stability among Czech Military Combat Troops

Authors: K. Rusnakova, D. Gerych, M. Stehlik

Abstract:

Postural stability is a complex process involving actions of biomechanical, motor, sensory and central nervous system components. Numerous joint systems, muscles involved, the complexity of sporting movements and situations require perfect coordination of the body's movement patterns. To adapt to a constantly changing situation in such a dynamic environment as physical performance, optimal input of information from visual, vestibular and somatosensory sensors are needed. Combat soldiers are required to perform physically and mentally demanding tasks in adverse conditions, and poor postural stability has been identified as a risk factor for lower extremity musculoskeletal injury. The aim of this study is to investigate whether some personality traits are related to the performance of static postural stability among soldiers of combat troops. NEO personality inventory (NEO-PI-R) was used to identify personality traits and the Nintendo Wii Balance Board was used to assess static postural stability of soldiers. Postural stability performance was assessed by changes in center of pressure (CoP) and center of gravity (CoG). A posturographic test was performed for 60 s with eyes opened during quiet upright standing. The results showed that facets of neuroticism and conscientiousness personality traits were significantly correlated with measured parameters of CoP and CoG. This study can help for better understanding the relationship between personality traits and static postural stability. The results can be used to optimize the training process at the individual level.

Keywords: neuroticism, conscientiousness, postural stability, combat troops

Procedia PDF Downloads 142
1351 A Documentary Review of Theoretical and Practical Elements for a Genre Analysis of Thailand Travel Listicles

Authors: Pinyada Santisarun, Yaowaret Tharawoot, Songyut Akkakoson

Abstract:

This paper reports on a literature review sub-study of a larger research project which has been designed to identify the rhetorical organization of a travel writing genre, together with the use of lexical choices, syntactical structures, and graphological features, based on a randomly-selected corpus of Thailand travel listicles. Conducted as a library-based overview, this study aims to specify theoretical and practical elements for the said larger study. The materials for the review have been retrieved from various Internet sources, covering both public search engines and library databases. Generally, the article focuses on answering questions about the ‘what’ and the ‘how’ of such background elements widely discussed in the literature as the meaning of listicles, how the travel listicles’ patterns and regularities can be categorized to form a new genre, the effect of computer-mediated communication on the travel world, the travel language, and the current situation concerning the importance of travel listicles. The theoretical and practical data derived from this study provide valuable insights into the way in which the genre analysis and lexico-syntactical examination of Thailand travel listicles in the present authors’ larger research project can be properly conducted. The data gained can be added to the expanding body of knowledge in the field of the ESP genre.

Keywords: computer-mediated communication, digital writing, genre-based analysis, online travel writing, tourism language

Procedia PDF Downloads 145
1350 Patent on Brian: Brain Waves Stimulation

Authors: Jalil Qoulizadeh, Hasan Sadeghi

Abstract:

Brain waves are electrical wave patterns that are produced in the human brain. Knowing these waves and activating them can have a positive effect on brain function and ultimately create an ideal life. The brain has the ability to produce waves from 0.1 to above 65 Hz. (The Beta One device produces exactly these waves) This is because it is said that the waves produced by the Beta One device exactly match the waves produced by the brain. The function and method of this device is based on the magnetic stimulation of the brain. The technology used in the design and producƟon of this device works in a way to strengthen and improve the frequencies of brain waves with a pre-defined algorithm according to the type of requested function, so that the person can access the expected functions in life activities. to perform better. The effect of this field on neurons and their stimulation: In order to evaluate the effect of this field created by the device, on the neurons, the main tests are by conducting electroencephalography before and after stimulation and comparing these two baselines by qEEG or quantitative electroencephalography method using paired t-test in 39 subjects. It confirms the significant effect of this field on the change of electrical activity recorded after 30 minutes of stimulation in all subjects. The Beta One device is able to induce the appropriate pattern of the expected functions in a soft and effective way to the brain in a healthy and effective way (exactly in accordance with the harmony of brain waves), the process of brain activities first to a normal state and then to a powerful one. Production of inexpensive neuroscience equipment (compared to existing rTMS equipment) Magnetic brain stimulation for clinics - homes - factories and companies - professional sports clubs.

Keywords: stimulation, brain, waves, betaOne

Procedia PDF Downloads 81
1349 Using Autoencoder as Feature Extractor for Malware Detection

Authors: Umm-E-Hani, Faiza Babar, Hanif Durad

Abstract:

Malware-detecting approaches suffer many limitations, due to which all anti-malware solutions have failed to be reliable enough for detecting zero-day malware. Signature-based solutions depend upon the signatures that can be generated only when malware surfaces at least once in the cyber world. Another approach that works by detecting the anomalies caused in the environment can easily be defeated by diligently and intelligently written malware. Solutions that have been trained to observe the behavior for detecting malicious files have failed to cater to the malware capable of detecting the sandboxed or protected environment. Machine learning and deep learning-based approaches greatly suffer in training their models with either an imbalanced dataset or an inadequate number of samples. AI-based anti-malware solutions that have been trained with enough samples targeted a selected feature vector, thus ignoring the input of leftover features in the maliciousness of malware just to cope with the lack of underlying hardware processing power. Our research focuses on producing an anti-malware solution for detecting malicious PE files by circumventing the earlier-mentioned shortcomings. Our proposed framework, which is based on automated feature engineering through autoencoders, trains the model over a fairly large dataset. It focuses on the visual patterns of malware samples to automatically extract the meaningful part of the visual pattern. Our experiment has successfully produced a state-of-the-art accuracy of 99.54 % over test data.

Keywords: malware, auto encoders, automated feature engineering, classification

Procedia PDF Downloads 72
1348 Rainfall Analysis in the Contest of Climate Change for Jeddah Area, Western Saudi Arabia

Authors: Ali M. Subyani

Abstract:

The increase in the greenhouse gas emission has had a severe impact on global climate change and is bound to affect the weather patterns worldwide. This climate change impacts are among the future significant effects on any society. Rainfall levels are drastically increasing with flash floods in some places and long periods of droughts in others, especially in arid regions. These extreme events are causes of interactions concerning environmental, socio-economic and cultural life and their implementation. This paper presents the detailed features of dry and wet spell durations and rainfall intensity series available (1971-2012) on daily basis for the Jeddah area, Western, Saudi Arabia. It also presents significant articles for combating the climate change impacts on this area. Results show trend changes in dry and wet spell durations and rainfall amount on daily, monthly and annual time series. Three rain seasons were proposed in this investigation: high rain, low rain, and dry seasons. It shows that the overall average dry spell durations is about 80 continuous days while the average wet spell durations is 1.39 days with an average rainfall intensity of 8.2 mm/day. Annual and seasonal autorun analyses confirm that the rainy seasons are tending to have more intense rainfall while the seasons are becoming drier. This study would help decision makers in future for water resources management and flood risk analysis.

Keywords: climate change, daily rainfall, dry and wet spill, Jeddah, Saudi Arabia

Procedia PDF Downloads 338
1347 Macular Ganglion Cell Inner Plexiform Layer Thinning

Authors: Hye-Young Shin, Chan Kee Park

Abstract:

Background: To compare the thinning patterns of the ganglion cell-inner plexiform layer (GCIPL) and peripapillary retinal nerve fiber layer (pRNFL) as measured using Cirrus high-definition optical coherence tomography (HD-OCT) in patients with visual field (VF) defects that respect the vertical meridian. Methods: Twenty eyes of eleven patients with VF defects that respect the vertical meridian were enrolled retrospectively. The thicknesses of the macular GCIPL and pRNFL were measured using Cirrus HD-OCT. The 5% and 1% thinning area index (TAI) was calculated as the proportion of abnormally thin sectors at the 5% and 1% probability level within the area corresponding to the affected VF. The 5% and 1% TAI were compared between the GCIPL and pRNFL measurements. Results: The color-coded GCIPL deviation map showed a characteristic vertical thinning pattern of the GCIPL, which is also seen in the VF of patients with brain lesions. The 5% and 1% TAI were significantly higher in the GCIPL measurements than in the pRNFL measurements (all P < 0.01). Conclusions: Macular GCIPL analysis clearly visualized a characteristic topographic pattern of retinal ganglion cell (RGC) loss in patients with VF defects that respect the vertical meridian, unlike pRNFL measurements. Macular GCIPL measurements provide more valuable information than pRNFL measurements for detecting the loss of RGCs in patients with retrograde degeneration of the optic nerve fibers.

Keywords: brain lesion, macular ganglion cell, inner plexiform layer, spectral-domain optical coherence tomography

Procedia PDF Downloads 337
1346 Deep Reinforcement Learning for Advanced Pressure Management in Water Distribution Networks

Authors: Ahmed Negm, George Aggidis, Xiandong Ma

Abstract:

With the diverse nature of urban cities, customer demand patterns, landscape topologies or even seasonal weather trends; managing our water distribution networks (WDNs) has proved a complex task. These unpredictable circumstances manifest as pipe failures, intermittent supply and burst events thus adding to water loss, energy waste and increased carbon emissions. Whilst these events are unavoidable, advanced pressure management has proved an effective tool to control and mitigate them. Henceforth, water utilities have struggled with developing a real-time control method that is resilient when confronting the challenges of water distribution. In this paper we use deep reinforcement learning (DRL) algorithms as a novel pressure control strategy to minimise pressure violations and leakage under both burst and background leakage conditions. Agents based on asynchronous actor critic (A2C) and recurrent proximal policy optimisation (Recurrent PPO) were trained and compared to benchmarked optimisation algorithms (differential evolution, particle swarm optimisation. A2C manages to minimise leakage by 32.48% under burst conditions and 67.17% under background conditions which was the highest performance in the DRL algorithms. A2C and Recurrent PPO performed well in comparison to the benchmarks with higher processing speed and lower computational effort.

Keywords: deep reinforcement learning, pressure management, water distribution networks, leakage management

Procedia PDF Downloads 91
1345 Investigation of Rifampicin and Isoniazid Resistance Mutated Genes in Mycobacterium Tuberculosis Isolated From Patients

Authors: Seyyed Mohammad Amin Mousavi Sagharchi, Alireza Mahmoudi Nasab, Tim Bakker

Abstract:

Introduction: Mycobacterium tuberculosis (MTB) is the most intelligent bacterium that existed in the world to our best knowledge. This bacterium can cause tuberculosis (TB) which is responsible for its spread speed and murder of millions of people around the world. MTB has the practical function to escape from anti-tuberculosis drugs (AT), for this purpose, it handles some mutations in the main genes and creates new patterns for inhibited genes. Method and materials: Researchers have their best tries to safely isolate MTB from the sputum specimens of 35 patients in some hospitals in the Tehran province and detect MTB by culture on Löwenstein-Jensen (LJ) medium and microscopic examination. DNA was extracted from the established bacterial colony by enzymatic extraction method. It was amplified by the polymerase chain reaction (PCR) method, reverse hybridization, and evaluation for detection of resistance genes; generally, researchers apply GenoType MTBDRplus assay. Results: Investigations of results declare us that 21 of the isolated specimens (about 60%) have mutation in rpoB gene, which resisted to rifampicin (most prevalence), and 8 of them (about 22.8%) have mutation in katG or inhA genes which resisted to isoniazid. Also, 4 of them (about 11.4%) don't have any mutation, and 2 of them (about 5.7%) have mutation in every three genes, which makes them resistant to the two drugs mentioned above. Conclusion: Rifampicin and isoniazid are two essential AT that using in the first line of treatment. Resistance in rpoB, and katG, and inhA genes related to mentioned drugs lead to ineffective treatment.

Keywords: mycobacterium tuberculosis, tuberculosis, drug resistance, isoniazid, rifampicin

Procedia PDF Downloads 96
1344 Racism in Drug Policies: A Report on United States Legislation

Authors: Frederick Monyepao

Abstract:

Crack cocaine first appeared on the scene in the form of cocaine freebasing in the late 1970s. Stockbrokers, investment bankers, rock stars, Hollywood elites, and a few pro athletes were regular users of the substance. As criminogenic factors associated with substance abuse began to surface, congress passed new legislation. The laws led to the increase of health coverage insurances and the expansion of hospitals. By the mid-1980s, crack use spread into America's inner cities among impoverished African Americans and Latinos. While substance abuse increased among minority communities, legislation pertaining to substance abuse evolved. The prison industry also expanded the number of cells available. A qualitative approach was taken, drawing from a range secondary sources for contextual analysis. This paper traces out the continued marginalisation and racist undertones towards minorities as perpetuated by certain drug policies. It was discovered that the new legislation on crack was instrumental in the largest incarcerations the United States ever faced. Drug offenders increased in prisons eightfold from 1986 to 2000. The paper concludes that American drug control policies are consistently irrational and ineffective when measured by levels of substance use and abuse. On the contrary, these policies have been successful as agents of social control in maintaining the stratification patterns of racial/ethnic minorities and women. To move beyond prohibition, radical law and policy reform may require a change in narratives on substance use.

Keywords: crack, drug policy, minorities, racism, substance abuse

Procedia PDF Downloads 290
1343 Disruption of Cancer Cell Proliferation by Magnetic Field

Authors: Ming Ze Kao

Abstract:

Static magnetic fields (SMF) are widely used in several medical applications, especially in diagnosis of tumors. However, biological effects of the SMFs on modulating cell physiology through the Lorentz force, which is highly frequency and magnitude dependent, remain to be elucidated. Specific patterns from SMFs of static MF, delivered by means of Halbach array magnets with a gradient increment of 6.857mT/mm from center to border, were found to have profound inhibitory effect on the growth rate of human cell line derived from Nasopharyngeal carcinoma patients. The SMFs, which were shown to be noncontact, selectively impact rapid dividing cells while quiescent cells stay intact. The phenomenon acts in two modes: the arrest of cell proliferation in the G2/M phase and destruction of cell mitosis in cell division. First mode is manifested by impacting the proper formation of mitotic spindle, whereas the second results in disintegration of the cancer cell. Both modes are demonstrated when SMF was applied for 24 hours to cancer cells, the results revealed that metaphase arrest during mitosis due to activation of DNA damage response (DDR), resulting in high expression of ATM-NBS1-CHEK signaling pathways and higher G2/M phase ratio compared with control group. Here, experimental data suggest that the SMFs cause activation of cell cycle checkpoints, which implies the MFs as a potential therapeutic modality as a sensitizer for radiotherapy or chemotherapy.

Keywords: static magnetic field, DNA damage response, Halbach array, magnetic therapy

Procedia PDF Downloads 114
1342 Mission Driven Enterprises in Ecosystems as Drivers for Sustainable System Change

Authors: Monique de Ritter, Annemieke Roobeek

Abstract:

This study takes a holistic multi-layered systems approach on entrepreneurship, innovation, and sustainability. Concretely we looked how mission driven entrepreneurs (level 1) employ new business models and launch innovative products and/or ideas in their enterprises, which are (level 2) operating in entrepreneurial ecosystems (level 3), and how these in turn may generate higher level sustainable change (level 4). We employed a qualitative grounded research approach in which our aim is to contribute to theory. Fourteen in-depth semi-structured interviews were conducted with mission driven entrepreneurs in the Netherlands in which their individual drives, business models, and ecosystems were discussed. Interview transcripts were systematically coded and analysed and the ecosystems were visually mapped. Most important patterns include 1) entrepreneurs have a clear sustainable mission and regard this mission as de raison d’être of their enterprise; 2) entrepreneurs employ new business models with a focus on collaboration for innovation; the business model supports or enhances the sustainable mission of the enterprise, 3) entrepreneurs collaborate in ecosystems in which a) they also regard suppliers as partners for innovation and clients as ambassadors for the sustainable mission, b) would like to improve their relationships with financial institutions as they are in the entrepreneurs’ perspective often lagging behind with their innovative ideas and models, c) they collaborate for knowledge and innovation with several parties, d) personal informal connections are very important, and e) in which the higher sustainable mission is not a point of competition but of collaboration.

Keywords: sustainability, entrepreneurship, innovation, ecosystem, business models

Procedia PDF Downloads 374
1341 Numerical Study of Jet Impingement Heat Transfer

Authors: A. M. Tiara, Sudipto Chakraborty, S. K. Pal

Abstract:

Impinging jets and their different configurations are important from the viewpoint of the fluid flow characteristics and their influence on heat transfer from metal surfaces due to their complex flow characteristics. Such flow characteristics results in highly variable heat transfer from the surface, resulting in varying cooling rates which affects the mechanical properties including hardness and strength. The overall objective of the current research is to conduct a fundamental investigation of the heat transfer mechanisms for an impinging coolant jet. Numerical simulation of the cooling process gives a detailed analysis of the different parameters involved even though employing Computational Fluid Dynamics (CFD) to simulate the real time process, being a relatively new research area, poses many challenges. The heat transfer mechanism in the current research is actuated by jet cooling. The computational tool used in the ongoing research for simulation of the cooling process is ANSYS Workbench software. The temperature and heat flux distribution along the steel strip with the effect of various flow parameters on the heat transfer rate can be observed in addition to determination of the jet impingement patterns, which is the major aim of the present analysis. Modelling both jet and air atomized cooling techniques using CFD methodology and validating with those obtained experimentally- including trial and error with different models and comparison of cooling rates from both the techniques have been included in this work. Finally some concluding remarks are made that identify some gaps in the available literature that have influenced the path of the current investigation.

Keywords: CFD, heat transfer, impinging jets, numerical simulation

Procedia PDF Downloads 235
1340 Molecular Portraits: The Role of Posttranslational Modification in Cancer Metastasis

Authors: Navkiran Kaur, Apoorva Mathur, Abhishree Agarwal, Sakshi Gupta, Tuhin Rashmi

Abstract:

Aim: Breast cancer is the most common cancer in women worldwide, and resistance to the current therapeutics, often concurrently, is an increasing clinical challenge. Glycosylation of proteins is one of the most important post-translational modifications. It is widely known that aberrant glycosylation has been implicated in many different diseases due to changes associated with biological function and protein folding. Alterations in cell surface glycosylation, can promote invasive behavior of tumor cells that ultimately lead to the progression of cancer. In breast cancer, there is an increasing evidence pertaining to the role of glycosylation in tumor formation and metastasis. In the present study, an attempt has been made to study the disease associated sialoglycoproteins in breast cancer by using bioinformatics tools. The sequence will be retrieved from UniProt database. A database in the form of a word document was made by a collection of FASTA sequences of breast cancer gene sequence. Glycosylation was studied using yinOyang tool on ExPASy and Differential genes expression and protein analysis was done in context of breast cancer metastasis. The number of residues predicted O-glc NAc threshold containing 50 aberrant glycosylation sites or more was detected and recorded for individual sequence. We found that the there is a significant change in the expression profiling of glycosylation patterns of various proteins associated with breast cancer. Differential aberrant glycosylated proteins in breast cancer cells with respect to non-neoplastic cells are an important factor for the overall progression and development of cancer.

Keywords: breast cancer, bioinformatics, cancer, metastasis, glycosylation

Procedia PDF Downloads 294
1339 Analyzing the Representations of Afro-Peruvians in National TV Comedy Shows: The Construction of Parody and the Contradictory Responses to Afro-Peruvian TV Characters

Authors: Ana Lucia Mosquera Rosado

Abstract:

Media is believed to be the reflection of Peruvian society. However, the context in which media content is generated not always respond to an accurate representation of its cultural diversity, since many of the contents portray images of cultural minorities (indigenous and Afro-Peruvian) that contribute to the reproduction of negative stereotypes, having an impact on society. The current research paper aims to discuss the use of parody as a way of representing Afro-Peruvian population in the national television, through the reproduction of negative stereotypes and the construction of the black body, specifically relating the analysis to El Negro Mama, a very popular character in Peruvian television thought to be a portrait of the Afro-Peruvian men. In order to analyze these representations, the research will use the theory of simulation and simulacra, explained by James Baudrillard to understand the replacement of reality as a consequence of both of these concepts. This research paper will also focus on the social reaction to the existence of this character, in order to construct a hypothesis based on the theory of cultural hegemony, conceived by Jackson Lears as a legitimized group of patterns and behaviors that shape social interaction. This theoretical framework will be used to explain the popularity of this character among Peruvian society and the reactions caused by the controversy generated by the demands of civil society to remove the character from national television.

Keywords: media representation, media, race and ethnicity, racist discourse, afro-descendants in the media

Procedia PDF Downloads 254
1338 Magnetic Structure and Transitions in 45% Mn Substituted HoFeO₃: A Neutron Diffraction Study

Authors: Karthika Chandran, Pulkit Prakash, Amitabh Das, Santhosh P. N.

Abstract:

Rare earth orthoferrites (RFeO₃) exhibit interesting and useful magnetic properties like multiferroicity, magnetodielectric coupling, spin reorientation (SR) and exchange bias. B site doped RFeO₃ are attracting attention due to the complex and tuneable magnetic transitions. In this work, 45% Mn-doped HoFeO₃ polycrystalline sample (HoFe₀.₅₅Mn₀.₄₅O₃) was synthesized by a solid-state reaction method. The magnetic structure and transitions were studied by magnetization measurements and neutron powder diffraction methods. The neutron diffraction patterns were taken at 13 different temperatures from 7°K to 300°K (7°K and 25°K to 300°K in 25°K intervals). The Rietveld refinement was carried out by using a FULLPROF suite. The magnetic space groups and the irreducible representations were obtained by SARAh module. The room temperature neutron diffraction refinement results indicate that the sample crystallizes in an orthorhombic perovskite structure with Pnma space group with lattice parameters a = 5.6626(3) Ǻ, b = 7.5241(3) Ǻ and c = 5.2704(2) Ǻ. The temperature dependent magnetization (M-T) studies indicate the presence of two magnetic transitions in the system ( TN Fe/Mn~330°K and TSR Fe/Mn ~290°K). The inverse susceptibility vs. temperature curve shows a linear behavior above 330°K. The Curie-Weiss fit in this region gives negative Curie constant (-34.9°K) indicating the antiferromagnetic nature of the transition. The neutron diffraction refinement results indicate the presence of mixed magnetic phases Γ₄(AₓFᵧG

Keywords: neutron powder diffraction, rare earth orthoferrites, Rietveld analysis, spin reorientation

Procedia PDF Downloads 148
1337 Defect Classification of Hydrogen Fuel Pressure Vessels using Deep Learning

Authors: Dongju Kim, Youngjoo Suh, Hyojin Kim, Gyeongyeong Kim

Abstract:

Acoustic Emission Testing (AET) is widely used to test the structural integrity of an operational hydrogen storage container, and clustering algorithms are frequently used in pattern recognition methods to interpret AET results. However, the interpretation of AET results can vary from user to user as the tuning of the relevant parameters relies on the user's experience and knowledge of AET. Therefore, it is necessary to use a deep learning model to identify patterns in acoustic emission (AE) signal data that can be used to classify defects instead. In this paper, a deep learning-based model for classifying the types of defects in hydrogen storage tanks, using AE sensor waveforms, is proposed. As hydrogen storage tanks are commonly constructed using carbon fiber reinforced polymer composite (CFRP), a defect classification dataset is collected through a tensile test on a specimen of CFRP with an AE sensor attached. The performance of the classification model, using one-dimensional convolutional neural network (1-D CNN) and synthetic minority oversampling technique (SMOTE) data augmentation, achieved 91.09% accuracy for each defect. It is expected that the deep learning classification model in this paper, used with AET, will help in evaluating the operational safety of hydrogen storage containers.

Keywords: acoustic emission testing, carbon fiber reinforced polymer composite, one-dimensional convolutional neural network, smote data augmentation

Procedia PDF Downloads 93
1336 Genetic Diversity Analysis in Embelia Ribes by RAPD Markers

Authors: Sabitha Rani A., Nagamani V.

Abstract:

Embelia ribes Burm.f (Family-Myrsinaceae) commonly known as Vidanga or Baibirang, is one of the important medicinal plants of India. The seed extract is reported to be antidiabetic, antitumour, analgesic, anti-inflammatory, antispermatogenic, free radical scavenging activities and widely used in more than 75 Ayurvedic commercial formulations. Among the 100 different species of Embelia, E. ribes is considered as a major source of Embelin, a bioactive compound. Because of high demand and low availability, the seeds of E. ribes are substituted with many cheaper alternatives. Therefore, the present study of RAPD-PCR analysis was undertaken to develop molecular markers for identification of E. ribes. A total of 13 different seed samples of Embelia were collected from different agro-climatic regions of India. The seeds of E.ribes were collected from Kalpetta, Kerala and three different seed samples were collected from traders of Odisha, Madhya Pradesh, Maharastra. The other nine seed samples were collected from local traders which they have collected from different regions of India. Genomic DNA was isolated from different seed samples E. ribes and RAPD-PCR was performed on 13 different seed samples using 47 random primers. Out of all the primers, only 22 primers produced clear and highly-reproducible banding patterns. The 22 selected RAPD primers generated a total of 280 alleles with an average of 12 alleles per primer pair. In the present study, we have identified three RAPD-PCR markers i.e. OPF5_480 bp, OPH11_520 bp and OPH4_530 bp which can be used for genetic fingerprinting of E. ribes. This methodology can be employed for identification of original E. ribes and also distinguishing it from other substitutes and adulterants.

Keywords: Embelia ribes, RAPD-PCR, primers, genetic analysis

Procedia PDF Downloads 298
1335 Community Benefitting through Tourism: DASTA-Thailand Model

Authors: Jutamas Wisansing, Thanakarn Vongvisitsin, Udom Hongchatikul

Abstract:

Designated Areas for Sustainable Tourism Administration (DASTA) is a public organization, dedicating to sustainable tourism development in 6 designated areas in Thailand. This paper provides rich reflections from a decade of DASTA, formulating an advanced model to deepen our understanding of 2 key intertwining issues; 1) what are the new landscapes of actors for community based tourism and 2) who are the benefactors and beneficiaries of tourism development within the community? An action research approach was used, enabling the process and evidence-based cases to be better captured. The aim is to build theoretical foundation through 13 communities/cases, which have engaged in community based tourism pilot projects. Drawing from emic and qualitative research, specific and contextual phenomenon provides succinct patterns of ‘Community Benefitting through Tourism (CbtT)’ model. The re-definition of the 2 key issues helps shape the interlinking of actors; practicalities of inclusive tourism and inter-sectoral framework and its value chain will also be set forth. In tourism sector, community members could be active primarily on the supply side as employees, entrepreneurs and local heritage experts. CbtT when well defined stimulates the entire value chain of local economy while promoting social innovation through positive dialogue with wider actors. Collaboration with a new set of actors who are from the tourism-related businesses and non-tourism related businesses create better impacts on mutual benefits.

Keywords: community based tourism, community benefitting through tourism -CbtT DASTA model, sustainable tourism in thailand, value chain and inclusive business

Procedia PDF Downloads 298
1334 Statistical Time-Series and Neural Architecture of Malaria Patients Records in Lagos, Nigeria

Authors: Akinbo Razak Yinka, Adesanya Kehinde Kazeem, Oladokun Oluwagbenga Peter

Abstract:

Time series data are sequences of observations collected over a period of time. Such data can be used to predict health outcomes, such as disease progression, mortality, hospitalization, etc. The Statistical approach is based on mathematical models that capture the patterns and trends of the data, such as autocorrelation, seasonality, and noise, while Neural methods are based on artificial neural networks, which are computational models that mimic the structure and function of biological neurons. This paper compared both parametric and non-parametric time series models of patients treated for malaria in Maternal and Child Health Centres in Lagos State, Nigeria. The forecast methods considered linear regression, Integrated Moving Average, ARIMA and SARIMA Modeling for the parametric approach, while Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) Network were used for the non-parametric model. The performance of each method is evaluated using the Mean Absolute Error (MAE), R-squared (R2) and Root Mean Square Error (RMSE) as criteria to determine the accuracy of each model. The study revealed that the best performance in terms of error was found in MLP, followed by the LSTM and ARIMA models. In addition, the Bootstrap Aggregating technique was used to make robust forecasts when there are uncertainties in the data.

Keywords: ARIMA, bootstrap aggregation, MLP, LSTM, SARIMA, time-series analysis

Procedia PDF Downloads 75
1333 Using Coupled Oscillators for Implementing Frequency Diverse Array

Authors: Maryam Hasheminasab, Ahmed Cheldavi, Ahmed Kishk

Abstract:

Frequency-diverse arrays (FDAs) have garnered significant attention from researchers due to their ability to combine frequency diversity with the inherent spatial diversity of an array. The introduction of frequency diversity in FDAs enables the generation of auto-scanning patterns that are range-dependent, which can have advantageous applications in communication and radar systems. However, the main challenge in implementing FDAs lies in determining the technique for distributing frequencies among the array elements. One approach to address this challenge is by utilizing coupled oscillators, which are a technique commonly employed in active microwave theory. Nevertheless, the limited stability range of coupled oscillators poses another obstacle to effectively utilizing this technique. In this paper, we explore the possibility of employing a coupled oscillator array in the mode lock state (MLS) for implementing frequency distribution in FDAs. Additionally, we propose and simulate the use of a digital phase-locked loop (DPLL) as a backup technique to stabilize the oscillators. Through simulations, we validate the functionality of this technique. This technique holds great promise for advancing the implementation of phased arrays and overcoming current scan rate and phase shifter limitations, especially in millimeter wave frequencies.

Keywords: angle-changing rate, auto scanning beam, pull-in range, hold-in range, locking range, mode locked state, frequency locked state

Procedia PDF Downloads 86
1332 Characteristics and Item Parameters Fitness on Chemistry Teacher-Made Test Instrument

Authors: Rizki Nor Amelia, Farida A. Setiawati

Abstract:

This study aimed to: (1) describe the characteristics of teacher-made test instrument used to measure the ability of students’chemistry, and (2) identify the presence of the compability difficulty level set by teachers to difficulty level by empirical results. Based on these objectives, this study was a descriptive research. The analysis in this study used the Rasch model and Chi-square statistics. Analysis using Rasch Model was based on the response patterns of high school students to the teacher-made test instrument on chemistry subject Academic Year 2015/2016 in the Yogyakarta. The sample of this research were 358 students taken by cluster random sampling technique. The analysis showed that: (1) a teacher-made tests instrument has a medium on the mean difficulty level. This instrument is capable to measure the ability on the interval of -0,259 ≤ θ ≤ 0,659 logit. Maximum Test Information Function obtained at 18.187 on the ability +0,2 logit; (2) 100% items categorized either as easy or difficult by rasch model is match with the teachers’ judgment; while 37 items are categorized according to rasch model which 8.10% and 10.81% categorized as easy and difficult items respectively according to the teachers, the others are medium categorized. Overall, the distribution of the level of difficulty formulated by the teachers has the distinction (not match) to the level of difficulty based on the empirical results.

Keywords: chemistry, items parameter fitness, Rasch model, teacher-made test

Procedia PDF Downloads 238
1331 Structural Analysis of Kamaluddin Behzad's Works Based on Roland Barthes' Theory of Communication, 'Text and Image'

Authors: Mahsa Khani Oushani, Mohammad Kazem Hasanvand

Abstract:

Text and image have always been two important components in Iranian layout. The interactive connection between text and image has shaped the art of book design with multiple patterns. In this research, first the structure and visual elements in the research data were analyzed and then the position of the text element and the image element in relation to each other based on Roland Barthes theory on the three theories of text and image, were studied and analyzed and the results were compared, and interpreted. The purpose of this study is to investigate the pattern of text and image in the works of Kamaluddin Behzad based on three Roland Barthes communication theories, 1. Descriptive communication, 2. Reference communication, 3. Matched communication. The questions of this research are what is the relationship between text and image in Behzad's works? And how is it defined according to Roland Barthes theory? The method of this research has been done with a structuralist approach with a descriptive-analytical method in a library collection method. The information has been collected in the form of documents (library) and is a tool for collecting online databases. Findings show that the dominant element in Behzad's drawings is with the image and has created a reference relationship in the layout of the drawings, but in some cases it achieves a different relationship that despite the preference of the image on the page, the text is dispersed proportionally on the page and plays a more active role, played within the image. The text and the image support each other equally on the page; Roland Barthes equates this connection.

Keywords: text, image, Kamaluddin Behzad, Roland Barthes, communication theory

Procedia PDF Downloads 192
1330 Development of pm2.5 Forecasting System in Seoul, South Korea Using Chemical Transport Modeling and ConvLSTM-DNN

Authors: Ji-Seok Koo, Hee‑Yong Kwon, Hui-Young Yun, Kyung-Hui Wang, Youn-Seo Koo

Abstract:

This paper presents a forecasting system for PM2.5 levels in Seoul, South Korea, leveraging a combination of chemical transport modeling and ConvLSTM-DNN machine learning technology. Exposure to PM2.5 has known detrimental impacts on public health, making its prediction crucial for establishing preventive measures. Existing forecasting models, like the Community Multiscale Air Quality (CMAQ) and Weather Research and Forecasting (WRF), are hindered by their reliance on uncertain input data, such as anthropogenic emissions and meteorological patterns, as well as certain intrinsic model limitations. The system we've developed specifically addresses these issues by integrating machine learning and using carefully selected input features that account for local and distant sources of PM2.5. In South Korea, the PM2.5 concentration is greatly influenced by both local emissions and long-range transport from China, and our model effectively captures these spatial and temporal dynamics. Our PM2.5 prediction system combines the strengths of advanced hybrid machine learning algorithms, convLSTM and DNN, to improve upon the limitations of the traditional CMAQ model. Data used in the system include forecasted information from CMAQ and WRF models, along with actual PM2.5 concentration and weather variable data from monitoring stations in China and South Korea. The system was implemented specifically for Seoul's PM2.5 forecasting.

Keywords: PM2.5 forecast, machine learning, convLSTM, DNN

Procedia PDF Downloads 54
1329 A Novel Environmentally Benign Positive Electrode Material with Improved Energy Density for Lithium Ion Batteries

Authors: Wassima El Mofid, Svetlozar Ivanov, Andreas Bund

Abstract:

The increasing requirements for high power and energy lithium ion batteries have led to the development of several classes of positive electrode materials. Among those one promising material is LiNixMnyCo1−x−yO2 due to its high reversible capacity and remarkable cycling performance. Further structural stabilization and improved electrochemical performance of this class of cathode materials can be achieved by cationic substitution to a transition metal such as Al, Mg, Cr, etc. The current study discusses a novel NMC type material obtained by simultaneous cationic substitution of the cobalt which is a toxic element, with aluminum and iron. A compound with the composition LiNi0.6Mn0.2Co0.15Al0.025Fe0.025O2 (NMCAF) was synthesized by the self-combustion method using sucrose as fuel. The material has a layered α-NaFeO2 type structure with a good hexagonal ordering. Rietveld refinement analysis of the XRD patterns revealed a very low cationic mixing compared to the non-substituted material LiNi0.6Mn0,2Co0.2O2 suggesting a structural stabilization. Galvanostatic cycling measurements indicate improved electrochemical performance after the metal substitution. An initial discharge capacity of about 190 mAh.g−1 at slow rate (C/20), and a good cycling stability even at moderately faster rates (C/5 and C) have been observed. The long term cycling displayed a capacity retention of about 90% after 10 cycles.

Keywords: cationic substitution, lithium ion batteries, positive electrode material, self-combustion synthesis method

Procedia PDF Downloads 416