Search results for: composite damage
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4278

Search results for: composite damage

2778 Synthesis of Nickel-Platinum Composite Nanoparticles and Silica-Coating of Them

Authors: Masato Yanase, Noriko Yamauchi, Shohei Tada, Yoshio Kobayashi

Abstract:

Nickel (Ni) and Ni-containing nanoparticles are promising materials due to their unique magnetic properties. In a preliminary experiment, aggregates of such nanoparticles formed after they were synthesized. Since the nanoparticle aggregation may deteriorate their unique properties, a method to suppress the nanoparticle aggregation has been required. In the present work, compositing with nickel (Ni) and platinum (Pt) and silica-coating of them were examined for suppression. Ni-Pt nanoparticles were synthesized in water exposed to air, in which nickel (II) acetate tetrahydrate, hexachloroplatinate (IV) hexahydrate, and sodium borohydride were used as a Ni source, a Pt source, and a reducing reagent, respectively. Polyvinylpyrrolidone, poly (sodium 4-styrene sulfonate), and citric acid were used as the stabilizers. Silica-coating of Ni-Pt nanoparticles was performed by adding tetraethylorthosilicate(TEOS)/ethanol solution to the Ni-Pt nanoparticle colloidal solution (Ni-Pt/SiO₂). The morphology of Ni-Pt nanoparticles was dependent on the reaction time and the species of stabilizer. The Ni-Pt/SiO₂ nanoparticles were composed of Ni-Pt nanoparticles as core and SiO₂ as shell, and their morphology depended on the TEOS concentrations. Furthermore, the Ni-Pt/SiO₂ nanoparticles were more dispersed compared to uncoated Ni-Pt nanoparticles. This suggested that the silica-coating had an effect on controlling the aggregation. The liquid-phase synthesis process involving the sol-gel method used in this study is advantageous for achieving monodispersion of particles and high-purity of materials. If the challenges of optimizing reaction conditions to achieve them during scale-up can be addressed, the proposed method holds great potential for large-scale production of particles in applications such as magnetic storage devices and biomedical imaging.

Keywords: metal, composite, nickel, platinum, nanoparticle, silica-coating

Procedia PDF Downloads 11
2777 Applications of Space Technology in Flood Risk Mapping in Parts of Haryana State, India

Authors: B. S. Chaudhary

Abstract:

The severity and frequencies of different disasters on the globe is increasing in recent years. India is also facing the disasters in the form of drought, cyclone, earthquake, landslides, and floods. One of the major causes of disasters in northern India is flood. There are great losses and extensive damage to the agricultural crops, property, human, and animal life. This is causing environmental imbalances at places. The annual global figures for losses due to floods run into over 2 billion dollar. India is a vast country with wide variations in climate and topography. Due to widespread and heavy rainfall during the monsoon months, floods of varying magnitude occur all over the country during June to September. The magnitude depends upon the intensity of rainfall, its duration and also the ground conditions at the time of rainfall. Haryana, one of the agriculturally dominated northern states is also suffering from a number of disasters such as floods, desertification, soil erosion, land degradation etc. Earthquakes are also frequently occurring but of small magnitude so are not causing much concern and damage. Most of the damage in Haryana is due to floods. Floods in Haryana have occurred in 1978, 1988, 1993, 1995, 1998, and 2010 to mention a few. The present paper deals with the Remote Sensing and GIS applications in preparing flood risk maps in parts of Haryana State India. The satellite data of various years have been used for mapping of flood affected areas. The Flooded areas have been interpreted both visually and digitally and two classes-flooded and receded water/ wet areas have been identified for each year. These have been analyzed in GIS environment to prepare the risk maps. This shows the areas of high, moderate and low risk depending on the frequency of flood witness. The floods leave a trail of suffering in the form of unhygienic conditions due to improper sanitation, water logging, filth littered in the area, degradation of materials and unsafe drinking water making the people prone to many type diseases in short and long run. Attempts have also been made to enumerate the causes of floods. The suggestions are given for mitigating the fury of floods and proper management issues related to evacuation and safe places nearby.

Keywords: flood mapping, GIS, Haryana, India, remote sensing, space technology

Procedia PDF Downloads 208
2776 Structural and Optical Characterization of Rice-Husk-Derived SiO₂ Crystals-reinforced PVA Composites

Authors: Suminar Pratapa, Agus Riyanto, Silmi Machmudah, Sri Yani Purwaningsih

Abstract:

The objective of this study was to investigate the optical properties of polyvinyl alcohol (PVA) and its prospective applications by adding crystalline silica which is usually used as a reinforcing agent. To do this, we synthesized and evaluated PVA-based composites reinforced with silica crystals, namely cristobalite, derived from rice husk. The experimental procedure involved the production of SiO2 particles using rice husk precursors, which were subsequently subjected to calcination at a rate of 10 °C/min for a duration of 3 hours. This process primarily resulted in the formation of SiO2 crystals in the cristobalite phase, according to X-ray diffraction (XRD). Following this, the crystals were incorporated into polyvinyl alcohol (PVA) via a casting technique, resulting in the formation of composite sheets. The SiO2 contents in the composites were 0, 2.5, 5.0, and 10.%. XRD and Fourier-transform infrared spectroscopy (FTIR) techniques provided confirmation of the composites' successful synthesis, i.e., it did not yield any indications of chemical bonding between polyvinyl alcohol (PVA) and silicon dioxide (SiO2), indicating that the interaction was limited to interfacial reactions. The incorporation of SiO2 crystals resulted in a notable enhancement in UV-vis light absorption and a decrease in the optical band gap. Addition of 2.5, 5.0, and 10.% SiO2, for example, decreases the direct optical band gap of the composites form 5.37, 5.19, and 5.02 eV respectively, while the indirect band gaps of the samples were 4.44, 4.84, and 4.48 eV, correspondingly. These findings emphasize the efficacy of rice husk-derived SiO2 crystals as both reinforcement agents and modifiers of optical properties in the polymer composites, showcasing their significant potential to modify the composite's structural and optical characteristics.

Keywords: rice husk, cristaline SiO₂, PVA-based composites, structural characteristics, optical properties.

Procedia PDF Downloads 41
2775 Planning and Urban Climate Change Adaptation: Italian Literature Review

Authors: Mara Balestrieri

Abstract:

Climate change has long been the focus of attention for the growing impact of extreme weather events and global warming in many areas of the planet and the evidence of economic, social, and environmental damage caused by global warming. Nowadays, climate change is recognized as a critical global problem. Several initiatives have been undertaken over time to enhance the long theoretical debate and field experience in order to reduce Co2 emissions and contain climate alteration. However, the awareness that climate change is already taking place has led to a growing demand for adaptation. It is certainly a matter of anticipating the negative effects of climate change but, at the same time, implementing appropriate actions to prevent climate change-related damage, minimize the problems that may result, and also seize any opportunities that may arise. Consequently, adaptation has become a core element of climate policy and research. However, the attention to this issue has not developed in a uniform manner across countries. Some countries are further ahead than others. This paper examines the literature on climate change adaptation developed until 2018 in Italy, considering the urban dimension, to provide a framework for it, and to identify main topics and features. The papers were selected from Scopus and were analyzed through a matrix that we propose. Results demonstrate that adaptation to climate change studies attracted increasing attention from Italian scientific communities in the last years, although Italian scientific production is still quantitatively lower than in other countries and describes strengths and weaknesses in line with international panorama with respect to objectives, sectors, and problems.

Keywords: adaptation, bibliometric literature, climate change, urban studies

Procedia PDF Downloads 69
2774 Problems Associated with Fibre-Reinforced Composites Ultrasonically-Assisted Drilling

Authors: Sikiru Oluwarotimi Ismail, Hom Nath Dhakal, Anish Roy, Dong Wang, Ivan Popov

Abstract:

The ultrasonically-assisted drilling (UAD) is a non-traditional technique which involves the superimposition of a high frequency and low amplitude vibration, usually greater than 18kHz and less than 20µm respectively, on a drill bit along the feed direction. UAD has remarkable advantages over the conventional drilling (CD), especially the high drilling-force reduction. Force reduction improves the quality of the drilled holes, reduces power consumption rate and cost of production. Nevertheless, in addition to the setbacks of UAD including expensiveness of set-up, unpredicted results and chipping effects, this paper presents the problems of insignificant force reduction and poor surface quality during UAD of hemp fibre-reinforced composites (HFRCs), a natural composite, with polycaprolactone (PCL) matrix. The experimental results obtained depict that HFRCs/PCL samples have more burnt chip-materials attached on the drilled holes during UAD than CD. This effect produced a very high surface roughness (Ra), up to 13µm. In a bid to reduce these challenges, different drilling parameters (feed rates and cutting speeds, frequencies and amplitudes for UAD), conditions (dry machining and airflow cooling) and diameters of drill bits (3mm and 6mm of high speed steel), as well as HFRCs/PCL samples of various fibre aspect ratios, including 0 (neat), 19, 26, 30 and 38 have been used. However, the setbacks still persisted. Evidently, the benefits of UAD are not obtainable for the drilling of the HFRCs/PCL laminates. These problems occurred due to the 60 °C melting temperature of PCL, quite lower than 56-90.2 °C and 265–290.8 °C composite-tool interface temperature during CD and UAD respectively.

Keywords: force reduction, hemp fibre-reinforced composites, ultrasonically-assisted drilling, surface quality

Procedia PDF Downloads 436
2773 BiFeO3-CoFe2O4-PbTiO3 Composites: Structural, Multiferroic and Optical Characteristics

Authors: Nidhi Adhlakha, K. L. Yadav

Abstract:

Three phase magnetoelectric (ME) composites (1-x)(0.7BiFeO3-0.3CoFe2O4)-xPbTiO3 (or equivalently written as (1-x)(0.7BFO-0.3CFO)-xPT) with x variations 0, 0.30, 0.35, 0.40, 0.45 and 1.0 were synthesized using hybrid processing route. The effects of PT addition on structural, multiferroic and optical properties have been subsequently investigated. A detailed Rietveld refinement analysis of X-ray diffraction patterns has been performed, which confirms the presence of structural phases of individual constituents in the composites. Field emission scanning electron microscopy (FESEM) images are taken for microstructural analysis and grain size determination. Transmission electron microscopy (TEM) analysis of 0.3CFO-0.7BFO reveals the average particle size to be lying in the window of 8-10 nm. The temperature dependent dielectric constant at various frequencies (1 kHz, 10 kHz, 50 kHz, 100 kHz and 500 kHz) has been studied and the dielectric study reveals that the increase of dielectric constant and decrease of average dielectric loss of composites with incorporation of PT content. The room temperature ferromagnetic behavior of composites is confirmed through the observation of Magnetization vs. Magnetic field (M-H) hysteresis loops. The variation of magnetization with temperature indicates the presence of spin glass behavior in composites. Magnetoelectric coupling is evidenced in the composites through the observation of the dependence of the dielectric constant on the magnetic field, and magnetodielectric response of 2.05 % is observed for 45 mol% addition of PT content. The fractional change of magnetic field induced dielectric constant can also be expressed as ∆ε_r~γM^2 and the value of γ is found to be ~1.08×10-2 (emu/g)-2 for composite with x=0.40. Fourier transformed infrared (FTIR) spectroscopy of samples is carried out to analyze various bonds formation in the composites.

Keywords: composite, X-ray diffraction, dielectric properties, optical properties

Procedia PDF Downloads 304
2772 Architecture - Performance Relationship in GPU Computing - Composite Process Flow Modeling and Simulations

Authors: Ram Mohan, Richard Haney, Ajit Kelkar

Abstract:

Current developments in computing have shown the advantage of using one or more Graphic Processing Units (GPU) to boost the performance of many computationally intensive applications but there are still limits to these GPU-enhanced systems. The major factors that contribute to the limitations of GPU(s) for High Performance Computing (HPC) can be categorized as hardware and software oriented in nature. Understanding how these factors affect performance is essential to develop efficient and robust applications codes that employ one or more GPU devices as powerful co-processors for HPC computational modeling. This research and technical presentation will focus on the analysis and understanding of the intrinsic interrelationship of both hardware and software categories on computational performance for single and multiple GPU-enhanced systems using a computationally intensive application that is representative of a large portion of challenges confronting modern HPC. The representative application uses unstructured finite element computations for transient composite resin infusion process flow modeling as the computational core, characteristics and results of which reflect many other HPC applications via the sparse matrix system used for the solution of linear system of equations. This work describes these various software and hardware factors and how they interact to affect performance of computationally intensive applications enabling more efficient development and porting of High Performance Computing applications that includes current, legacy, and future large scale computational modeling applications in various engineering and scientific disciplines.

Keywords: graphical processing unit, software development and engineering, performance analysis, system architecture and software performance

Procedia PDF Downloads 360
2771 State Forest Management Practices by Indigenous Peoples in Dharmasraya District, West Sumatra Province, Indonesia

Authors: Abdul Mutolib, Yonariza Mahdi, Hanung Ismono

Abstract:

The existence of forests is essential to human lives on earth, but its existence is threatened by forest deforestations and degradations. Forest deforestations and degradations in Indonesia is not only caused by the illegal activity by the company or the like, even today many cases in Indonesia forest damage caused by human activities, one of which cut down forests for agriculture and plantations. In West Sumatra, community forest management are the result supported the enactment of customary land tenure, including ownership of land within the forest. Indigenous forest management have a positive benefit, which gives the community an opportunity to get livelihood and income, but if forest management practices by indigenous peoples is not done wisely, then there is the destruction of forests and cause adverse effects on the environment. Based on intensive field works in Dhamasraya District employing some data collection techniques such as key informant interviews, household surveys, secondary data analysis, and satellite image interpretation. This paper answers the following questions; how the impact of forest management by local communities on forest conditions (foccus in Forest Production and Limited Production Forest) and knowledge of the local community on the benefits of forests. The site is a Nagari Bonjol, Dharmasraya District, because most of the forest in Dharmasraya located and owned by Nagari Bonjol community. The result shows that there is damage to forests in Dharmasraya because of forest management activities by local communities. Damage to the forest area of 33,500 ha in Dharmasraya because forests are converted into oil palm and rubber plantations with monocultures. As a result of the destruction of forests, water resources are also diminishing, and the community has experienced a drought in the dry season due to forest cut down and replaced by oil palm plantations. Knowledge of the local community on the benefits of low forest, the people considered that the forest does not have better benefits and cut down and converted into oil palm or rubber plantations. Local people do not understand the benefits of ecological and environmental services that forests. From the phenomena in Dharmasraya on land ownership, need to educate the local community about the importance of protecting the forest, and need a strategy to integrate forests management to keep the ecological functions that resemble the woods and counts the economic benefits for the welfare of local communities. One alternative that can be taken is to use forest management models agroforestry smallholders in accordance with the characteristics of the local community who still consider the economic, social and environmental.

Keywords: community, customary land, farmer plantations, and forests

Procedia PDF Downloads 332
2770 Vulnerability Assessment of Reinforced Concrete Frames Based on Inelastic Spectral Displacement

Authors: Chao Xu

Abstract:

Selecting ground motion intensity measures reasonably is one of the very important issues to affect the input ground motions selecting and the reliability of vulnerability analysis results. In this paper, inelastic spectral displacement is used as an alternative intensity measure to characterize the ground motion damage potential. The inelastic spectral displacement is calculated based modal pushover analysis and inelastic spectral displacement based incremental dynamic analysis is developed. Probability seismic demand analysis of a six story and an eleven story RC frame are carried out through cloud analysis and advanced incremental dynamic analysis. The sufficiency and efficiency of inelastic spectral displacement are investigated by means of regression and residual analysis, and compared with elastic spectral displacement. Vulnerability curves are developed based on inelastic spectral displacement. The study shows that inelastic spectral displacement reflects the impact of different frequency components with periods larger than fundamental period on inelastic structural response. The damage potential of ground motion on structures with fundamental period prolonging caused by structural soften can be caught by inelastic spectral displacement. To be compared with elastic spectral displacement, inelastic spectral displacement is a more sufficient and efficient intensity measure, which reduces the uncertainty of vulnerability analysis and the impact of input ground motion selection on vulnerability analysis result.

Keywords: vulnerability, probability seismic demand analysis, ground motion intensity measure, sufficiency, efficiency, inelastic time history analysis

Procedia PDF Downloads 349
2769 Aluminum Matrix Composites Reinforced by Glassy Carbon-Titanium Spatial Structure

Authors: B. Hekner, J. Myalski, P. Wrzesniowski

Abstract:

This study presents aluminum matrix composites reinforced by glassy carbon (GC) and titanium (Ti). In the first step, the heterophase (GC+Ti), spatial form (similar to skeleton) of reinforcement was obtained via own method. The polyurethane foam (with spatial, open-cells structure) covered by suspension of Ti particles in phenolic resin was pyrolyzed. In the second step, the prepared heterogeneous foams were infiltrated by aluminium alloy. The manufactured composites are designated to industrial application, especially as a material used in tribological field. From this point of view, the glassy carbon was applied to stabilise a coefficient of friction on the required value 0.6 and reduce wear. Furthermore, the wear can be limited due to titanium phase application, which reveals high mechanical properties. Moreover, fabrication of thin titanium layer on the carbon skeleton leads to reduce contact between aluminium alloy and carbon and thus aluminium carbide phase creation. However, the main modification involves the manufacturing of reinforcement in the form of 3D, skeleton foam. This kind on reinforcement reveals a few important advantages compared to classical form of reinforcement-particles: possibility to control homogeneity of reinforcement phase in composite material; low-advanced technique of composite manufacturing- infiltration; possibility to application the reinforcement only in required places of material; strict control of phase composition; High quality of bonding between components of material. This research is founded by NCN in the UMO-2016/23/N/ST8/00994.

Keywords: metal matrix composites, MMC, glassy carbon, heterophase composites, tribological application

Procedia PDF Downloads 115
2768 Allium Cepa Extract Provides Neuroprotection Against Ischemia Reperfusion Induced Cognitive Dysfunction and Brain Damage in Mice

Authors: Jaspal Rana, Alkem Laboratories, Baddi, Himachal Pradesh, India Chitkara University, Punjab, India

Abstract:

Oxidative stress has been identified as an underlying cause of ischemia-reperfusion (IR) related cognitive dysfunction and brain damage. Therefore, antioxidant based therapies to treat IR injury are being investigated. Allium cepa L. (onion) is used as culinary medicine and is documented to have marked antioxidant effects. Hence, the present study was designed to evaluate the effect of A. cepa outer scale extract (ACE) against IR induced cognition and biochemical deficit in mice. ACE was prepared by maceration with 70% methanol and fractionated into ethylacetate and aqueous fractions. Bilateral common carotid artery occlusion for 10 min followed by 24 h reperfusion was used to induce cerebral IR injury. Following IR injury, ACE (100 and 200 mg/kg) was administered orally to animals for 7 days once daily. Behavioral outcomes (memory and sensorimotor functions) were evaluated using Morris water maze and neurological severity score. Cerebral infarct size, brain thiobarbituric acid reactive species, reduced glutathione, and superoxide dismutase activity was also determined. Treatment with ACE significantly ameliorated IR mediated deterioration of memory and sensorimotor functions and rise in brain oxidative stress in animals. The results of the present investigation revealed that ACE improved functional outcomes after cerebral IR injury, which may be attributed to its antioxidant properties.

Keywords: stroke, neuroprotection, ischemia reperfusion, herbal drugs

Procedia PDF Downloads 102
2767 Dealing with the Spaces: Ultra Conservative Approach from Childhood to Adulthood

Authors: Maryam Firouzmandi, Moosa Miri

Abstract:

Common reasons for early tooth loss are trauma, extraction due to caries or periodontal disease and congenital missing. The remaining space after tooth loss may cause functional and esthetic problems. Therefore restorative dentists should attempt to manage these spaces using conservative methods. The goal is to restore the lost esthetic and function, prevent phonetic, self-esteem and personality problems and tongue habits. Preserving alveolar bone is also of great importance during the growth stage. Purpose: When deciding about the management of the missing tooth, space implants are contradicted until the completion of dentoalveolar development. Even in adulthood, due to systemic or periodontal problems or biological and economic issues, the implant might not be indicated. In this article, the alternative conservative restorative methods of space maintenance are going to be discussed. Essix retainers are made chair-side as easy as forming a custom bleaching tray with some modifications. They are esthetically acceptable and not expensive. These temporaries provide support for the lips but could not be used during function. Mini-screw-supported temporaries are another option for maintaining the space, especially after orthodontic treatment when there is a time lag between the termination of orthodontic treatment and definitive restoration. Two techniques will be presented for this kind of restoration: Denture tooth pontic or a composite crown. The benefits are alveolar bone preservation, Physiologic pressure on the alveolar ridge to increase its density and even can be retained until the completion of the definitive treatment. Bonded fixed partial denture includes Maryland bridge, fiber-reinforced composite bridge, resin-bonded bridge, and ceramic bonded bridge. These types of bridges are recommended to be used after a pubertal growth spurt and a recent meta-analysis considered their clinical success similar to conventional FDPs and implant-supported crowns. However, they have several advantages that are going to be discussed by presenting some clinical examples. Practical instruction on how to construct an FRC bridge and a novel chair-side Maryland bridge will be given by means of clinical cases. Clinical relevance: minimally invasive options should always be considered and destruction of healthy enamel and dentin during the preparation phase should be avoided as much as possible.

Keywords: tooth missing, fiber-reinforced composite, Maryland, Essix retainers, screw-retained restoration

Procedia PDF Downloads 196
2766 A Systematic Review and Meta-Analysis in Slow Gait Speed and Its Association with Worse Postoperative Outcomes in Cardiac Surgery

Authors: Vignesh Ratnaraj, Jaewon Chang

Abstract:

Background: Frailty is associated with poorer outcomes in cardiac surgery, but the heterogeneity in frailty assessment tools makes it difficult to ascertain its true impact in cardiac surgery. Slow gait speed is a simple, validated, and reliable marker of frailty. We performed a systematic review and meta-analysis to examine the effect of slow gait speed on postoperative cardiac surgical patients. Methods: PubMED, MEDLINE, and EMBASE databases were searched from January 2000 to August 2021 for studies comparing slow gait speed and “normal” gait speed. The primary outcome was in-hospital mortality. Secondary outcomes were composite mortality and major morbidity, AKI, stroke, deep sternal wound infection, prolonged ventilation, discharge to a healthcare facility, and ICU length of stay. Results: There were seven eligible studies with 36,697 patients. Slow gait speed was associated with an increased likelihood of in-hospital mortality (risk ratio [RR]: 2.32; 95% confidence interval [CI]: 1.87–2.87). Additionally, they were more likely to suffer from composite mortality and major morbidity (RR: 1.52; 95% CI: 1.38–1.66), AKI (RR: 2.81; 95% CI: 1.44–5.49), deep sternal wound infection (RR: 1.77; 95% CI: 1.59–1.98), prolonged ventilation >24 h (RR: 1.97; 95% CI: 1.48–2.63), reoperation (RR: 1.38; 95% CI: 1.05–1.82), institutional discharge (RR: 2.08; 95% CI: 1.61–2.69), and longer ICU length of stay (MD: 21.69; 95% CI: 17.32–26.05). Conclusion: Slow gait speed is associated with poorer outcomes in cardiac surgery. Frail patients are twofold more likely to die during hospital admission than non-frail counterparts and are at an increased risk of developing various perioperative complications.

Keywords: cardiac surgery, gait speed, recovery, frailty

Procedia PDF Downloads 67
2765 Investigation of Elastic Properties of 3D Full Five Directional (f5d) Braided Composite Materials

Authors: Apeng Dong, Shu Li, Wenguo Zhu, Ming Qi, Qiuyi Xu

Abstract:

The primary objective of this paper is to focus on the elasticity properties of three-dimensional full five directional (3Df5d) braided composite. A large body of research has been focused on the 3D four directional (4d) and 3D five directional (5d) structure but not much research on the 3Df5d material. Generally, the influence of the yarn shape on mechanical properties of braided materials tends to be ignored, which makes results too ideal. Besides, with the improvement of the computational ability, people are accustomed to using computers to predict the material parameters, which fails to give an explicit and concise result facilitating production and application. Based on the traditional mechanics, this paper firstly deduced the functional relation between elasticity properties and braiding parameters. In addition, considering the actual shape of yarns after consolidation, the longitudinal modulus is modified and defined practically. Firstly, the analytic model is established based on the certain assumptions for the sake of clarity, this paper assumes that: A: the cross section of axial yarns is square; B: The cross section of braiding yarns is hexagonal; C: the characters of braiding yarns and axial yarns are the same; D: The angle between the structure boundary and the projection of braiding yarns in transverse plane is 45°; E: The filling factor ε of composite yarns is π/4; F: The deformation of unit cell is under constant strain condition. Then, the functional relation between material constants and braiding parameters is systematically deduced aimed at the yarn deformation mode. Finally, considering the actual shape of axial yarns after consolidation, the concept of technology factor is proposed and the longitudinal modulus of the material is modified based on the energy theory. In this paper, the analytic solution of material parameters is given for the first time, which provides a good reference for further research and application for 3Df5d materials. Although the analysis model is established based on certain assumptions, the analysis method is also applicable for other braided structures. Meanwhile, it is crucial that the cross section shape and straightness of axial yarns play dominant roles in the longitudinal elastic property. So in the braiding and solidifying process, the stability of the axial yarns should be guaranteed to increase the technology factor to reduce the dispersion of material parameters. Overall, the elastic properties of this materials are closely related to the braiding parameters and can be strongly designable, and although the longitudinal modulus of the material is greatly influenced by the technology factors, it can be defined to certain extent.

Keywords: analytic solution, braided composites, elasticity properties, technology factor

Procedia PDF Downloads 234
2764 Architecture for QoS Based Service Selection Using Local Approach

Authors: Gopinath Ganapathy, Chellammal Surianarayanan

Abstract:

Services are growing rapidly and generally they are aggregated into a composite service to accomplish complex business processes. There may be several services that offer the same required function of a particular task in a composite service. Hence a choice has to be made for selecting suitable services from alternative functionally similar services. Quality of Service (QoS)plays as a discriminating factor in selecting which component services should be selected to satisfy the quality requirements of a user during service composition. There are two categories of approaches for QoS based service selection, namely global and local approaches. Global approaches are known to be Non-Polynomial (NP) hard in time and offer poor scalability in large scale composition. As an alternative to global methods, local selection methods which reduce the search space by breaking up the large/complex problem of selecting services for the workflow into independent sub problems of selecting services for individual tasks are coming up. In this paper, distributed architecture for selecting services based on QoS using local selection is presented with an overview of local selection methodology. The architecture describes the core components, namely, selection manager and QoS manager needed to implement the local approach and their functions. Selection manager consists of two components namely constraint decomposer which decomposes the given global or workflow level constraints in local or task level constraints and service selector which selects appropriate service for each task with maximum utility, satisfying the corresponding local constraints. QoS manager manages the QoS information at two levels namely, service class level and individual service level. The architecture serves as an implementation model for local selection.

Keywords: architecture of service selection, local method for service selection, QoS based service selection, approaches for QoS based service selection

Procedia PDF Downloads 423
2763 Genetic Characterization of a Composite Transposon Carrying armA and Aac(6)-Ib Genes in an Escherichia coli Isolate from Egypt

Authors: Omneya M. Helmy, Mona T. Kashef

Abstract:

Aminoglycosides are used in treating a wide range of infections caused by both Gram-negative and Gram positive bacteria. The presence of 16S rRNA methyl transferases (16S-RMTase) is among the newly discovered resistance mechanisms that confer high resistance to clinically useful aminoglycosides. Cephalosporins are the most commonly used antimicrobials in Egypt; therefore, this study was conducted to determine the isolation frequency of 16S rRNA methyl transferases among third generation cephalosporin-resistant clinical isolates in Egypt. One hundred and twenty three cephalosporin resistant Gram-negative clinical isolates were screened for aminoglycoside resistance by the Kirby Bauer disk diffusion method and tested for possible production of 16S-RMTase. PCR testing and sequencing were used to confirm the presence of 16S-RMTase and the associated antimicrobial resistance determinants, as well as the genetic region surrounding the armA gene. Out of 123 isolates, 66 (53.66%) were resistant to at least one aminoglycoside antibiotic. Only one Escherichia coli isolate (E9ECMO) which was totally resistant to all tested aminoglycosides, was confirmed to have the armA gene in association with blaTEM-1, blaCTX-M-15, blaCTX-M-14 and aac(6)-Ib genes. The armA gene was found to be carried on a large A/C plasmid. Genetic mapping of the armA surrounding region revealed, for the first time, the association of armA with aac(6)-Ib on the same transposon. In Conclusion, the isolation frequency of 16S-RMTase was low among the tested cephalosporin-resistant clinical samples. However, a novel composite transposon has been detected conferring high-level aminoglycosides resistance.

Keywords: aminoglcosides, armA gene, β lactmases, 16S rRNA methyl transferases

Procedia PDF Downloads 277
2762 Structural Characterization of the 3D Printed Silicon Carbon/Carbon Fibers Nanocomposites

Authors: Saja M. Nabat Al-Ajrash, Charles Browning, Rose Eckerle, Li Cao

Abstract:

A process that utilizes a combination of additive manufacturing (AM), a preceramic polymer, and a chopped carbon fiber precursorto fabricate Silicon Carbon/ Carbon fibers (SiC/C) composites have been developed. The study has shown a promising, cost-effective, and efficient route to fabricate complex SiC/C composites using additive manufacturing. A key part of this effort was the mapping of the material’s microstructure through the thickness of the composite. Microstructural features in the pyrolyzed composites through the successive AM layers, such as defects, crystal size and their distribution, interatomic spacing, chemical bonds, were investigated using high-resolution scanning and transmission electron microscopy. As a result, the microstructure developed in SiC/C composites after printing, cure, and pyrolysis has been successfully mapped through the thickness of the derived composites. Dense and nearly defect-free parts after polymer to ceramic conversion were observed. The ceramic matrix composite displayed three coexisting phases, including silicon carbide, silicon oxycarbide, and turbostratic carbon. Lattice fringes imaging and X-Ray Diffraction analysis showed well-defined SiC and turbostratic carbon features. The cross-sectional mapping of the printed-then-pyrolyzed structures has confirmed consistent structural and chemical features within the internal layers of the AM parts. Noteworthy, however, is that a crust-like area with high crystallinity has been observed in the first and last external layers. Not only do these crust-like regions have structural characteristics distinct from the internal layers, but they also have elemental distributions different than the internal layers.

Keywords: SiC, preceramic polymer, additive manufacturing, ceramic

Procedia PDF Downloads 74
2761 Effect of the Vertical Pressure on the ‎Electrical Behaviour of the Micro-Copper ‎Polyurethane Composite Films

Authors: Saeid Mehvari, Yolanda Sanchez-Vicente, Sergio González Sánchez, Khalid Lafdi

Abstract:

Abstract- Materials with a combination of transparency, electrical conductivity, and flexibility are required in the ‎growing electronic sector. In this research, electrically conductive and flexible films have been prepared. These ‎composite films consist of dispersing micro-copper particles into polyurethane (PU) matrix. Two sets of samples were ‎made using both spin coating technique (sample thickness lower than 30 μm) and materials casting (sample thickness ‎lower than 100 μm). Copper concentrations in the PU matrix varied from 0.5 to 20% by volume. The dispersion of ‎micro-copper particles into polyurethane (PU) matrix were characterised using optical microscope and scanning electron ‎microscope. The electrical conductivity measurement was carried out using home-made multimeter set up under ‎pressures from 1 to 20 kPa through thickness and in plane direction. It seems that samples made by casting were not ‎conductive. However, the sample made by spin coating shows through-thickness conductivity when they are under ‎pressure. The results showed that spin-coated films with higher concentration of 2 vol. % of copper displayed a ‎significant increase in the conductivity value, known as percolation threshold. The maximum conductivity of 7.2 × 10-1 ‎S∙m-1 was reached at concentrations of filler with 20 vol. % at 20kPa. A semi-empirical model with adjustable ‎coefficients was used to fit and predict the electrical behaviour of composites. For the first time, the finite element ‎method based on the representative volume element (FE-RVE) was successfully used to predict their electrical ‎behaviour under applied pressures. ‎

Keywords: electrical conductivity, micro copper, numerical simulation, percolation threshold, polyurethane, RVE model

Procedia PDF Downloads 190
2760 Determination of the Thermophysical Characteristics of the Composite Material Clay Cement Paper

Authors: A. Ouargui, N. Belouaggadia, M. Ezzine

Abstract:

In Morocco, the building sector is largely responsible for the evolution of energy consumption. The control of energy in this sector remains a major issue despite the rise of renewable energies. The design of an environmentally friendly building requires mastery and knowledge of energy and bioclimatic aspects. This implies taking into consideration of all the elements making up the building and the way in which energy exchanges take place between these elements. In this context, thermal insulation seems to be an ideal starting point for reducing energy consumption and greenhouse gas emissions. In this context, thermal insulation seems to be an ideal starting point for reducing energy consumption and greenhouse gas emissions. The aim of this work is to provide some solutions to reduce energy consumption while maintaining thermal comfort in the building. The objective of our work is to present an experimental study on the characterization of local materials used in the thermal insulation of buildings. These are paper recycling stabilized with cement and clay. The thermal conductivity of these materials, which were constituted based on sand, clay, cement; water, as well as treated paper, was determined by the guarded-hot-plate method. It involves the design of two materials that will subsequently be subjected to thermal and mechanical tests to determine their thermophysical properties. The results show that the thermal conductivity decreases as well in the case of the paper-cement mixture as that of the paper-clay and seems to stabilize around 40%. Measurements of mechanical properties such as flexural strength have shown that the enrichment of the studied material with paper makes it possible to reduce the flexural strength by 20% while optimizing the conductivity.

Keywords: building, composite material, insulation, thermal conductivity, paper residue

Procedia PDF Downloads 123
2759 Towards Binder-Free and Self Supporting Flexible Supercapacitor from Carbon Nano-Onions and Their Composite with CuO Nanoparticles

Authors: Debananda Mohapatra, Subramanya Badrayyana, Smrutiranjan Parida

Abstract:

Recognizing the upcoming era of carbon nanostructures and their revolutionary applications, we investigated the formation and supercapacitor application of highly pure and hydrophilic carbon nano-onions (CNOs) by economical one-step flame-synthesis procedure. The facile and scalable method uses easily available organic carbon source such as clarified butter, restricting the use of any catalyst, sophisticated instrumentation, high vacuum and post processing purification procedure. The active material was conformally coated onto a locally available cotton wipe by “sonicating and drying” process to obtain novel, lightweight, inexpensive, flexible, binder-free electrodes with strong adhesion between nanoparticles and porous wipe. This interesting electrode with CNO as the active material delivers a specific capacitance of 102.16 F/g, the energy density of 14.18 Wh/kg and power density of 2448 W/kg which are the highest values reported so far in symmetrical two electrode cell configuration with 1M Na2SO4 as an electrolyte. Incorporation of CuO nanoparticles to these functionalized CNOs by one-step hydrothermal method add up to a significant specific capacitance of 420 F/g with deliverable energy and power density at 58.33 Wh/kg and 4228 W/kg, respectively. The free standing CNOs, as well as CNO-CuO composite electrode, showed an excellent cyclic performance and stability retaining 95 and 90% initial capacitance even after 5000 charge-discharge cycles at a current density of 5 A/g. This work presents a new platform for high performance supercapacitors for next generation wearable electronic devices.

Keywords: binder-free, flame synthesis, flexible, carbon nano-onion

Procedia PDF Downloads 190
2758 Removal Capacity of Activated Carbon (AC) by Combining AC and Titanium Dioxide (TIO₂) in a Photocatalytically Regenerative Activated Carbon

Authors: Hanane Belayachi, Sarra Bourahla, Amel Belayachi, Fadela Nemchi, Mostefa Belhakem

Abstract:

The most used techniques to remove pollutants from wastewater are adsorption onto activated carbon (AC) and oxidation using a photocatalyst slurry. The aim of this work is to eliminate such drawbacks by combining AC and titanium dioxide (TiO₂) in a photocatalytically Regenerative Activated Carbon. Anatase titania was deposited on powder-activated carbon made from grape seeds by the impregnation method, and then the composite photocatalyst was employed for the removal of reactive black 5, which is an anionic azo dye, from water. The AGS/TiO₂ was characterized by BET, MEB, RDX and optical absorption spectroscopy. The BET surface area and the pore structure of composite photocatalysts (AGS/TiO₂) and activated grape seeds (AGS) were evaluated from nitrogen adsorption data at 77 K in relation to process conditions. Our results indicate that the photocatalytic activity of AGS/TiO₂ was much higher than single-phase titania. The adsorption equilibrium of reactive black 5 from aqueous solutions on the examined materials was investigated. Langmuir, Freundlich, and Redlich–Petersen models were fitted to experimental equilibrium data, and their goodness of fit is compared. The degradation kinetics fitted well to the Langmuir-Hinselwood pseudo first order rate low. The photocatalytic activity of AGS/TiO₂ was much higher than virgin TiO₂. Chemical oxygen demand (COD) removal was measured at regular intervals to quantify the mineralization of the dye. Above 96% mineralization was observed. These results suggest that UV-irradiated TiO₂ immobilized on activated carbon may be considered an adequate process for the treatment of diluted colored textile wastewater.

Keywords: activated carbon, pollutant, catalysis, TiO₂

Procedia PDF Downloads 41
2757 Influence of BaTiO₃ on the Biological Behaviour of Hydroxyapatite: Collagen Composites

Authors: Cristina Busuioc, Georgeta Voicu, Sorin-Ion Jinga

Abstract:

The human bone presents in its dry form piezoelectric properties, which means that a mechanical stress results in electric polarization and an applied electric field causes strain. The immediate consequence was the revealing of piezoelectricity role in bone remodelling, as well as the integration of ceramic materials with piezoelectric behaviour in the composition of unitary or composite biomaterials. Thus, we prepared hydroxyapatite - collagen hybrid materials with barium titanate addition in order to achieve a better osseointegration. Barium titanate powder synthesized by a combined sol-gel-hydrothermal method, commercial hydroxyapatite and laboratory extracted collagen gel were employed as starting materials. Before the composites, fabrication, the powder with piezoelectric features was characterized in detail from the compositional, structural, morphological and electrical point of view. The next step was to elucidate the influence of barium titanate presence especially on the biological properties of the final materials. The biocompatibility of the hybrid supports without or with piezoelectric addition was investigated on mouse osteoblast cells through LDH cytotoxicity assay, LIVE/DEAD cell viability assay, and MTT cell proliferation assay. All results indicated that the analysed materials do not exert cytotoxic effects and present the ability to sustain cell survival and to promote their proliferation. In conclusion, barium titanate nanoparticles exhibit a good biocompatibility and osteoinductive properties, while the derived composite materials based on hydroxyapatite as oxide phase and collagen as polymeric phase can be successfully used for tissue engineering applications.

Keywords: barium titanate, hybrid composites, piezoelectricity, tissue engineering

Procedia PDF Downloads 317
2756 Comparison of Central Light Reflex Width-to-Retinal Vessel Diameter Ratio between Glaucoma and Normal Eyes by Using Edge Detection Technique

Authors: P. Siriarchawatana, K. Leungchavaphongse, N. Covavisaruch, K. Rojananuangnit, P. Boondaeng, N. Panyayingyong

Abstract:

Glaucoma is a disease that causes visual loss in adults. Glaucoma causes damage to the optic nerve and its overall pathophysiology is still not fully understood. Vasculopathy may be one of the possible causes of nerve damage. Photographic imaging of retinal vessels by fundus camera during eye examination may complement clinical management. This paper presents an innovation for measuring central light reflex width-to-retinal vessel diameter ratio (CRR) from digital retinal photographs. Using our edge detection technique, CRRs from glaucoma and normal eyes were compared to examine differences and associations. CRRs were evaluated on fundus photographs of participants from Mettapracharak (Wat Raikhing) Hospital in Nakhon Pathom, Thailand. Fifty-five photographs from normal eyes and twenty-one photographs from glaucoma eyes were included. Participants with hypertension were excluded. In each photograph, CRRs from four retinal vessels, including arteries and veins in the inferotemporal and superotemporal regions, were quantified using edge detection technique. From our finding, mean CRRs of all four retinal arteries and veins were significantly higher in persons with glaucoma than in those without glaucoma (0.34 vs. 0.32, p < 0.05 for inferotemporal vein, 0.33 vs. 0.30, p < 0.01 for inferotemporal artery, 0.34 vs. 0.31, p < 0.01 for superotemporal vein, and 0.33 vs. 0.30, p < 0.05 for superotemporal artery). From these results, an increase in CRRs of retinal vessels, as quantitatively measured from fundus photographs, could be associated with glaucoma.

Keywords: glaucoma, retinal vessel, central light reflex, image processing, fundus photograph, edge detection

Procedia PDF Downloads 321
2755 A Prediction Model for Dynamic Responses of Building from Earthquake Based on Evolutionary Learning

Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park

Abstract:

The seismic responses-based structural health monitoring system has been performed to prevent seismic damage. Structural seismic damage of building is caused by the instantaneous stress concentration which is related with dynamic characteristic of earthquake. Meanwhile, seismic response analysis to estimate the dynamic responses of building demands significantly high computational cost. To prevent the failure of structural members from the characteristic of the earthquake and the significantly high computational cost for seismic response analysis, this paper presents an artificial neural network (ANN) based prediction model for dynamic responses of building considering specific time length. Through the measured dynamic responses, input and output node of the ANN are formed by the length of specific time, and adopted for the training. In the model, evolutionary radial basis function neural network (ERBFNN), that radial basis function network (RBFN) is integrated with evolutionary optimization algorithm to find variables in RBF, is implemented. The effectiveness of the proposed model is verified through an analytical study applying responses from dynamic analysis for multi-degree of freedom system to training data in ERBFNN.

Keywords: structural health monitoring, dynamic response, artificial neural network, radial basis function network, genetic algorithm

Procedia PDF Downloads 297
2754 Influence of Random Fibre Packing on the Compressive Strength of Fibre Reinforced Plastic

Authors: Y. Wang, S. Zhang, X. Chen

Abstract:

The longitudinal compressive strength of fibre reinforced plastic (FRP) possess a large stochastic variability, which limits efficient application of composite structures. This study aims to address how the random fibre packing affects the uncertainty of FRP compressive strength. An novel approach is proposed to generate random fibre packing status by a combination of Latin hypercube sampling and random sequential expansion. 3D nonlinear finite element model is built which incorporates both the matrix plasticity and fibre geometrical instability. The matrix is modeled by isotropic ideal elasto-plastic solid elements, and the fibres are modeled by linear-elastic rebar elements. Composite with a series of different nominal fibre volume fractions are studied. Premature fibre waviness at different magnitude and direction is introduced in the finite element model. Compressive tests on uni-directional CFRP (carbon fibre reinforced plastic) are conducted following the ASTM D6641. By a comparison of 3D FE models and compressive tests, it is clearly shown that the stochastic variation of compressive strength is partly caused by the random fibre packing, and normal or lognormal distribution tends to be a good fit the probabilistic compressive strength. Furthermore, it is also observed that different random fibre packing could trigger two different fibre micro-buckling modes while subjected to longitudinal compression: out-of-plane buckling and twisted buckling. The out-of-plane buckling mode results much larger compressive strength, and this is the major reason why the random fibre packing results a large uncertainty in the FRP compressive strength. This study would contribute to new approaches to the quality control of FRP considering higher compressive strength or lower uncertainty.

Keywords: compressive strength, FRP, micro-buckling, random fibre packing

Procedia PDF Downloads 269
2753 Thin-Film Nanocomposite Membrane with Single-Walled Carbon Nanotubes Axial Positioning in Support Layer for Desalination of Water

Authors: Ahmed A. Alghamdi

Abstract:

Single-walled carbon nanotubes (SWCNTs) are an outstanding material for applications in thermoelectric power generation, nanoelectronics, electrochemical energy storage, photovoltaics, and light emission. They are ultra-lightweight and possess electrical as well as thermal conductivity, flexibility, and mechanical strength. SWCNT is applicable in water treatment, brine desalination, removal of heavy metal ions associated with pollutants, and oil-water separation. Carbon nanotube (CNT) is believed to tackle the trade-off issue between permeability, selectivity, and fouling issues in membrane filtration applications. Studying these CNT structures, as well as their interconnection in nanotechnology, assists in finding the precise position to be placed for water desalination. Reverse osmosis (RO) has been used globally for desalination, resulting in purified water. Thin film composite (TFC) membranes were utilized in the RO process for desalination. The sheet thickness increases the salt rejection and decreases the water flux when CNT is utilized as a support layer to this membrane. Thus, through a temperature-induced phase separation technique (TIPS), axially aligned SWCNT (AASWCNT) is fabricated, and its use enhances the salt rejection and water flux at short reaction times with a modified procedure. An evaluation was conducted and analogized with prior works in the literature, which exhibited that the prepared TFC membrane showed a better outcome.

Keywords: single-walled carbon nanotubes, thin film composite, axially aligned swcnt, temperature induced phase separation technique, reverse osmosis

Procedia PDF Downloads 47
2752 Monitoring the Pollution Status of the Goan Coast Using Genotoxicity Biomarkers in the Bivalve, Meretrix ovum

Authors: Avelyno D'Costa, S. K. Shyama, M. K. Praveen Kumar

Abstract:

The coast of Goa, India receives constant anthropogenic stress through its major rivers which carry mining rejects of iron and manganese ores from upstream mining sites and petroleum hydrocarbons from shipping and harbor-related activities which put the aquatic fauna such as bivalves at risk. The present study reports the pollution status of the Goan coast by the above xenobiotics employing genotoxicity studies. This is further supplemented by the quantification of total petroleum hydrocarbons (TPHs) and various trace metals (iron, manganese, copper, cadmium, and lead) in gills of the estuarine clam, Meretrix ovum as well as from the surrounding water and sediment, over a two-year sampling period, from January 2013 to December 2014. Bivalves were collected from a probable unpolluted site at Palolem and a probable polluted site at Vasco, based upon the anthropogenic activities at these sites. Genotoxicity was assessed in the gill cells using the comet assay and micronucleus test. The quantity of TPHs and trace metals present in gill tissue, water and sediments were analyzed using spectrofluorometry and atomic absorption spectrophotometry (AAS), respectively. The statistical significance of data was analyzed employing Student’s t-test. The relationship between DNA damage and pollutant concentrations was evaluated using multiple regression analysis. Significant DNA damage was observed in the bivalves collected from Vasco which is a region of high industrial activity. Concentrations of TPHs and trace metals (iron, manganese, and cadmium) were also found to be significantly high in gills of the bivalves collected from Vasco compared to those collected from Palolem. Further, the concentrations of these pollutants were also found to be significantly high in the water and sediments at Vasco compared to that of Palolem. This may be due to the lack of industrial activity at Palolem. A high positive correlation was observed between the pollutant levels and DNA damage in the bivalves collected from Vasco suggesting the genotoxic nature of these pollutants. Further, M. ovum can be used as a bioindicator species for monitoring the level of pollution of the estuarine/coastal regions by TPHs and trace metals.

Keywords: comet assay, metals, micronucleus test, total petroleum Hydrocarbons

Procedia PDF Downloads 233
2751 Investigating the Characteristics of Multi-Plastic Composites Prepared from a Mixture of Silk Fibers and Recycled Polycarbonate

Authors: Razieh Shamsi, Mehdi Faezipour, Ali Abdolkhani

Abstract:

In this research, the characteristics of composites prepared from waste silk fibers and recycled polycarbonate polymer (used compacted boards) at four levels of 0, 10, 20, and 30% (silk fibers) and using 2% N- 2-Aminoethyl-3-Aminopropyltrimethoxysilane was investigated as a coupling agent and melt process method. Silk fibers (carpet weaving waste) with dimensions of 8-18 mm were prepared, and recycled polymer with 9 mesh grading was ground. Production boards in 3 thicknesses, 3 mm (tensile test samples), 5 mm (bending test samples, water absorption, and thickness shrinkage), 7 mm (impact resistance test samples) ) with a specific weight of 1 gram per cubic centimeter, hot pressing time and temperature of 12 minutes and 190 degrees Celsius with a pressure of 130 bar, cold pressing time of 6 minutes with a pressure of 50 bar and using the coupling agent N- (2- Aminoethyl)-3-aminopropyltrimethoxysilane was prepared in a constant amount of 2% of the dry weight of the filler. The results showed that, in general, by adding silk fibers to the base polymer, compared to the control samples (pure recycled polycarbonate polymer) and also by increasing the amount of silk fibers, almost all the resistances increased. The amount of water absorption of the constructed composite increased with the increase in the amount of silk fibers, and the thickness absorption was equal to 0% even after 72 hours of immersion in water. The thermal resistance of the pure recycled polymer was higher than the prepared composites, and by adding silk fibers to the base polymer and also by increasing the amount of silk fibers from 10 to 30%, the thermal resistance of the composites decreased.

Keywords: wood composite, recycled polycarbonate, silk fibers, polymer

Procedia PDF Downloads 86
2750 Technical Non-Destructive Evaluation of Burnt Bridge at CH. 57+450 Along Abuja-Abaji-Lokoja Road, Nigeria

Authors: Abraham O. Olaniyi, Oluyemi Oke, Atilade Otunla

Abstract:

The structural performance of bridges decreases progressively throughout their service life due to many contributing factors (fatigue, carbonation, fire incidents etc.). Around the world, numerous bridges have attained their estimated service life and many have approached this limit. The structural integrity assessment of the burnt composite bridge located at CH57+450, Koita village along Abuja-Abaji-Lokoja road, Nigeria, is presented as a case study and shall be forthwith referred to as the 'Koita bridge' in this paper. From the technical evaluation, the residual compressive strength of the concrete piers was found to be below 16.0 N/mm2. This value is very low compared to the expected design value of 30.0 N/mm2. The pier capping beam at pier location 1 has a very low residual compressive strength. The cover to the reinforcement of certain capping beams has an outline of reinforcement which signifies poor concrete cover and the mean compressive strength is also less than 20.0 N/mm2. The steel girder indicated black colouration as a result of the fire incident without any significant structural defect like buckling or warping of the steel section. This paper reviews the structural integrity assessment and repair methodology of the Koita bridge; a composite bridge damaged by fire, highlighting the various challenges of limited obtainable guidance documents about the bridge. The objectives are to increase the understanding of processes and versatile equipment required to test and assess a fire-damaged bridge in order to improve the quality of structural appraisal and rehabilitation; thus, eliminating the prejudice associated with current visual inspection techniques.

Keywords: assessment, bridge, rehabilitation, sustainability

Procedia PDF Downloads 361
2749 Testing of Protective Coatings on Automotive Steel, a Correlation Between Salt Spray, Electrochemical Impedance Spectroscopy, and Linear Polarization Resistance Test

Authors: Dhanashree Aole, V. Hariharan, Swati Surushe

Abstract:

Corrosion can cause serious and expensive damage to the automobile components. Various proven techniques for controlling and preventing corrosion depend on the specific material to be protected. Electrochemical Impedance Spectroscopy (EIS) and salt spray tests are commonly used to assess the corrosion degradation mechanism of coatings on metallic surfaces. While, the only test which monitors the corrosion rate in real time is known as Linear Polarisation Resistance (LPR). In this study, electrochemical tests (EIS & LPR) and spray test are reviewed to assess the corrosion resistance and durability of different coatings. The main objective of this study is to correlate the test results obtained using linear polarization resistance (LPR) and Electrochemical Impedance Spectroscopy (EIS) with the results obtained using standard salt spray test. Another objective of this work is to evaluate the performance of various coating systems- CED, Epoxy, Powder coating, Autophoretic, and Zn-trivalent coating for vehicle underbody application. The corrosion resistance coating are assessed. From this study, a promising correlation between different corrosion testing techniques is noted. The most profound observation is that electrochemical tests gives quick estimation of corrosion resistance and can detect the degradation of coatings well before visible signs of damage appear. Furthermore, the corrosion resistances and salt spray life of the coatings investigated were found to be according to the order as follows- CED> powder coating > Autophoretic > epoxy coating > Zn- Trivalent plating.

Keywords: Linear Polarization Resistance (LPR), Electrochemical Impedance Spectroscopy (EIS), salt spray test, sacrificial and barrier coatings

Procedia PDF Downloads 522