Search results for: feature expanding.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2111

Search results for: feature expanding.

611 Urban and Building Information Modeling’s Applications for Environmental Education: Case Study of Educational Campuses

Authors: Samar Alarif

Abstract:

Smart sustainable educational campuses are the latest paradigm of innovation in the education domain. Campuses become a hub for sustainable environmental innovations. University has a vital role in paving the road for digital transformations in the infrastructure domain by preparing skilled engineers and specialists. The open digital platform enables smart campuses to simulate real education experience by managing their infrastructure within the curriculums. Moreover, it allows the engagement between governments, businesses, and citizens to push for innovation and sustainable services. Urban and building information modeling platforms have recently attained widespread attention in smart campuses due to their applications and benefits for creating the campus's digital twin in the form of an open digital platform. Qualitative and quantitative strategies were used in directing this research to develop and validate the UIM/BIM platform benefits for smart campuses FM and its impact on the institution's sustainable vision. The research findings are based on literature reviews and case studies of the TU berlin El-Gouna campus. Textual data will be collected using semi-structured interviews with actors, secondary data like BIM course student projects, documents, and publications related to the campus actors. The study results indicated that UIM/BIM has several benefits for the smart campus. Universities can achieve better capacity-building by integrating all the actors in the UIM/BIM process. Universities would achieve their community outreach vision by launching an online outreach of UIM/BIM course for the academic and professional community. The UIM/BIM training courses would integrate students from different disciplines and alumni graduated as well as engineers and planners and technicians. Open platforms enable universities to build a partnership with the industry; companies should be involved in the development of BIM technology courses. The collaboration between academia and the industry would fix the gap, promote the academic courses to reply to the professional requirements, and transfer the industry's academic innovations. In addition to that, the collaboration between academia, industry, government vocational and training centers, and civil society should be promoted by co-creation workshops, a series of seminars, and conferences. These co-creation activities target the capacity buildings and build governmental strategies and policies to support expanding the sustainable innovations and to agree on the expected role of all the stakeholders to support the transformation.

Keywords: smart city, smart educational campus, UIM, urban platforms, sustainable campus

Procedia PDF Downloads 123
610 Nuclear Materials and Nuclear Security in India: A Brief Overview

Authors: Debalina Ghoshal

Abstract:

Nuclear security is the ‘prevention and detection of, and response to unauthorised removal, sabotage, unauthorised access, illegal transfer or other malicious acts involving nuclear or radiological material or their associated facilities.’ Ever since the end of Cold War, nuclear materials security has remained a concern for global security. However, with the increase in terrorist attacks not just in India especially, security of nuclear materials remains a priority. Therefore, India has made continued efforts to tighten its security on nuclear materials to prevent nuclear theft and radiological terrorism. Nuclear security is different from nuclear safety. Physical security is also a serious concern and India had been careful of the physical security of its nuclear materials. This is more so important since India is expanding its nuclear power capability to generate electricity for economic development. As India targets 60,000 MW of electricity production by 2030, it has a range of reactors to help it achieve its goal. These include indigenous Pressurised Heavy Water Reactors, now standardized at 700 MW per reactor Light Water Reactors, and the indigenous Fast Breeder Reactors that can generate more fuel for the future and enable the country to utilise its abundant thorium resource. Nuclear materials security can be enhanced through two important ways. One is through proliferation resistant technologies and diplomatic efforts to take non proliferation initiatives. The other is by developing technical means to prevent any leakage in nuclear materials in the hands of asymmetric organisations. New Delhi has already implemented IAEA Safeguards on their civilian nuclear installations. Moreover, the IAEA Additional Protocol has also been ratified by India in order to enhance its transparency of nuclear material and strengthen nuclear security. India is a party to the IAEA Conventions on Nuclear Safety and Security, and in particular the 1980 Convention on the Physical Protection of Nuclear Material and its amendment in 2005, Code of Conduct in Safety and Security of Radioactive Sources, 2006 which enables the country to provide for the highest international standards on nuclear and radiological safety and security. India's nuclear security approach is driven by five key components: Governance, Nuclear Security Practice and Culture, Institutions, Technology and International Cooperation. However, there is still scope for further improvements to strengthen nuclear materials and nuclear security. The NTI Report, ‘India’s improvement reflects its first contribution to the IAEA Nuclear Security Fund etc. in the future, India’s nuclear materials security conditions could be further improved by strengthening its laws and regulations for security and control of materials, particularly for control and accounting of materials, mitigating the insider threat, and for the physical security of materials during transport. India’s nuclear materials security conditions also remain adversely affected due to its continued increase in its quantities of nuclear material, and high levels of corruption among public officials.’ This paper would study briefly the progress made by India in nuclear and nuclear material security and the step ahead for India to further strengthen this.

Keywords: India, nuclear security, nuclear materials, non proliferation

Procedia PDF Downloads 352
609 The Reenactment of Historic Memory and the Ways to Read past Traces through Contemporary Architecture in European Urban Contexts: The Case Study of the Medieval Walls of Naples

Authors: Francesco Scarpati

Abstract:

Because of their long history, ranging from ancient times to the present day, European cities feature many historical layers, whose single identities are represented by traces surviving in the urban design. However, urban transformations, in particular, the ones that have been produced by the property speculation phenomena of the 20th century, often compromised the readability of these traces, resulting in a loss of the historical identities of the single layers. The purpose of this research is, therefore, a reflection on the theme of the reenactment of the historical memory in the stratified European contexts and on how contemporary architecture can help to reveal past signs of the cities. The research work starts from an analysis of a series of emblematic examples that have already provided an original solution to the described problem, going from the architectural detail scale to the urban and landscape scale. The results of these analyses are then applied to the case study of the city of Naples, as an emblematic example of a stratified city, with an ancient Greek origin; a city where it is possible to read most of the traces of its transformations. Particular consideration is given to the trace of the medieval walls of the city, which a long time ago clearly divided the city itself from the outer fields, and that is no longer readable at the current time. Finally, solutions and methods of intervention are proposed to ensure that the trace of the walls, read as a boundary, can be revealed through the contemporary project.

Keywords: contemporary project, historic memory, historic urban contexts, medieval walls, naples, stratified cities, urban traces

Procedia PDF Downloads 264
608 Determine Causal Factors Affecting the Responsiveness and Productivity of Non-Governmental Universities

Authors: Davoud Maleki

Abstract:

Today, education and investment in human capital is a long-term investment without which the economy will be stagnant Stayed. Higher education represents a type of investment in human resources by providing and improving knowledge, skills and Attitudes help economic development. Providing efficient human resources by increasing the efficiency and productivity of people and on the other hand with Expanding the boundaries of knowledge and technology and promoting technology such as the responsibility of training human resources and increasing productivity and efficiency in High specialized levels are the responsibility of universities. Therefore, the university plays an infrastructural role in economic development and growth because education by creating skills and expertise in people and improving their ability.In recent decades, Iran's higher education system has been faced with many problems, therefore, scholars have looked for it is to identify and validate the causal factors affecting the responsiveness and productivity of non-governmental universities. The data in the qualitative part is the result of semi-structured interviews with 25 senior and middle managers working in the units It was Islamic Azad University of Tehran province, which was selected by theoretical sampling method. In data analysis, stepwise method and Analytical techniques of Strauss and Corbin (1992) were used. After determining the central category (answering for the sake of the beneficiaries) and using it in order to bring the categories, expressions and ideas that express the relationships between the main categories and In the end, six main categories were identified as causal factors affecting the university's responsiveness and productivity.They are: 1- Scientism 2- Human resources 3- Creating motivation in the university 4- Development based on needs assessment 5- Teaching process and Learning 6- University quality evaluation. In order to validate the response model obtained from the qualitative stage, a questionnaire The questionnaire was prepared and the answers of 146 students of Master's degree and Doctorate of Islamic Azad University located in Tehran province were received. Quantitative data in the form of descriptive data analysis, first and second stage factor analysis using SPSS and Amos23 software were analyzed. The findings of the research indicated the relationship between the central category and the causal factors affecting the response The results of the model test in the quantitative stage confirmed the generality of the conceptual model.

Keywords: accountability, productivity, non-governmental, universities, foundation data theory

Procedia PDF Downloads 59
607 A Crowdsourced Homeless Data Collection System and Its Econometric Analysis: Strengthening Inclusive Public Administration Policies

Authors: Praniil Nagaraj

Abstract:

This paper proposes a method to collect homeless data using crowdsourcing and presents an approach to analyze the data, demonstrating its potential to strengthen existing and future policies aimed at promoting socio-economic equilibrium. This paper's contributions can be categorized into three main areas. Firstly, a unique method for collecting homeless data is introduced, utilizing a user-friendly smartphone app (currently available for Android). The app enables the general public to quickly record information about homeless individuals, including the number of people and details about their living conditions. The collected data, including date, time, and location, is anonymized and securely transmitted to the cloud. It is anticipated that an increasing number of users motivated to contribute to society will adopt the app, thus expanding the data collection efforts. Duplicate data is addressed through simple classification methods, and historical data is utilized to fill in missing information. The second contribution of this paper is the description of data analysis techniques applied to the collected data. By combining this new data with existing information, statistical regression analysis is employed to gain insights into various aspects, such as distinguishing between unsheltered and sheltered homeless populations, as well as examining their correlation with factors like unemployment rates, housing affordability, and labor demand. Initial data is collected in San Francisco, while pre-existing information is drawn from three cities: San Francisco, New York City, and Washington D.C., facilitating the conduction of simulations. The third contribution focuses on demonstrating the practical implications of the data processing results. The challenges faced by key stakeholders, including charitable organizations and local city governments, are taken into consideration. Two case studies are presented as examples. The first case study explores improving the efficiency of food and necessities distribution, as well as medical assistance, driven by charitable organizations. The second case study examines the correlation between micro-geographic budget expenditure by local city governments and homeless information to justify budget allocation and expenditures. The ultimate objective of this endeavor is to enable the continuous enhancement of the quality of life for the underprivileged. It is hoped that through increased crowdsourcing of data from the public, the Generosity Curve and the Need Curve will intersect, leading to a better world for all.

Keywords: crowdsourcing, homelessness, socio-economic policies, statistical analysis

Procedia PDF Downloads 44
606 A Review of the Future of Sustainable Urban Water Supply in South Africa

Authors: Jeremiah Mutamba

Abstract:

Water is a critical resource for sustainable economic growth and social development. It enables societies to thrive and influences every urban center’s future. Thus, water must always be available in the right quantity and quality. However, in South Africa - a known physically water scarce nation – the future of sustainable urban supply of water may be in jeopardy. The country facing a water crisis influenced by insufficient infrastructure investment and maintenance, recurrent droughts and climate variation, human induced water quality deterioration, as well as growing lack of technical capacity in water institutions, particularly local municipalities. Aside of the eight metropolitan municipalities for the country, most municipalities struggle with provision of reliable water to their citizens. These municipalities contend with having now capable engineers, aging infrastructure with concomitant high system water losses (of 30% and upwards), coupled with growing water demand from expanding industries and population growth. Also, a significant portion (44%) of national water treatment plants are in critically poor condition, requiring urgent rehabilitation. Municipalities also struggle to raise funding to instate projects. All these factors militate against sustainable urban water supply in the country. Urgent mitigation measures are required. This paper seeks to review the extent of the current water supply challenges in South Africa’s urban centers, including searching for practical and cost-effective measures. The study followed a qualitative approach, combining desktop literature research, interviews with key sector stakeholders, and a workshop. Phenomenological data analysis technique was used to study and examine interview data and secondary desktop data. Preliminary findings established the building of technical or engineering capacity, reversal of the high physical water losses, rehabilitation of poor condition and dysfunctional water treatment works, diversification of water resource mix, and water scarcity awareness programs as possible practical solutions. Other proposed solutions include the use of performance-based or value-based contracting to fund initiatives to reduce high system water losses. Out-come based arrangements for revenue increasing water loss reduction projects were considered more practical in funding-stressed local municipalities. If proactively implemented in an integrated manner, these proposed solutions are likely to ensure sustainable urban water supply in South African urban centers in the future.

Keywords: sustainable, water scarcity, water supply, South Africa

Procedia PDF Downloads 123
605 An Intelligent Search and Retrieval System for Mining Clinical Data Repositories Based on Computational Imaging Markers and Genomic Expression Signatures for Investigative Research and Decision Support

Authors: David J. Foran, Nhan Do, Samuel Ajjarapu, Wenjin Chen, Tahsin Kurc, Joel H. Saltz

Abstract:

The large-scale data and computational requirements of investigators throughout the clinical and research communities demand an informatics infrastructure that supports both existing and new investigative and translational projects in a robust, secure environment. In some subspecialties of medicine and research, the capacity to generate data has outpaced the methods and technology used to aggregate, organize, access, and reliably retrieve this information. Leading health care centers now recognize the utility of establishing an enterprise-wide, clinical data warehouse. The primary benefits that can be realized through such efforts include cost savings, efficient tracking of outcomes, advanced clinical decision support, improved prognostic accuracy, and more reliable clinical trials matching. The overarching objective of the work presented here is the development and implementation of a flexible Intelligent Retrieval and Interrogation System (IRIS) that exploits the combined use of computational imaging, genomics, and data-mining capabilities to facilitate clinical assessments and translational research in oncology. The proposed System includes a multi-modal, Clinical & Research Data Warehouse (CRDW) that is tightly integrated with a suite of computational and machine-learning tools to provide insight into the underlying tumor characteristics that are not be apparent by human inspection alone. A key distinguishing feature of the System is a configurable Extract, Transform and Load (ETL) interface that enables it to adapt to different clinical and research data environments. This project is motivated by the growing emphasis on establishing Learning Health Systems in which cyclical hypothesis generation and evidence evaluation become integral to improving the quality of patient care. To facilitate iterative prototyping and optimization of the algorithms and workflows for the System, the team has already implemented a fully functional Warehouse that can reliably aggregate information originating from multiple data sources including EHR’s, Clinical Trial Management Systems, Tumor Registries, Biospecimen Repositories, Radiology PAC systems, Digital Pathology archives, Unstructured Clinical Documents, and Next Generation Sequencing services. The System enables physicians to systematically mine and review the molecular, genomic, image-based, and correlated clinical information about patient tumors individually or as part of large cohorts to identify patterns that may influence treatment decisions and outcomes. The CRDW core system has facilitated peer-reviewed publications and funded projects, including an NIH-sponsored collaboration to enhance the cancer registries in Georgia, Kentucky, New Jersey, and New York, with machine-learning based classifications and quantitative pathomics, feature sets. The CRDW has also resulted in a collaboration with the Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC) at the U.S. Department of Veterans Affairs to develop algorithms and workflows to automate the analysis of lung adenocarcinoma. Those studies showed that combining computational nuclear signatures with traditional WHO criteria through the use of deep convolutional neural networks (CNNs) led to improved discrimination among tumor growth patterns. The team has also leveraged the Warehouse to support studies to investigate the potential of utilizing a combination of genomic and computational imaging signatures to characterize prostate cancer. The results of those studies show that integrating image biomarkers with genomic pathway scores is more strongly correlated with disease recurrence than using standard clinical markers.

Keywords: clinical data warehouse, decision support, data-mining, intelligent databases, machine-learning.

Procedia PDF Downloads 126
604 Query Task Modulator: A Computerized Experimentation System to Study Media-Multitasking Behavior

Authors: Premjit K. Sanjram, Gagan Jakhotiya, Apoorv Goyal, Shanu Shukla

Abstract:

In psychological research, laboratory experiments often face the trade-off issue between experimental control and mundane realism. With the advent of Immersive Virtual Environment Technology (IVET), this issue seems to be at bay. However there is a growing challenge within the IVET itself to design and develop system or software that captures the psychological phenomenon of everyday lives. One such phenomena that is of growing interest is ‘media-multitasking’ To aid laboratory researches in media-multitasking this paper introduces Query Task Modulator (QTM), a computerized experimentation system to study media-multitasking behavior in a controlled laboratory environment. The system provides a computerized platform in conducting an experiment for experimenters to study media-multitasking in which participants will be involved in a query task. The system has Instant Messaging, E-mail, and Voice Call features. The answers to queries are provided on the left hand side information panel where participants have to search for it and feed the information in the respective communication media blocks as fast as possible. On the whole the system will collect multitasking behavioral data. To analyze performance there is a separate output table that records the reaction times and responses of the participants individually. Information panel and all the media blocks will appear on a single window in order to ensure multi-modality feature in media-multitasking and equal emphasis on all the tasks (thus avoiding prioritization to a particular task). The paper discusses the development of QTM in the light of current techniques of studying media-multitasking.

Keywords: experimentation system, human performance, media-multitasking, query-task

Procedia PDF Downloads 557
603 Hydrological Challenges and Solutions in the Nashik Region: A Multi Tracer and Geochemistry Approach to Groundwater Management

Authors: Gokul Prasad, Pennan Chinnasamy

Abstract:

The degradation of groundwater resources, attributed to factors such as excessive abstraction and contamination, has emerged as a global concern. This study delves into the stable isotopes of water) in a hard-rock aquifer situated in the Upper Godavari watershed, an agriculturally rich region in India underlain by Basalt. The higher groundwater draft (> 90%) poses significant risks; comprehending groundwater sources, flow patterns, and their environmental impacts is pivotal for researchers and water managers. The region has faced five droughts in the past 20 years; four are categorized as medium. The recharge rates are variable and show a very minimum contribution to groundwater. The rainfall pattern shows vast variability, with the region receiving seasonal monsoon rainfall for just four months and the rest of the year experiencing minimal rainfall. This research closely monitored monsoon precipitation inputs and examined spatial and temporal fluctuations in δ18O and δ2H in both groundwater and precipitation. By discerning individual recharge events during monsoons, it became possible to identify periods when evaporation led to groundwater quality deterioration, characterized by elevated salinity and stable isotope values in the return flow. The locally derived meteoric water line (LMWL) (δ2H = 6.72 * δ18O + 1.53, r² = 0.6) provided valuable insights into the groundwater system. The leftward shift of the Nashik LMWL in relation to the GMWL and LMWL indicated groundwater evaporation (-33 ‰), supported by spatial variations in electrical conductivity (EC) data. Groundwater in the eastern and northern watershed areas exhibited higher salinity > 3000uS/cm, expanding > 40% of the area compared to the western and southern regions due to geological disparities (alluvium vs basalt). The findings emphasize meteoric precipitation as the primary groundwater source in the watershed. However, spatial variations in isotope values and chemical constituents indicate other contributing factors, including evaporation, groundwater source type, and natural or anthropogenic (specifically agricultural and industrial) contaminants. Therefore, the study recommends focused hydro geochemistry and isotope analysis in areas with strong agricultural and industrial influence for the development of holistic groundwater management plans for protecting the groundwater aquifers' quantity and quality.

Keywords: groundwater quality, stable isotopes, salinity, groundwater management, hard-rock aquifer

Procedia PDF Downloads 47
602 Temperature-Responsive Shape Memory Polymer Filament Integrated Smart Polyester Knitted Fabric Featuring Memory Behavior

Authors: Priyanka Gupta, Bipin Kumar

Abstract:

Recent developments in smart materials motivate researchers to create novel textile products for innovative and functional applications, which have several potential uses beyond the conventional. This study investigates the memory behavior of shape memory filaments integrated into a knitted textile structure. The research advances the knowledge of how these intelligent materials respond within textile structures. This integration may also open new avenues for developing smart fabrics with unique sensing and actuation capabilities. A shape memory filament and polyester yarn were knitted to produce a shape memory knitted fabric (SMF). Thermo-mechanical tensile test was carried out to quantify the memory behavior of SMF under different conditions. The experimental findings demonstrate excellent shape recovery (100%) and shape fixity up to 88% at different strains (20% and 60%) and temperatures (30 ℃ and 50 ℃). Experimental results reveal that memory filament behaves differently in a fabric structure than in its pristine condition at various temperatures and strains. The cycle test of SMF under different thermo-mechanical conditions indicated complete shape recovery with an increase in shape fixity. So, the utterly recoverable textile structure was achieved after a few initial cycles. These intelligent textiles are beneficial for the development of novel, innovative, and functional fabrics like elegant curtains, pressure garments, compression stockings, etc. In addition to fashion and medical uses, this unique feature may also be leveraged to build textile-based sensors and actuators.

Keywords: knitting, memory filament, shape memory, smart textiles, thermo-mechanical cycle

Procedia PDF Downloads 89
601 Telemedicine Services in Ophthalmology: A Review of Studies

Authors: Nasim Hashemi, Abbas Sheikhtaheri

Abstract:

Telemedicine is the use of telecommunication and information technologies to provide health care services that would often not be consistently available in distant rural communities to people at these remote areas. Teleophthalmology is a branch of telemedicine that delivers eye care through digital medical equipment and telecommunications technology. Thus, teleophthalmology can overcome geographical barriers and improve quality, access, and affordability of eye health care services. Since teleophthalmology has been widespread applied in recent years, the aim of this study was to determine the different applications of teleophthalmology in the world. To this end, three bibliographic databases (Medline, ScienceDirect, Scopus) were comprehensively searched with these keywords: eye care, eye health care, primary eye care, diagnosis, detection, and screening of different eye diseases in conjunction with telemedicine, telehealth, teleophthalmology, e-services, and information technology. All types of papers were included in the study with no time restriction. We conducted the search strategies until 2015. Finally 70 articles were surveyed. We classified the results based on the’type of eye problems covered’ and ‘the type of telemedicine services’. Based on the review, from the ‘perspective of health care levels’, there are three level for eye health care as primary, secondary and tertiary eye care. From the ‘perspective of eye care services’, the main application of teleophthalmology in primary eye care was related to the diagnosis of different eye diseases such as diabetic retinopathy, macular edema, strabismus and aged related macular degeneration. The main application of teleophthalmology in secondary and tertiary eye care was related to the screening of eye problems i.e. diabetic retinopathy, astigmatism, glaucoma screening. Teleconsultation between health care providers and ophthalmologists and also education and training sessions for patients were other types of teleophthalmology in world. Real time, store–forward and hybrid methods were the main forms of the communication from the perspective of ‘teleophthalmology mode’ which is used based on IT infrastructure between sending and receiving centers. In aspect of specialists, early detection of serious aged-related ophthalmic disease in population, screening of eye disease processes, consultation in an emergency cases and comprehensive eye examination were the most important benefits of teleophthalmology. Cost-effectiveness of teleophthalmology projects resulted from reducing transportation and accommodation cost, access to affordable eye care services and receiving specialist opinions were also the main advantages of teleophthalmology for patients. Teleophthalmology brings valuable secondary and tertiary care to remote areas. So, applying teleophthalmology for detection, treatment and screening purposes and expanding its use in new applications such as eye surgery will be a key tool to promote public health and integrating eye care to primary health care.

Keywords: applications, telehealth, telemedicine, teleophthalmology

Procedia PDF Downloads 374
600 Effect of Alkaline Activator, Water, Superplasticiser and Slag Contents on the Compressive Strength and Workability of Slag-Fly Ash Based Geopolymer Mortar Cured under Ambient Temperature

Authors: M. Al-Majidi, A. Lampropoulos, A. Cundy

Abstract:

Geopolymer (cement-free) concrete is the most promising green alternative to ordinary Portland cement concrete and other cementitious materials. While a range of different geopolymer concretes have been produced, a common feature of these concretes is heat curing treatment which is essential in order to provide sufficient mechanical properties in the early age. However, there are several practical issues with the application of heat curing in large-scale structures. The purpose of this study is to develop cement-free concrete without heat curing treatment. Experimental investigations were carried out in two phases. In the first phase (Phase A), the optimum content of water, polycarboxylate based superplasticizer contents and potassium silicate activator in the mix was determined. In the second stage (Phase B), the effect of ground granulated blast furnace slag (GGBFS) incorporation on the compressive strength of fly ash (FA) and Slag based geopolymer mixtures was evaluated. Setting time and workability were also conducted alongside with compressive tests. The results showed that as the slag content was increased the setting time was reduced while the compressive strength was improved. The obtained compressive strength was in the range of 40-50 MPa for 50% slag replacement mixtures. Furthermore, the results indicated that increment of water and superplasticizer content resulted to retarding of the setting time and slight reduction of the compressive strength. The compressive strength of the examined mixes was considerably increased as potassium silicate content was increased.

Keywords: fly ash, geopolymer, potassium silicate, slag

Procedia PDF Downloads 222
599 A Novel Hybrid Deep Learning Architecture for Predicting Acute Kidney Injury Using Patient Record Data and Ultrasound Kidney Images

Authors: Sophia Shi

Abstract:

Acute kidney injury (AKI) is the sudden onset of kidney damage in which the kidneys cannot filter waste from the blood, requiring emergency hospitalization. AKI patient mortality rate is high in the ICU and is virtually impossible for doctors to predict because it is so unexpected. Currently, there is no hybrid model predicting AKI that takes advantage of two types of data. De-identified patient data from the MIMIC-III database and de-identified kidney images and corresponding patient records from the Beijing Hospital of the Ministry of Health were collected. Using data features including serum creatinine among others, two numeric models using MIMIC and Beijing Hospital data were built, and with the hospital ultrasounds, an image-only model was built. Convolutional neural networks (CNN) were used, VGG and Resnet for numeric data and Resnet for image data, and they were combined into a hybrid model by concatenating feature maps of both types of models to create a new input. This input enters another CNN block and then two fully connected layers, ending in a binary output after running through Softmax and additional code. The hybrid model successfully predicted AKI and the highest AUROC of the model was 0.953, achieving an accuracy of 90% and F1-score of 0.91. This model can be implemented into urgent clinical settings such as the ICU and aid doctors by assessing the risk of AKI shortly after the patient’s admission to the ICU, so that doctors can take preventative measures and diminish mortality risks and severe kidney damage.

Keywords: Acute kidney injury, Convolutional neural network, Hybrid deep learning, Patient record data, ResNet, Ultrasound kidney images, VGG

Procedia PDF Downloads 131
598 Socio-Economic and Psychological Factors of Moscow Population Deviant Behavior: Sociological and Statistical Research

Authors: V. Bezverbny

Abstract:

The actuality of the project deals with stable growing of deviant behavior’ statistics among Moscow citizens. During the recent years the socioeconomic health, wealth and life expectation of Moscow residents is regularly growing up, but the limits of crime and drug addiction have grown up seriously. Another serious Moscow problem has been economical stratification of population. The cost of identical residential areas differs at 2.5 times. The project is aimed at complex research and the development of methodology for main factors and reasons evaluation of deviant behavior growing in Moscow. The main project objective is finding out the links between the urban environment quality and dynamics of citizens’ deviant behavior in regional and municipal aspect using the statistical research methods and GIS modeling. The conducted research allowed: 1) to evaluate the dynamics of deviant behavior in Moscow different administrative districts; 2) to describe the reasons of crime increasing, drugs addiction, alcoholism, suicides tendencies among the city population; 3) to develop the city districts classification based on the level of the crime rate; 4) to create the statistical database containing the main indicators of Moscow population deviant behavior in 2010-2015 including information regarding crime level, alcoholism, drug addiction, suicides; 5) to present statistical indicators that characterize the dynamics of Moscow population deviant behavior in condition of expanding the city territory; 6) to analyze the main sociological theories and factors of deviant behavior for concretization the deviation types; 7) to consider the main theoretical statements of the city sociology devoted to the reasons for deviant behavior in megalopolis conditions. To explore the level of deviant behavior’ factors differentiation, the questionnaire was worked out, and sociological survey involved more than 1000 people from different districts of the city was conducted. Sociological survey allowed to study the socio-economical and psychological factors of deviant behavior. It also included the Moscow residents’ open-ended answers regarding the most actual problems in their districts and reasons of wish to leave their place. The results of sociological survey lead to the conclusion that the main factors of deviant behavior in Moscow are high level of social inequality, large number of illegal migrants and bums, nearness of large transport hubs and stations on the territory, ineffective work of police, alcohol availability and drug accessibility, low level of psychological comfort for Moscow citizens, large number of building projects.

Keywords: deviant behavior, megapolis, Moscow, urban environment, social stratification

Procedia PDF Downloads 192
597 An A-Star Approach for the Quickest Path Problem with Time Windows

Authors: Christofas Stergianos, Jason Atkin, Herve Morvan

Abstract:

As air traffic increases, more airports are interested in utilizing optimization methods. Many processes happen in parallel at an airport, and complex models are needed in order to have a reliable solution that can be implemented for ground movement operations. The ground movement for aircraft in an airport, allocating a path to each aircraft to follow in order to reach their destination (e.g. runway or gate), is one process that could be optimized. The Quickest Path Problem with Time Windows (QPPTW) algorithm has been developed to provide a conflict-free routing of vehicles and has been applied to routing aircraft around an airport. It was subsequently modified to increase the accuracy for airport applications. These modifications take into consideration specific characteristics of the problem, such as: the pushback process, which considers the extra time that is needed for pushing back an aircraft and turning its engines on; stand holding where any waiting should be allocated to the stand; and runway sequencing, where the sequence of the aircraft that take off is optimized and has to be respected. QPPTW involves searching for the quickest path by expanding the search in all directions, similarly to Dijkstra’s algorithm. Finding a way to direct the expansion can potentially assist the search and achieve a better performance. We have further modified the QPPTW algorithm to use a heuristic approach in order to guide the search. This new algorithm is based on the A-star search method but estimates the remaining time (instead of distance) in order to assess how far the target is. It is important to consider the remaining time that it is needed to reach the target, so that delays that are caused by other aircraft can be part of the optimization method. All of the other characteristics are still considered and time windows are still used in order to route multiple aircraft rather than a single aircraft. In this way the quickest path is found for each aircraft while taking into account the movements of the previously routed aircraft. After running experiments using a week of real aircraft data from Zurich Airport, the new algorithm (A-star QPPTW) was found to route aircraft much more quickly, being especially fast in routing the departing aircraft where pushback delays are significant. On average A-star QPPTW could route a full day (755 to 837 aircraft movements) 56% faster than the original algorithm. In total the routing of a full week of aircraft took only 12 seconds with the new algorithm, 15 seconds faster than the original algorithm. For real time application, the algorithm needs to be very fast, and this speed increase will allow us to add additional features and complexity, allowing further integration with other processes in airports and leading to more optimized and environmentally friendly airports.

Keywords: a-star search, airport operations, ground movement optimization, routing and scheduling

Procedia PDF Downloads 231
596 The Formation of Mutual Understanding in Conversation: An Embodied Approach

Authors: Haruo Okabayashi

Abstract:

The mutual understanding in conversation is very important for human relations. This study investigates the mental function of the formation of mutual understanding between two people in conversation using the embodied approach. Forty people participated in this study. They are divided into pairs randomly. Four conversation situations between two (make/listen to fun or pleasant talk, make/listen to regrettable talk) are set for four minutes each, and the finger plethysmogram (200 Hz) of each participant is measured. As a result, the attractors of the participants who reported “I did not understand my partner” show the collapsed shape, which means the fluctuation of their rhythm is too small to match their partner’s rhythm, and their cross correlation is low. The autonomic balance of both persons tends to resonate during conversation, and both LLEs tend to resonate, too. In human history, in order for human beings as weak mammals to live, they may have been with others; that is, they have brought about resonating characteristics, which is called self-organization. However, the resonant feature sometimes collapses, depending on the lifestyle that the person was formed by himself after birth. It is difficult for people who do not have a lifestyle of mutual gaze to resonate their biological signal waves with others’. These people have features such as anxiety, fatigue, and confusion tendency. Mutual understanding is thought to be formed as a result of cooperation between the features of self-organization of the persons who are talking and the lifestyle indicated by mutual gaze. Such an entanglement phenomenon is called a nonlinear relation. By this research, it is found that the formation of mutual understanding is expressed by the rhythm of a biological signal showing a nonlinear relationship.

Keywords: embodied approach, finger plethysmogram, mutual understanding, nonlinear phenomenon

Procedia PDF Downloads 266
595 Fake Accounts Detection in Twitter Based on Minimum Weighted Feature Set

Authors: Ahmed ElAzab, Amira M. Idrees, Mahmoud A. Mahmoud, Hesham Hefny

Abstract:

Social networking sites such as Twitter and Facebook attracts over 500 million users across the world, for those users, their social life, even their practical life, has become interrelated. Their interaction with social networking has affected their life forever. Accordingly, social networking sites have become among the main channels that are responsible for vast dissemination of different kinds of information during real time events. This popularity in Social networking has led to different problems including the possibility of exposing incorrect information to their users through fake accounts which results to the spread of malicious content during life events. This situation can result to a huge damage in the real world to the society in general including citizens, business entities, and others. In this paper, we present a classification method for detecting fake accounts on Twitter. The study determines the minimized set of the main factors that influence the detection of the fake accounts on Twitter, then the determined factors have been applied using different classification techniques, a comparison of the results for these techniques has been performed and the most accurate algorithm is selected according to the accuracy of the results. The study has been compared with different recent research in the same area, this comparison has proved the accuracy of the proposed study. We claim that this study can be continuously applied on Twitter social network to automatically detect the fake accounts, moreover, the study can be applied on different Social network sites such as Facebook with minor changes according to the nature of the social network which are discussed in this paper.

Keywords: fake accounts detection, classification algorithms, twitter accounts analysis, features based techniques

Procedia PDF Downloads 416
594 Network Conditioning and Transfer Learning for Peripheral Nerve Segmentation in Ultrasound Images

Authors: Harold Mauricio Díaz-Vargas, Cristian Alfonso Jimenez-Castaño, David Augusto Cárdenas-Peña, Guillermo Alberto Ortiz-Gómez, Alvaro Angel Orozco-Gutierrez

Abstract:

Precise identification of the nerves is a crucial task performed by anesthesiologists for an effective Peripheral Nerve Blocking (PNB). Now, anesthesiologists use ultrasound imaging equipment to guide the PNB and detect nervous structures. However, visual identification of the nerves from ultrasound images is difficult, even for trained specialists, due to artifacts and low contrast. The recent advances in deep learning make neural networks a potential tool for accurate nerve segmentation systems, so addressing the above issues from raw data. The most widely spread U-Net network yields pixel-by-pixel segmentation by encoding the input image and decoding the attained feature vector into a semantic image. This work proposes a conditioning approach and encoder pre-training to enhance the nerve segmentation of traditional U-Nets. Conditioning is achieved by the one-hot encoding of the kind of target nerve a the network input, while the pre-training considers five well-known deep networks for image classification. The proposed approach is tested in a collection of 619 US images, where the best C-UNet architecture yields an 81% Dice coefficient, outperforming the 74% of the best traditional U-Net. Results prove that pre-trained models with the conditional approach outperform their equivalent baseline by supporting learning new features and enriching the discriminant capability of the tested networks.

Keywords: nerve segmentation, U-Net, deep learning, ultrasound imaging, peripheral nerve blocking

Procedia PDF Downloads 106
593 Spatio-Temporal Changes of Rainfall in São Paulo, Brazil (1973-2012): A Gamma Distribution and Cluster Analysis

Authors: Guilherme Henrique Gabriel, Lucí Hidalgo Nunes

Abstract:

An important feature of rainfall regimes is the variability, which is subject to the atmosphere’s general and regional dynamics, geographical position and relief. Despite being inherent to the climate system, it can harshly impact virtually all human activities. In turn, global climate change has the ability to significantly affect smaller-scale rainfall regimes by altering their current variability patterns. In this regard, it is useful to know if regional climates are changing over time and whether it is possible to link these variations to climate change trends observed globally. This study is part of an international project (Metropole-FAPESP, Proc. 2012/51876-0 and Proc. 2015/11035-5) and the objective was to identify and evaluate possible changes in rainfall behavior in the state of São Paulo, southeastern Brazil, using rainfall data from 79 rain gauges for the last forty years. Cluster analysis and gamma distribution parameters were used for evaluating spatial and temporal trends, and the outcomes are presented by means of geographic information systems tools. Results show remarkable changes in rainfall distribution patterns in São Paulo over the years: changes in shape and scale parameters of gamma distribution indicate both an increase in the irregularity of rainfall distribution and the probability of occurrence of extreme events. Additionally, the spatial outcome of cluster analysis along with the gamma distribution parameters suggest that changes occurred simultaneously over the whole area, indicating that they could be related to remote causes beyond the local and regional ones, especially in a current global climate change scenario.

Keywords: climate change, cluster analysis, gamma distribution, rainfall

Procedia PDF Downloads 319
592 Analyzing Music Theory in Different Countries: Compare with Greece and China

Authors: Baoshan Wang

Abstract:

The present study investigates how music theory has developed across different countries due to their diverse histories, religions, and cultural differences. It is unknown how these various factors may contribute to differences in music theory across countries. Therefore, we examine the differences between China and Greece, which have developed unique music theories over time. Specifically, our analysis looks at musical notation and scales. For example, Tonal music originates from Greece, which harbors quite complex notation and scaling. There exist seven notes in each scale within seven modes of scales. Each mode of the diatonic scale has a unique temperament, two of which are most commonly used in modern music. In contrast, we find that Chinese music has only five notes in its scales. Interestingly, a unique feature of Chinese music theory is that there is no half-step, resulting in a highly divergent and culture-specific sound. Fascinatingly, these differences may arise from the contrasting ways that Western and Eastern musicians perceive music. While Western musicians tend to believe in music “without borders,” Eastern musicians generally embrace differing perspectives. Yet, the vast majority of colleges or music conservatories teach the borderless theory of Western music, which renders the music educational system incomplete. This is critically important because learning music is not simply a profession for musicians. Rather, it is an intermediary to facilitate understanding and appreciation for different countries’ cultures and religions. Education is undoubtedly the optimal mode to promote different countries’ music theory so people across the world can learn more about music and, in turn, each other. Even though Western music theory is predominantly taught, it is crucial we also pursue an understanding of other countries’ music because their unique aspects contribute to the systematic completeness of Music Theory in its entirety.

Keywords: culture, development, music theory, music history, religion, western music

Procedia PDF Downloads 94
591 Investigating Naming and Connected Speech Impairments in Moroccan AD Patients

Authors: Mounia El Jaouhari, Mira Goral, Samir Diouny

Abstract:

Introduction: Previous research has indicated that language impairments are recognized as a feature of many neurodegenerative disorders, including non-language-led dementia subtypes such as Alzheimer´s disease (AD). In this preliminary study, the focal aim is to quantify the semantic content of naming and connected speech samples of Moroccan patients diagnosed with AD using two tasks taken from the culturally adapted and validated Moroccan version of the Boston Diagnostic Aphasia Examination. Methods: Five individuals with AD and five neurologically healthy individuals matched for age, gender, and education will participate in the study. Participants with AD will be diagnosed on the basis of the Moroccan version of the Diagnostic and Statistial Manual of Mental Disorders (DSM-4) screening test, the Moroccan version of the Mini Mental State Examination (MMSE) test scores, and neuroimaging analyses. The participants will engage in two tasks taken from the MDAE-SF: 1) Picture description and 2) Naming. Expected findings: Consistent with previous studies conducted on English speaking AD patients, we expect to find significant word production and retrieval impairments in AD patients in all measures. Moreover, we expect to find category fluency impairments that further endorse semantic breakdown accounts. In sum, not only will the findings of the current study shed more light on the locus of word retrieval impairments noted in AD, but also reflect the nature of Arabic morphology. In addition, the error patterns are expected to be similar to those found in previous AD studies in other languages.

Keywords: alzheimer's disease, anomia, connected speech, semantic impairments, moroccan arabic

Procedia PDF Downloads 142
590 Exposure to Social Media Shared Video-Clips on Irregularities from the 2023 Election in Nigeria and Audience Perception of the Outcome

Authors: Obiakor Casmir Uchenna, Ikegbunam Peter Chierike, Ezeja Perpetual Chisom

Abstract:

Irregularities have been a major feature of the Nigerian political activities since 1999. The rate at which such impunities thrive in the country has made elections grossly unacceptable among the people because the outcomes have never reflected the wish of the masses. Conscious of this, citizens have subscribed to the use of social media in exposing the ugly faces of the country’s elections which have always been against the less privileged. This study is an exploration of the relationship between exposure to social media shared video-clips and the respondents’ perception of the 2023 presidential election in Nigeria. The general objective of the study is to find out what the respondents make of the election as a result of the video-clips shared on different social media platforms showing electoral irregularities. The study adopted survey research method in studying 378 university undergraduates from NAU, COOU and Paul University selected through purposive sampling technique. The study was premised on the theoretical provision of violation of expectation theory. Findings revealed that the respondents are well exposed to different video-clips showing irregularities on the election. It was also found that the respondents have negative perception of the election. It was concluded that electoral umpire, the government in power and the security apparatus violated the respondents’ expectation from the election based on the pre-election promises made to the citizens. It was recommended among others, that Nigeria must strengthen the various institutions responsible for the conduct of elections if violence will not be made the best option for the poor masses.

Keywords: social media shared video-clips, exposure, irregularities, elections, audience perception, outcome

Procedia PDF Downloads 60
589 Resonant Auxetic Metamaterial for Automotive Applications in Vibration Isolation

Authors: Adrien Pyskir, Manuel Collet, Zoran Dimitrijevic, Claude-Henri Lamarque

Abstract:

During the last decades, great efforts have been made to reduce acoustic and vibrational disturbances in transportations, as it has become a key feature for comfort. Today, isolation and design have neutralized most of the troublesome vibrations, so that cars are quieter and more comfortable than ever. However, some problems remain unsolved, in particular concerning low-frequency isolation and the frequency-dependent stiffening of materials like rubber. To sum it up, a balance has to be found between a high static stiffness to sustain the vibration source’s mass, and low dynamic stiffness, as wideband as possible. Systems meeting these criteria are yet to be designed. We thus investigated solutions inspired by metamaterials to control efficiently low-frequency wave propagation. Structures exhibiting a negative Poisson ratio, also called auxetic structures, are known to influence the propagation of waves through beaming or damping. However, their stiffness can be quite peculiar as well, as they can present regions of zero stiffness on the stress-strain curve for compression. In addition, auxetic materials can be easily adapted in many ways, inducing great tuning potential. Using finite element software COMSOL Multiphysics, a resonant design has been tested through statics and dynamics simulations. These results are compared to experimental results. In particular, the bandgaps featured by these structures are analyzed as a function of design parameters. Great stiffness properties can be observed, including low-frequency dynamic stiffness loss and broadband transmission loss. Such features are very promising for practical isolation purpose, and we hope to adopt this kind of metamaterial into an effective industrial damper.

Keywords: auxetics, metamaterials, structural dynamics, vibration isolation

Procedia PDF Downloads 149
588 CAP-Glycine Protein Governs Growth, Differentiation, and the Pathogenicity of Global Meningoencephalitis Fungi

Authors: Kyung-Tae Lee, Li Li Wang, Kwang-Woo Jung, Yong-Sun Bahn

Abstract:

Microtubules are involved in mechanical support, cytoplasmic organization as well as in a number of cellular processes by interacting with diverse microtubule-associated proteins (MAPs), such as plus-end tracking proteins, motor proteins, and tubulin-folding cofactors. A common feature of these proteins is the presence of a cytoskeleton-associated protein-glycine-rich (CAP-Gly) domain, which is evolutionarily conserved and generally considered to bind to α-tubulin to regulate functions of microtubules. However, there has been a dearth of research on CAP-Gly proteins in fungal pathogens, including Cryptococcus neoformans, which causes fatal meningoencephalitis globally. In this study, we identified five CAP-Gly proteins encoding genes in C. neoformans. Among these, Cgp1, encoded by CNAG_06352, has a unique domain structure that has not been reported before in other eukaryotes. Supporting the role of Cpg1 in microtubule-related functions, we demonstrate that deletion or overexpression of CGP1 alters cellular susceptibility to thiabendazole, a microtubule destabilizer, and Cgp1 is co-localized with cytoplasmic microtubules. Related to the cellular functions of microtubules, Cgp1 also governs maintenance of membrane stability and genotoxic stress responses. Furthermore, we demonstrate that Cgp1 uniquely regulates sexual differentiation of C. neoformans with distinct roles in the early and late stage of mating. Our domain analysis reveals that the CAP-Gly domain plays major roles in all the functions of Cgp1. Finally, the cgp1Δ mutant is attenuated in virulence. In conclusion, this novel CAP-Gly protein, Cgp1, has pleotropic roles in regulating growth, stress responses, differentiation and pathogenicity of C. neoformans.

Keywords: human fungal pathogen, CAP-Glycine protein, microtubule, meningoencephalitis

Procedia PDF Downloads 315
587 Gross Anatomical and Ultra Structural Microscopic Studies on the Nose of the Dromedary Camel (Camelus Dromederius)

Authors: Mahmoud S Gewaily, Atif Hasan, Mohamed Kassab, Ali A. Mansour

Abstract:

The current study was carried out on the nose of seventeenth healthy adult camels. Specimens were collected from slaughter houses then fixed, dissected and photographed. For ultra structural studies, fresh samples were fixed in different fixatives and prepared for examination by light, scanning and electron microscopes. Grossly, nose of the camel had narrow nostrils, slit like in outline. In the nasal cavity, the nasal vestibule was narrow and has scanty dorsal and lateral cartilaginous support. The Nasal conchae (dorsal, middle and ventral) enclosed the dorsal, middle conchal sinuses and no ventral conchal sinus; instead there was recess and bull a. The ethmoidal conchae (8 in number) were noticeably fewer than in the other domestic animals like ox and horse. The olfactory mucosa was restricted to a small area covering the caudal parts of the ethmoidal conchae. The lining epithelium of the nasal cavity changes gradually from stratified squamous epithelium in the nasal vestibule to pseudo stratified columnar ciliated in the respiratory region and finally, olfactory epithelium covering the caudal parts of the ethmoidal conchae. In the dromedary camel, a special feature was the presence of dense and relatively long hair covering the nostrils and the rostral part of the nasal vestibule. In conclusion, the anatomical features of the nose of the dromedary camel, especially in its rostral parts enable this animal to breathe properly in the sandy dry weather.

Keywords: camel nose, anatomy, dromedary camel, nasal vestibule

Procedia PDF Downloads 439
586 Cirrhosis Mortality Prediction as Classification using Frequent Subgraph Mining

Authors: Abdolghani Ebrahimi, Diego Klabjan, Chenxi Ge, Daniela Ladner, Parker Stride

Abstract:

In this work, we use machine learning and novel data analysis techniques to predict the one-year mortality of cirrhotic patients. Data from 2,322 patients with liver cirrhosis are collected at a single medical center. Different machine learning models are applied to predict one-year mortality. A comprehensive feature space including demographic information, comorbidity, clinical procedure and laboratory tests is being analyzed. A temporal pattern mining technic called Frequent Subgraph Mining (FSM) is being used. Model for End-stage liver disease (MELD) prediction of mortality is used as a comparator. All of our models statistically significantly outperform the MELD-score model and show an average 10% improvement of the area under the curve (AUC). The FSM technic itself does not improve the model significantly, but FSM, together with a machine learning technique called an ensemble, further improves the model performance. With the abundance of data available in healthcare through electronic health records (EHR), existing predictive models can be refined to identify and treat patients at risk for higher mortality. However, due to the sparsity of the temporal information needed by FSM, the FSM model does not yield significant improvements. To the best of our knowledge, this is the first work to apply modern machine learning algorithms and data analysis methods on predicting one-year mortality of cirrhotic patients and builds a model that predicts one-year mortality significantly more accurate than the MELD score. We have also tested the potential of FSM and provided a new perspective of the importance of clinical features.

Keywords: machine learning, liver cirrhosis, subgraph mining, supervised learning

Procedia PDF Downloads 134
585 Biosignal Recognition for Personal Identification

Authors: Hadri Hussain, M.Nasir Ibrahim, Chee-Ming Ting, Mariani Idroas, Fuad Numan, Alias Mohd Noor

Abstract:

A biometric security system has become an important application in client identification and verification system. A conventional biometric system is normally based on unimodal biometric that depends on either behavioural or physiological information for authentication purposes. The behavioural biometric depends on human body biometric signal (such as speech) and biosignal biometric (such as electrocardiogram (ECG) and phonocardiogram or heart sound (HS)). The speech signal is commonly used in a recognition system in biometric, while the ECG and the HS have been used to identify a person’s diseases uniquely related to its cluster. However, the conventional biometric system is liable to spoof attack that will affect the performance of the system. Therefore, a multimodal biometric security system is developed, which is based on biometric signal of ECG, HS, and speech. The biosignal data involved in the biometric system is initially segmented, with each segment Mel Frequency Cepstral Coefficients (MFCC) method is exploited for extracting the feature. The Hidden Markov Model (HMM) is used to model the client and to classify the unknown input with respect to the modal. The recognition system involved training and testing session that is known as client identification (CID). In this project, twenty clients are tested with the developed system. The best overall performance at 44 kHz was 93.92% for ECG and the worst overall performance was ECG at 88.47%. The results were compared to the best overall performance at 44 kHz for (20clients) to increment of clients, which was 90.00% for HS and the worst overall performance falls at ECG at 79.91%. It can be concluded that the difference multimodal biometric has a substantial effect on performance of the biometric system and with the increment of data, even with higher frequency sampling, the performance still decreased slightly as predicted.

Keywords: electrocardiogram, phonocardiogram, hidden markov model, mel frequency cepstral coeffiecients, client identification

Procedia PDF Downloads 280
584 Application of Response Surface Methodology to Assess the Impact of Aqueous and Particulate Phosphorous on Diazotrophic and Non-Diazotrophic Cyanobacteria Associated with Harmful Algal Blooms

Authors: Elizabeth Crafton, Donald Ott, Teresa Cutright

Abstract:

Harmful algal blooms (HABs), more notably cyanobacteria-dominated HABs, compromise water quality, jeopardize access to drinking water and are a risk to public health and safety. HABs are representative of ecosystem imbalance largely caused by environmental changes, such as eutrophication, that are associated with the globally expanding human population. Cyanobacteria-dominated HABs are anticipated to increase in frequency, magnitude, and are predicted to plague a larger geographical area as a result of climate change. The weather pattern is important as storm-driven, pulse-input of nutrients have been correlated to cyanobacteria-dominated HABs. The mobilization of aqueous and particulate nutrients and the response of the phytoplankton community is an important relationship in this complex phenomenon. This relationship is most apparent in high-impact areas of adequate sunlight, > 20ᵒC, excessive nutrients and quiescent water that corresponds to ideal growth of HABs. Typically the impact of particulate phosphorus is dismissed as an insignificant contribution; which is true for areas that are not considered high-impact. The objective of this study was to assess the impact of a simulated storm-driven, pulse-input of reactive phosphorus and the response of three different cyanobacteria assemblages (~5,000 cells/mL). The aqueous and particulate sources of phosphorus and changes in HAB were tracked weekly for 4 weeks. The first cyanobacteria composition consisted of Planktothrix sp., Microcystis sp., Aphanizomenon sp., and Anabaena sp., with 70% of the total population being non-diazotrophic and 30% being diazotrophic. The second was comprised of Anabaena sp., Planktothrix sp., and Microcystis sp., with 87% diazotrophic and 13% non-diazotrophic. The third composition has yet to be determined as these experiments are ongoing. Preliminary results suggest that both aqueous and particulate sources are contributors of total reactive phosphorus in high-impact areas. The results further highlight shifts in the cyanobacteria assemblage after the simulated pulse-input. In the controls, the reactors dosed with aqueous reactive phosphorus maintained a constant concentration for the duration of the experiment; whereas, the reactors that were dosed with aqueous reactive phosphorus and contained soil decreased from 1.73 mg/L to 0.25 mg/L of reactive phosphorus from time zero to 7 days; this was higher than the blank (0.11 mg/L). Suggesting a binding of aqueous reactive phosphorus to sediment, which is further supported by the positive correlation observed between total reactive phosphorus concentration and turbidity. The experiments are nearly completed and a full statistical analysis will be completed of the results prior to the conference.

Keywords: Anabaena, cyanobacteria, harmful algal blooms, Microcystis, phosphorous, response surface methodology

Procedia PDF Downloads 167
583 Integrating Knowledge Distillation of Multiple Strategies

Authors: Min Jindong, Wang Mingxia

Abstract:

With the widespread use of artificial intelligence in life, computer vision, especially deep convolutional neural network models, has developed rapidly. With the increase of the complexity of the real visual target detection task and the improvement of the recognition accuracy, the target detection network model is also very large. The huge deep neural network model is not conducive to deployment on edge devices with limited resources, and the timeliness of network model inference is poor. In this paper, knowledge distillation is used to compress the huge and complex deep neural network model, and the knowledge contained in the complex network model is comprehensively transferred to another lightweight network model. Different from traditional knowledge distillation methods, we propose a novel knowledge distillation that incorporates multi-faceted features, called M-KD. In this paper, when training and optimizing the deep neural network model for target detection, the knowledge of the soft target output of the teacher network in knowledge distillation, the relationship between the layers of the teacher network and the feature attention map of the hidden layer of the teacher network are transferred to the student network as all knowledge. in the model. At the same time, we also introduce an intermediate transition layer, that is, an intermediate guidance layer, between the teacher network and the student network to make up for the huge difference between the teacher network and the student network. Finally, this paper adds an exploration module to the traditional knowledge distillation teacher-student network model. The student network model not only inherits the knowledge of the teacher network but also explores some new knowledge and characteristics. Comprehensive experiments in this paper using different distillation parameter configurations across multiple datasets and convolutional neural network models demonstrate that our proposed new network model achieves substantial improvements in speed and accuracy performance.

Keywords: object detection, knowledge distillation, convolutional network, model compression

Procedia PDF Downloads 278
582 Effect of Built in Polarization on Thermal Properties of InGaN/GaN Heterostructures

Authors: Bijay Kumar Sahoo

Abstract:

An important feature of InₓGa₁-ₓN/GaN heterostructures is strong built-in polarization (BIP) electric field at the hetero-interface due to spontaneous (sp) and piezoelectric (pz) polarizations. The intensity of this electric field reaches several MV/cm. This field has profound impact on optical, electrical and thermal properties. In this work, the effect of BIP field on thermal conductivity of InₓGa₁-ₓN/GaN heterostructure has been investigated theoretically. The interaction between the elastic strain and built in electric field induces additional electric polarization. This additional polarization contributes to the elastic constant of InₓGa₁-ₓN alloy. This in turn modifies material parameters of InₓGa₁-ₓN. The BIP mechanism enhances elastic constant, phonon velocity and Debye temperature and their bowing constants in InₓGa₁-ₓN alloy. These enhanced thermal parameters increase phonon mean free path which boost thermal conduction process. The thermal conductivity (k) of InxGa1-xN alloy has been estimated for x=0, 0.1, 0.3 and 0.9. Computation finds that irrespective of In content, the room temperature k of InₓGa₁-ₓN/GaN heterostructure is enhanced by BIP mechanism. Our analysis shows that at a certain temperature both k with and without BIP show crossover. Below this temperature k with BIP field is lower than k without BIP; however, above this temperature k with BIP field is significantly contributed by BIP mechanism leading to k with BIP field become higher than k without BIP field. The crossover temperature is primary pyroelectric transition temperature. The pyroelectric transition temperature of InₓGa₁-ₓN alloy has been predicted for different x. This signature of pyroelectric nature suggests that thermal conductivity can reveal pyroelectricity in InₓGa₁-ₓN alloy. The composition dependent room temperature k for x=0.1 and 0.3 are in line with prior experimental studies. The result can be used to minimize the self-heating effect in InₓGa₁-ₓN/GaN heterostructures.

Keywords: built-in polarization, phonon relaxation time, thermal properties of InₓGa₁-ₓN /GaN heterostructure, self-heating

Procedia PDF Downloads 411