Search results for: time series feature extraction
20559 Revealing the Feature of Mind Wandering on People with High Creativity and High Mental Health through Experience Sampling Method
Authors: A. Yamaoka, S. Yukawa
Abstract:
Mind wandering is a mental phenomenon of drifting away from a current task or external environment toward inner thought. This research examines the feature of mind wandering which people who have high creativity and high mental health engage in because it is expected that mind wandering which such kind of people engage in may not induce negative affect, although it can improve creativity. Sixty-seven participants were required to complete questionnaires which measured their creativity and mental health. After that, researchers conducted experience sampling method and measured the details of their mind wandering and the situation when mind wandering was generated in daily life for three days. The result showed that high creative people and high mental health people more think about positive things during mind wandering and less think about negative things. In further research, researchers will examine how to induce positive thought during mind wandering and how to inhibit negative thought during mind wandering. Doing so will contribute to improve creative problem solving without generation of negative affect.Keywords: creativity, experience sampling method, mental health, mind wandering
Procedia PDF Downloads 17220558 Critical Evaluation of Groundwater Monitoring Networks for Machine Learning Applications
Authors: Pedro Martinez-Santos, Víctor Gómez-Escalonilla, Silvia Díaz-Alcaide, Esperanza Montero, Miguel Martín-Loeches
Abstract:
Groundwater monitoring networks are critical in evaluating the vulnerability of groundwater resources to depletion and contamination, both in space and time. Groundwater monitoring networks typically grow over decades, often in organic fashion, with relatively little overall planning. The groundwater monitoring networks in the Madrid area, Spain, were reviewed for the purpose of identifying gaps and opportunities for improvement. Spatial analysis reveals the presence of various monitoring networks belonging to different institutions, with several hundred observation wells in an area of approximately 4000 km2. This represents several thousand individual data entries, some going back to the early 1970s. Major issues included overlap between the networks, unknown screen depth/vertical distribution for many observation boreholes, uneven time series, uneven monitored species, and potentially suboptimal locations. Results also reveal there is sufficient information to carry out a spatial and temporal analysis of groundwater vulnerability based on machine learning applications. These can contribute to improve the overall planning of monitoring networks’ expansion into the future.Keywords: groundwater monitoring, observation networks, machine learning, madrid
Procedia PDF Downloads 7720557 Coronin 1C and miR-128A as Potential Diagnostic Biomarkers for Glioblastoma Multiform
Authors: Denis Mustafov, Emmanouil Karteris, Maria Braoudaki
Abstract:
Glioblastoma multiform (GBM) is a heterogenous primary brain tumour that kills most affected patients. To the authors best knowledge, despite all research efforts there is no early diagnostic biomarker for GBM. MicroRNAs (miRNAs) are short non-coding RNA molecules which are deregulated in many cancers. The aim of this research was to determine miRNAs with a diagnostic impact and to potentially identify promising therapeutic targets for glioblastoma multiform. In silico analysis was performed to identify deregulated miRNAs with diagnostic relevance for glioblastoma. The expression profiles of the chosen miRNAs were then validated in vitro in the human glioblastoma cell lines A172 and U-87MG. Briefly, RNA extraction was carried out using the Trizol method, whilst miRNA extraction was performed using the mirVANA miRNA isolation kit. Quantitative Real-Time Polymerase Chain Reaction was performed to verify their expression. The presence of five target proteins within the A172 cell line was evaluated by Western blotting. The expression of the CORO1C protein within 32 GBM cases was examined via immunohistochemistry. The miRNAs identified in silico included miR-21-5p, miR-34a and miR-128a. These miRNAs were shown to target deregulated GBM genes, such as CDK6, E2F3, BMI1, JAG1, and CORO1C. miR-34a and miR-128a showed low expression profiles in comparison to a control miR-RNU-44 in both GBM cell lines suggesting tumour suppressor properties. Opposing, miR-21-5p demonstrated greater expression indicating that it could potentially function as an oncomiR. Western blotting revealed expression of all five proteins within the A172 cell line. In silico analysis also suggested that CORO1C is a target of miR-128a and miR-34a. Immunohistochemistry demonstrated that 75% of the GBM cases showed moderate to high expression of CORO1C protein. Greater understanding of the deregulated expression of miR-128a and the upregulation of CORO1C in GBM could potentially lead to the identification of a promising diagnostic biomarker signature for glioblastomas.Keywords: non-coding RNAs, gene expression, brain tumours, immunohistochemistry
Procedia PDF Downloads 8620556 A Study of the Assistant Application for Tourists Taking Metros
Authors: Anqi Wang, Linye Zhang
Abstract:
With the proliferation and development of mobile devices, various mobile apps have appeared to satisfy people’s needs. Metro, with the feature of convenient, punctuality and economic, is one of the most popular modes of transportation in cities. Yet, there are still some inconveniences brought by various factors, impacting tourists’ riding experience. The aim of this study is to help tourists to shorten the time of purchasing tickets, to provide them clear metro information and direct navigation, detailed schedule as well as a way to collect metro cards as souvenir. The study collects data through three phases, including observation, survey and test. Data collected from 106 tourists totally in Wuhan metro stations are discussed in the study. The result reflects tourists’ demand when they take the metro. It also indicates the feasibility of using mobile technology to improve passenger’s experience.Keywords: mobile app, metro, public transportation, ticket, mobile payment, indoors positioning, tourists
Procedia PDF Downloads 13920555 Valorization of Waste and By-products for Protein Extraction and Functional Properties
Authors: Lorena Coelho, David Ramada, Catarina Nobre, Joaquim Gaião, Juliana Duarte
Abstract:
The development of processes that allows the valorization of waste and by-products generated by industries is crucial to promote symbiotic relationships between different sectors and is mandatory to “close the loop” in the circular economy paradigm. In recent years, by-products and waste from agro-food and forestry sector have attracted attention due to their potential application and technical characteristics. The extraction of bio-based active compounds to be reused is in line with the circular bioeconomy concept trends, combining the use of renewable resources with the process’s circularity, aiming the waste reduction and encouraging reuse and recycling. Among different types of bio-based materials, which are being explored and can be extracted, proteins fractions are becoming an attractive new raw material. Within this context, BioTrace4Leather project, a collaboration between two Technological Centres – CeNTI and CTIC, and a company of Tanning and Finishing of Leather – Curtumes Aveneda, aims to develop innovative and biologically sustainable solutions for leather industry and accomplish the market circularity trends. Specifically, it aims to the valorisation of waste and by-products from the tannery industry through proteins extraction and the development of an innovative and biologically sustainable materials. The achieved results show that keratin, gelatine, and collagen fractions can be successfully extracted from hair and leather bovine waste. These products could be reintegrated into the industrial manufacturing process to attain innovative and functional textile and leather substrates. ACKNOWLEDGEMENT This work has been developed under BioTrace4Leather scope, a project co-funded by Operational Program for Competitiveness and Internationalization (COMPETE) of PORTUGAL2020, through the European Regional Development Fund (ERDF), under grant agreement Nº POCI-01-0247-FEDER-039867.Keywords: leather by-products, circular economy, sustainability, protein fractions
Procedia PDF Downloads 15620554 Simulation of Pedestrian Service Time at Different Delay Times
Authors: Imran Badshah
Abstract:
Pedestrian service time reflects the performance of the facility, and it’s a key parameter to analyze the capability of facilities provided to serve pedestrians. The level of service of pedestrians (LOS) mainly depends on pedestrian time and safety. The pedestrian time utilized by taking a service is mainly influenced by the number of available services and the time utilized by each pedestrian in receiving a service; that is called a delay time. In this paper, we analyzed the simulated pedestrian service time with different delay times. A simulation is performed in AnyLogic by developing a model that reflects the real scenario of pedestrian services such as ticket machine gates at rail stations, airports, shopping malls, and cinema halls. The simulated pedestrian time is determined for various delay values. The simulated result shows how pedestrian time changes with the delay pattern. The histogram and time plot graph of a model gives the mean, maximum and minimum values of the pedestrian time. This study helps us to check the behavior of pedestrian time at various services such as subway stations, airports, shopping malls, and cinema halls.Keywords: agent-based simulation, anylogic model, pedestrian behavior, time delay
Procedia PDF Downloads 20820553 Antioxidant Properties of Rice Bran Oil Using Various Heat Treatments
Authors: Supakan Rattanakon, Jakkrapan Boonpimon, Akkaragiat Bhuangsaeng, Aphiwat Ratriphruek
Abstract:
Rice bran oil (RBO) has been found to lower the level of serum cholesterol, has antioxidant and anti-carcinogenic property, and attenuate allergic inflammation. These properties of RBO are due to antioxidant compositions, especially, phenolic compounds. The higher amount of these active compounds in RBO, the greater value of RBO is. Thermal process of rice bran before solvent RBO extraction has been found to have a higher phenolic contents. Therefore, the purpose of this study is to using different heating methods on rice bran before the solvent extraction. Then, % yield of RBO, total phenolic content (TPC), and antioxidant property of two white Thai rice; KDML105 and RD6 were determined. The Folin-Ciocalteu colorimetric assay was used to determine TPC and scavenging of free radicals (DPPH) was used to determine antioxidant property expressed as EC50. The result showed that thermal process did not increase % yield of RBO but increase the TPC with 1.41 mg gallic acid equivalent (GAEmg-1). The highest TPC was found in KDML105 by using sonicator. The highest antioxidant activity was found in RD6 using autoclave. The EC50 of RBO was 0.04 mg/mL. Further study should be performed on different pretreatments to increase the TPC and antioxidant property.Keywords: antioxidant, rice bran oil, total phenol content, white rice
Procedia PDF Downloads 25020552 Impact of Financial System’s Development on Economic Development: An Empirical Investigation
Authors: Vilma Deltuvaitė
Abstract:
Comparisons of financial development across countries are central to answering many of the questions on factors leading to economic development. For this reason this study analyzes the implications of financial system’s development on country’s economic development. The aim of the article: to analyze the impact of financial system’s development on economic development. The following research methods were used: systemic, logical and comparative analysis of scientific literature, analysis of statistical data, time series model (Autoregressive Distributed Lag (ARDL) Model). The empirical results suggest about positive short and long term effect of stock market development on GDP per capita.Keywords: banking sector, economic development, financial system’s development, stock market, private bond market
Procedia PDF Downloads 38420551 Usability Evaluation of a Mobile Application to Enhance the Use of Smartphone, by Visually Impaired Users in Indonesia
Authors: Johanna Renny Octavia, Kamila Okta Saarah
Abstract:
Smartphone nowadays is widely used by many people all over the world. However, people with vision impairment may experience difficulties that interfere with the proper usage of the smartphone. In Indonesia, the population of visually impaired is about 13 million people (estimated 285 million people worldwide). There are a number of mobile applications developed to enhance the use of smartphone by visually impaired. This paper discusses the usability evaluation of a mobile application, namely Ray Vision, designed to help visually impaired in using smartphone. A series of usability testing with a number of Indonesian visually impaired revealed 28 usability problems in the mobile application that led to 14 design recommendations. The redesigned application was then re-evaluated through another usability testing series. The results showed that all five usability criteria assessed were increased (usefulness by 13%, effectiveness by 27%, efficiency by 27%, satisfaction by 23%, and learnability by 12%). The System Usability Score (SUS) was also increased by 14.92%.Keywords: mobile application, smartphone, usability evaluation, vision impaired
Procedia PDF Downloads 31120550 Efficient Energy Extraction Circuit for Impact Harvesting from High Impedance Sources
Authors: Sherif Keddis, Mohamed Azzam, Norbert Schwesinger
Abstract:
Harvesting mechanical energy from footsteps or other impacts is a possibility to enable wireless autonomous sensor nodes. These can be used for a highly efficient control of connected devices such as lights, security systems, air conditioning systems or other smart home applications. They can also be used for accurate location or occupancy monitoring. Converting the mechanical energy into useful electrical energy can be achieved using the piezoelectric effect offering simple harvesting setups and low deflections. The challenge facing piezoelectric transducers is the achievable amount of energy per impact in the lower mJ range and the management of such low energies. Simple setups for energy extraction such as a full wave bridge connected directly to a capacitor are problematic due to the mismatch between high impedance sources and low impedance storage elements. Efficient energy circuits for piezoelectric harvesters are commonly designed for vibration harvesters and require periodic input energies with predictable frequencies. Due to the sporadic nature of impact harvesters, such circuits are not well suited. This paper presents a self-powered circuit that avoids the impedance mismatch during energy extraction by disconnecting the load until the source reaches its charge peak. The switch is implemented with passive components and works independent from the input frequency. Therefore, this circuit is suited for impact harvesting and sporadic inputs. For the same input energy, this circuit stores 150% of the energy in comparison to a directly connected capacitor to a bridge rectifier. The total efficiency, defined as the ratio of stored energy on a capacitor to available energy measured across a matched resistive load, is 63%. Although the resulting energy is already sufficient to power certain autonomous applications, further optimization of the circuit are still under investigation in order to improve the overall efficiency.Keywords: autonomous sensors, circuit design, energy harvesting, energy management, impact harvester, piezoelectricity
Procedia PDF Downloads 15220549 Cloud-Based Multiresolution Geodata Cube for Efficient Raster Data Visualization and Analysis
Authors: Lassi Lehto, Jaakko Kahkonen, Juha Oksanen, Tapani Sarjakoski
Abstract:
The use of raster-formatted data sets in geospatial analysis is increasing rapidly. At the same time, geographic data are being introduced into disciplines outside the traditional domain of geoinformatics, like climate change, intelligent transport, and immigration studies. These developments call for better methods to deliver raster geodata in an efficient and easy-to-use manner. Data cube technologies have traditionally been used in the geospatial domain for managing Earth Observation data sets that have strict requirements for effective handling of time series. The same approach and methodologies can also be applied in managing other types of geospatial data sets. A cloud service-based geodata cube, called GeoCubes Finland, has been developed to support online delivery and analysis of most important geospatial data sets with national coverage. The main target group of the service is the academic research institutes in the country. The most significant aspects of the GeoCubes data repository include the use of multiple resolution levels, cloud-optimized file structure, and a customized, flexible content access API. Input data sets are pre-processed while being ingested into the repository to bring them into a harmonized form in aspects like georeferencing, sampling resolutions, spatial subdivision, and value encoding. All the resolution levels are created using an appropriate generalization method, selected depending on the nature of the source data set. Multiple pre-processed resolutions enable new kinds of online analysis approaches to be introduced. Analysis processes based on interactive visual exploration can be effectively carried out, as the level of resolution most close to the visual scale can always be used. In the same way, statistical analysis can be carried out on resolution levels that best reflect the scale of the phenomenon being studied. Access times remain close to constant, independent of the scale applied in the application. The cloud service-based approach, applied in the GeoCubes Finland repository, enables analysis operations to be performed on the server platform, thus making high-performance computing facilities easily accessible. The developed GeoCubes API supports this kind of approach for online analysis. The use of cloud-optimized file structures in data storage enables the fast extraction of subareas. The access API allows for the use of vector-formatted administrative areas and user-defined polygons as definitions of subareas for data retrieval. Administrative areas of the country in four levels are available readily from the GeoCubes platform. In addition to direct delivery of raster data, the service also supports the so-called virtual file format, in which only a small text file is first downloaded. The text file contains links to the raster content on the service platform. The actual raster data is downloaded on demand, from the spatial area and resolution level required in each stage of the application. By the geodata cube approach, pre-harmonized geospatial data sets are made accessible to new categories of inexperienced users in an easy-to-use manner. At the same time, the multiresolution nature of the GeoCubes repository facilitates expert users to introduce new kinds of interactive online analysis operations.Keywords: cloud service, geodata cube, multiresolution, raster geodata
Procedia PDF Downloads 13320548 Comparative Analysis of the Third Generation of Research Data for Evaluation of Solar Energy Potential
Authors: Claudineia Brazil, Elison Eduardo Jardim Bierhals, Luciane Teresa Salvi, Rafael Haag
Abstract:
Renewable energy sources are dependent on climatic variability, so for adequate energy planning, observations of the meteorological variables are required, preferably representing long-period series. Despite the scientific and technological advances that meteorological measurement systems have undergone in the last decades, there is still a considerable lack of meteorological observations that form series of long periods. The reanalysis is a system of assimilation of data prepared using general atmospheric circulation models, based on the combination of data collected at surface stations, ocean buoys, satellites and radiosondes, allowing the production of long period data, for a wide gamma. The third generation of reanalysis data emerged in 2010, among them is the Climate Forecast System Reanalysis (CFSR) developed by the National Centers for Environmental Prediction (NCEP), these data have a spatial resolution of 0.50 x 0.50. In order to overcome these difficulties, it aims to evaluate the performance of solar radiation estimation through alternative data bases, such as data from Reanalysis and from meteorological satellites that satisfactorily meet the absence of observations of solar radiation at global and/or regional level. The results of the analysis of the solar radiation data indicated that the reanalysis data of the CFSR model presented a good performance in relation to the observed data, with determination coefficient around 0.90. Therefore, it is concluded that these data have the potential to be used as an alternative source in locations with no seasons or long series of solar radiation, important for the evaluation of solar energy potential.Keywords: climate, reanalysis, renewable energy, solar radiation
Procedia PDF Downloads 20820547 Thick Data Techniques for Identifying Abnormality in Video Frames for Wireless Capsule Endoscopy
Authors: Jinan Fiaidhi, Sabah Mohammed, Petros Zezos
Abstract:
Capsule endoscopy (CE) is an established noninvasive diagnostic modality in investigating small bowel disease. CE has a pivotal role in assessing patients with suspected bleeding or identifying evidence of active Crohn's disease in the small bowel. However, CE produces lengthy videos with at least eighty thousand frames, with a frequency rate of 2 frames per second. Gastroenterologists cannot dedicate 8 to 15 hours to reading the CE video frames to arrive at a diagnosis. This is why the issue of analyzing CE videos based on modern artificial intelligence techniques becomes a necessity. However, machine learning, including deep learning, has failed to report robust results because of the lack of large samples to train its neural nets. In this paper, we are describing a thick data approach that learns from a few anchor images. We are using sound datasets like KVASIR and CrohnIPI to filter candidate frames that include interesting anomalies in any CE video. We are identifying candidate frames based on feature extraction to provide representative measures of the anomaly, like the size of the anomaly and the color contrast compared to the image background, and later feed these features to a decision tree that can classify the candidate frames as having a condition like the Crohn's Disease. Our thick data approach reported accuracy of detecting Crohn's Disease based on the availability of ulcer areas at the candidate frames for KVASIR was 89.9% and for the CrohnIPI was 83.3%. We are continuing our research to fine-tune our approach by adding more thick data methods for enhancing diagnosis accuracy.Keywords: thick data analytics, capsule endoscopy, Crohn’s disease, siamese neural network, decision tree
Procedia PDF Downloads 15520546 Sociolinguistic Analysis of Campus Slang: The Case of Akwa Ibom State College of Education, Afaha Nsit, Nigeria
Authors: Charles Okon Effiong
Abstract:
This paper is a sociolinguistic analysis of the semantics of students’ slang in Akwa Ibom State College of Education, Afaha Nsit, Nigeria. The descriptive survey design was deployed for the study and data were collected from one hundred and fifty (150) students through a series of instruments such as questionnaire, interviews and observations. The questionnaire was administered randomly to levels 200, 300 and Extra Time students only. Interviews and observations were also conducted on the students. These categories of students were selected because they had spent a longer time in the college and were thought to be familiar with campus slang. A total of ninety two (92) slang expressions were taken from the questionnaire and out of this number, twenty six (26) slang expressions were peculiar to the college while sixty six (66) were those slang terms also used in the society. The study proves the notion that every speaker handles a variety of registers and tends to choose among them in accordance with the social situation in which he finds himself. The study shows campus slang as a sociolect which facilitates communication among the students in a different sense. The slang expressions are fully intelligible to the students and this unique and elaborate lexicon serves to achieve group identity among other social implications.Keywords: communication, slang, social relationship, sociolinguistics
Procedia PDF Downloads 45020545 Derivation of Fractional Black-Scholes Equations Driven by Fractional G-Brownian Motion and Their Application in European Option Pricing
Authors: Changhong Guo, Shaomei Fang, Yong He
Abstract:
In this paper, fractional Black-Scholes models for the European option pricing were established based on the fractional G-Brownian motion (fGBm), which generalizes the concepts of the classical Brownian motion, fractional Brownian motion and the G-Brownian motion, and that can be used to be a tool for considering the long range dependence and uncertain volatility for the financial markets simultaneously. A generalized fractional Black-Scholes equation (FBSE) was derived by using the Taylor’s series of fractional order and the theory of absence of arbitrage. Finally, some explicit option pricing formulas for the European call option and put option under the FBSE were also solved, which extended the classical option pricing formulas given by F. Black and M. Scholes.Keywords: European option pricing, fractional Black-Scholes equations, fractional g-Brownian motion, Taylor's series of fractional order, uncertain volatility
Procedia PDF Downloads 16220544 Supervised/Unsupervised Mahalanobis Algorithm for Improving Performance for Cyberattack Detection over Communications Networks
Authors: Radhika Ranjan Roy
Abstract:
Deployment of machine learning (ML)/deep learning (DL) algorithms for cyberattack detection in operational communications networks (wireless and/or wire-line) is being delayed because of low-performance parameters (e.g., recall, precision, and f₁-score). If datasets become imbalanced, which is the usual case for communications networks, the performance tends to become worse. Complexities in handling reducing dimensions of the feature sets for increasing performance are also a huge problem. Mahalanobis algorithms have been widely applied in scientific research because Mahalanobis distance metric learning is a successful framework. In this paper, we have investigated the Mahalanobis binary classifier algorithm for increasing cyberattack detection performance over communications networks as a proof of concept. We have also found that high-dimensional information in intermediate features that are not utilized as much for classification tasks in ML/DL algorithms are the main contributor to the state-of-the-art of improved performance of the Mahalanobis method, even for imbalanced and sparse datasets. With no feature reduction, MD offers uniform results for precision, recall, and f₁-score for unbalanced and sparse NSL-KDD datasets.Keywords: Mahalanobis distance, machine learning, deep learning, NS-KDD, local intrinsic dimensionality, chi-square, positive semi-definite, area under the curve
Procedia PDF Downloads 7720543 Quantitative Assessment of Road Infrastructure Health Using High-Resolution Remote Sensing Data
Authors: Wang Zhaoming, Shao Shegang, Chen Xiaorong, Qi Yanan, Tian Lei, Wang Jian
Abstract:
This study conducts a comparative analysis of the spectral curves of asphalt pavements at various aging stages to improve road information extraction from high-resolution remote sensing imagery. By examining the distinguishing capabilities and spectral characteristics, the research aims to establish a pavement information extraction methodology based on China's high-resolution satellite images. The process begins by analyzing the spectral features of asphalt pavements to construct a spectral assessment model suitable for evaluating pavement health. This model is then tested at a national highway traffic testing site in China, validating its effectiveness in distinguishing different pavement aging levels. The study's findings demonstrate that the proposed model can accurately assess road health, offering a valuable tool for road maintenance planning and infrastructure management.Keywords: spectral analysis, asphalt pavement aging, high-resolution remote sensing, pavement health assessment
Procedia PDF Downloads 1920542 Audio-Visual Recognition Based on Effective Model and Distillation
Authors: Heng Yang, Tao Luo, Yakun Zhang, Kai Wang, Wei Qin, Liang Xie, Ye Yan, Erwei Yin
Abstract:
Recent years have seen that audio-visual recognition has shown great potential in a strong noise environment. The existing method of audio-visual recognition has explored methods with ResNet and feature fusion. However, on the one hand, ResNet always occupies a large amount of memory resources, restricting the application in engineering. On the other hand, the feature merging also brings some interferences in a high noise environment. In order to solve the problems, we proposed an effective framework with bidirectional distillation. At first, in consideration of the good performance in extracting of features, we chose the light model, Efficientnet as our extractor of spatial features. Secondly, self-distillation was applied to learn more information from raw data. Finally, we proposed a bidirectional distillation in decision-level fusion. In more detail, our experimental results are based on a multi-model dataset from 24 volunteers. Eventually, the lipreading accuracy of our framework was increased by 2.3% compared with existing systems, and our framework made progress in audio-visual fusion in a high noise environment compared with the system of audio recognition without visual.Keywords: lipreading, audio-visual, Efficientnet, distillation
Procedia PDF Downloads 13220541 'CardioCare': A Cutting-Edge Fusion of IoT and Machine Learning to Bridge the Gap in Cardiovascular Risk Management
Authors: Arpit Patil, Atharav Bhagwat, Rajas Bhope, Pramod Bide
Abstract:
This research integrates IoT and ML to predict heart failure risks, utilizing the Framingham dataset. IoT devices gather real-time physiological data, focusing on heart rate dynamics, while ML, specifically Random Forest, predicts heart failure. Rigorous feature selection enhances accuracy, achieving over 90% prediction rate. This amalgamation marks a transformative step in proactive healthcare, highlighting early detection's critical role in cardiovascular risk mitigation. Challenges persist, necessitating continual refinement for improved predictive capabilities.Keywords: cardiovascular diseases, internet of things, machine learning, cardiac risk assessment, heart failure prediction, early detection, cardio data analysis
Procedia PDF Downloads 920540 Design of IMC-PID Controller Cascaded Filter for Simplified Decoupling Control System
Authors: Le Linh, Truong Nguyen Luan Vu, Le Hieu Giang
Abstract:
In this work, the IMC-PID controller cascaded filter based on Internal Model Control (IMC) scheme is systematically proposed for the simplified decoupling control system. The simplified decoupling is firstly introduced for multivariable processes by using coefficient matching to obtain a stable, proper, and causal simplified decoupler. Accordingly, transfer functions of decoupled apparent processes can be expressed as a set of n equivalent independent processes and then derived as a ratio of the original open-loop transfer function to the diagonal element of the dynamic relative gain array. The IMC-PID controller in series with filter is then directly employed to enhance the overall performance of the decoupling control system while avoiding difficulties arising from properties inherent to simplified decoupling. Some simulation studies are considered to demonstrate the simplicity and effectiveness of the proposed method. Simulations were conducted by tuning various controllers of the multivariate processes with multiple time delays. The results indicate that the proposed method consistently performs well with fast and well-balanced closed-loop time responses.Keywords: coefficient matching method, internal model control (IMC) scheme, PID controller cascaded filter, simplified decoupler
Procedia PDF Downloads 44020539 Different Biological and Chemical Parameters that Influence the Polyphenols from Some Medicinal Plants in Western Algeria
Authors: Mustapha Mahmoud, Fouzia Toumi Benali, Mohamed Benyahia, Sofiane Bouazza
Abstract:
This work focuses on the influences of biological and chemical parameters on the phenolic compounds such as flavonoids and tannins in different medicinal plants in western Algeria (Papaver rhoeas, Daphnegnidium, Lavandula multifida, Lavandula dentata, Lavandula stoicha, ...). Thus we look the difference between species of the same genus, difference between the different organs of the same species, the influence of environment all temperature influences, time, percentage of solvent on the extraction. Quantification of the phenolic compounds was performed by spectrophotometric method then treated with statistics tools such as variance analysis, multivariant analyzes, response surface methodology). The results show that the polyphenols are influenced by the parameters mentioned.Keywords: polyphenols, influences, medicinal plants, west Algeria
Procedia PDF Downloads 29120538 Effect of Ultrasonic Assisted High Pressure Soaking of Soybean on Soymilk Properties
Authors: Rahul Kumar, Pavuluri Srinivasa Rao
Abstract:
This study investigates the effect of ultrasound-assisted high pressure (HP) treatment on the soaking characteristic of soybeans and extracted soy milk quality. The soybean (variety) was subjected to sonication (US) at ambient temperature for 15 and 30 min followed by HP treatment in the range of 200-400 MPa for dwell times 5-10 min. The bean samples were also compared with HPP samples (200-400 MPa; 5-10 mins), overnight soaked samples(12-15 h) and thermal treated samples (100°C/30 min) followed by overnight soaking for 12-15 h soaking. Rapid soaking within 40 min was achieved by the combined US-HPP treatment, and it reduced the soaking time by about 25 times in comparison to overnight soaking or thermal treatment followed by soaking. Reducing the soaking time of soybeans is expected to suppress the development of undesirable beany flavor of soy milk developed during normal soaking milk extraction. The optimum moisture uptake by the sonicated-pressure treated soybeans was 60-62% (w.b) similar to that obtained after overnight soaking for 12-15 h or thermal treatment followed by overnight soaking. pH of soy milk was not much affected by the different US-HPP treatments and overnight soaking which centered around the range of 6.6-6.7 much like the normal cow milk. For milk extracted from thermally treated soy samples, pH reduced to 6.2. Total soluble solids were found to be maximum for the normal overnight soaked soy samples, and it was in the range of 10.3-10.6. For the HPP treated soy milk, the TSS reduced to 7.4 while sonication further reduced it to 6.2. TSS was found to be getting reduced with increasing time of ultrasonication. Further reduction in TSS to 2.3 was observed in soy milk produced from thermally treated samples following overnight soaking. Our results conclude that thermally treated beans' milk is less stable and more acidic, soaking is very rapid compared to overnight soaking hence milk productivity can be enhanced with less development of undesirable beany flavor.Keywords: beany flavor, high pressure processing, high pressure, soybean, soaking, milk, ultrasound, wet basis
Procedia PDF Downloads 25420537 Extraction and Quantification of Triclosan in Wastewater Samples Using Molecularly Imprinted Membrane Adsorbent
Authors: Siyabonga Aubrey Mhlongo, Linda Lunga Sibali, Phumlane Selby Mdluli, Peter Papoh Ndibewu, Kholofelo Clifford Malematja
Abstract:
This paper reports on the successful extraction and quantification of an antibacterial and antifungal agent present in some consumer products (Triclosan: C₁₂H₇Cl₃O₂)generally found in wastewater or effluents using molecularly imprinted membrane adsorbent (MIMs) followed by quantification and removal on a high-performance liquid chromatography (HPLC). Triclosan is an antibacterial and antifungal agent present in some consumer products like toothpaste, soaps, detergents, toys, and surgical cleaning treatments. The MIMs was fabricated usingpolyvinylidene fluoride (PVDF) polymer with selective micro composite particles known as molecularly imprinted polymers (MIPs)via a phase inversion by immersion precipitation technique. This resulted in an improved hydrophilicity and mechanical behaviour of the membranes. Wastewater samples were collected from the Umbogintwini Industrial Complex (UIC) (south coast of Durban, KwaZulu-Natal in South Africa). central UIC effluent treatment plant and pre-treated before analysis. Experimental parameters such as sample size, contact time, stirring speed were optimised. The resultant MIMs had an adsorption efficiency of 97% of TCS with reference to NIMs and bare membrane, which had 92%, 88%, respectively. The analytical method utilized in this review had limits of detection (LoD) and limits of quantification (LoQ) of 0.22, 0.71µgL-1 in wastewater effluent, respectively. The percentage recovery for the effluent samples was 68%. The detection of TCS was monitored for 10 consecutive days, where optimum TCS traces detected in the treated wastewater was 55.0μg/L inday 9 of the monitored days, while the lowest detected was 6.0μg/L. As the concentrations of analytefound in effluent water samples were not so diverse, this study suggested that MIMs could be the best potential adsorbent for the development and continuous progress in membrane technologyand environmental sciences, lending its capability to desalination.Keywords: molecularly imprinted membrane, triclosan, phase inversion, wastewater
Procedia PDF Downloads 12220536 The Leaching Kinetics of Zinc from Industrial Zinc Slag Waste
Authors: Hilary Rutto
Abstract:
The investigation was aimed at determining the extent at which the zinc will be extracted from secondary sources generated from galvanising process using dilute sulphuric acid under controlled laboratory conditions of temperature, solid-liquid ratio, and agitation rate. The leaching experiment was conducted for a period of 2 hours and to total zinc extracted calculated in relation to the amount of zinc dissolved at a unit time in comparison to the initial zinc content of the zinc ash. Sulphuric acid was found to be an effective leaching agent with an overall extraction of 91.1% when concentration is at 2M, and solid/liquid ratio kept at 1g/200mL leaching solution and temperature set at 65ᵒC while slurry agitation is at 450rpm. The leaching mechanism of zinc ash with sulphuric acid was conformed well to the shrinking core model.Keywords: leaching, kinetics, shrinking core model, zinc slag
Procedia PDF Downloads 15320535 Constrained RGBD SLAM with a Prior Knowledge of the Environment
Authors: Kathia Melbouci, Sylvie Naudet Collette, Vincent Gay-Bellile, Omar Ait-Aider, Michel Dhome
Abstract:
In this paper, we handle the problem of real time localization and mapping in indoor environment assisted by a partial prior 3D model, using an RGBD sensor. The proposed solution relies on a feature-based RGBD SLAM algorithm to localize the camera and update the 3D map of the scene. To improve the accuracy and the robustness of the localization, we propose to combine in a local bundle adjustment process, geometric information provided by a prior coarse 3D model of the scene (e.g. generated from the 2D floor plan of the building) along with RGBD data from a Kinect camera. The proposed approach is evaluated on a public benchmark dataset as well as on real scene acquired by a Kinect sensor.Keywords: SLAM, global localization, 3D sensor, bundle adjustment, 3D model
Procedia PDF Downloads 41020534 Comparison of College Students and Full-Time Employees on Emerging Adulthood Dimensions and Identity Statuses in Turkey
Authors: Ebru Ergi̇n, Funda Kutlu
Abstract:
Emerging adulthood is a developmental period and the formation of identity is crucial task of emerging adults in this period. In this frame, the main aim of the study was to compare college students and full-time workers on emerging adulthood dimensions and identity statuses in relation to some demographic variables in Turkey. The participants of the study were university students studying in Ankara and the employees working full-time in Ankara and Bursa. The mean age of the sample was 20.84 (sd=1.84), ranging from 18 to 25. The measurement instruments of the study were Inventory of Dimensions of Emerging Adulthood and Extended Objective Measure of Ego Identity Status (EOMEIS-II). The participants’ data (N=313) were analyzed to test the research questions and hypotheses of the study. A series of MANOVA were performed to test the group differences for some demographic characteristics (such as: employee/student, male/female, living with family/living apart from family) on scores of emerging adulthood dimensions and identity status. The results of the MANOVAs indicated that students, females and participants who live apart from their families had higher scores on emerging adulthood dimensions. The results of the identity status scores differences depending on the demographic characteristic pointed out that there were a significant group differences for identity foreclosure identity scores between employees and students. Employees’ foreclosure identity scores were higher than students. Furthermore, the identity scores were differed significantly according to gender of the participants. Male participants had higher scores in moratorium and foreclosure identity and female participants have higher achievement identity scores than males. Also, the participants who live with their family scored higher in foreclosure identity and the participants who live apart from their family scored higher in identity achievement status.Keywords: college students, emerging adulthood, full-time employees, identity statuses
Procedia PDF Downloads 40520533 A Concept in Addressing the Singularity of the Emerging Universe
Authors: Mahmoud Reza Hosseini
Abstract:
The universe is in a continuous expansion process, resulting in the reduction of its density and temperature. Also, by extrapolating back from its current state, the universe at its early times has been studied known as the big bang theory. According to this theory, moments after creation, the universe was an extremely hot and dense environment. However, its rapid expansion due to nuclear fusion led to a reduction in its temperature and density. This is evidenced through the cosmic microwave background and the universe structure at a large scale. However, extrapolating back further from this early state reaches singularity which cannot be explained by modern physics and the big bang theory is no longer valid. In addition, one can expect a nonuniform energy distribution across the universe from a sudden expansion. However, highly accurate measurements reveal an equal temperature mapping across the universe which is contradictory to the big bang principles. To resolve this issue, it is believed that cosmic inflation occurred at the very early stages of the birth of the universe According to the cosmic inflation theory, the elements which formed the universe underwent a phase of exponential growth due to the existence of a large cosmological constant. The inflation phase allows the uniform distribution of energy so that an equal maximum temperature could be achieved across the early universe. Also, the evidence of quantum fluctuations of this stage provides a means for studying the types of imperfections the universe would begin with. Although well-established theories such as cosmic inflation and the big bang together provide a comprehensive picture of the early universe and how it evolved into its current state, they are unable to address the singularity paradox at the time of universe creation. Therefore, a practical model capable of describing how the universe was initiated is needed. This research series aims at addressing the singularity issue by introducing an energy conversion mechanism. This is accomplished by establishing a state of energy called a “neutral state”, with an energy level which is referred to as “base energy” capable of converting into other states. Although it follows the same principles, the unique quanta state of the base energy allows it to be distinguishable from other states and have a uniform distribution at the ground level. Although the concept of base energy can be utilized to address the singularity issue, to establish a complete picture, the origin of the base energy should be also identified. This matter is the subject of the first study in the series “A Conceptual Study for Investigating the Creation of Energy and Understanding the Properties of Nothing” which is discussed in detail. Therefore, the proposed concept in this research series provides a road map for enhancing our understating of the universe's creation from nothing and its evolution and discusses the possibility of base energy as one of the main building blocks of this universe.Keywords: big bang, cosmic inflation, birth of universe, energy creation
Procedia PDF Downloads 8820532 Design of an Ultra High Frequency Rectifier for Wireless Power Systems by Using Finite-Difference Time-Domain
Authors: Felipe M. de Freitas, Ícaro V. Soares, Lucas L. L. Fortes, Sandro T. M. Gonçalves, Úrsula D. C. Resende
Abstract:
There is a dispersed energy in Radio Frequencies (RF) that can be reused to power electronics circuits such as: sensors, actuators, identification devices, among other systems, without wire connections or a battery supply requirement. In this context, there are different types of energy harvesting systems, including rectennas, coil systems, graphene and new materials. A secondary step of an energy harvesting system is the rectification of the collected signal which may be carried out, for example, by the combination of one or more Schottky diodes connected in series or shunt. In the case of a rectenna-based system, for instance, the diode used must be able to receive low power signals at ultra-high frequencies. Therefore, it is required low values of series resistance, junction capacitance and potential barrier voltage. Due to this low-power condition, voltage multiplier configurations are used such as voltage doublers or modified bridge converters. Lowpass filter (LPF) at the input, DC output filter, and a resistive load are also commonly used in the rectifier design. The electronic circuits projects are commonly analyzed through simulation in SPICE (Simulation Program with Integrated Circuit Emphasis) environment. Despite the remarkable potential of SPICE-based simulators for complex circuit modeling and analysis of quasi-static electromagnetic fields interaction, i.e., at low frequency, these simulators are limited and they cannot model properly applications of microwave hybrid circuits in which there are both, lumped elements as well as distributed elements. This work proposes, therefore, the electromagnetic modelling of electronic components in order to create models that satisfy the needs for simulations of circuits in ultra-high frequencies, with application in rectifiers coupled to antennas, as in energy harvesting systems, that is, in rectennas. For this purpose, the numerical method FDTD (Finite-Difference Time-Domain) is applied and SPICE computational tools are used for comparison. In the present work, initially the Ampere-Maxwell equation is applied to the equations of current density and electric field within the FDTD method and its circuital relation with the voltage drop in the modeled component for the case of lumped parameter using the FDTD (Lumped-Element Finite-Difference Time-Domain) proposed in for the passive components and the one proposed in for the diode. Next, a rectifier is built with the essential requirements for operating rectenna energy harvesting systems and the FDTD results are compared with experimental measurements.Keywords: energy harvesting system, LE-FDTD, rectenna, rectifier, wireless power systems
Procedia PDF Downloads 12820531 MRI Quality Control Using Texture Analysis and Spatial Metrics
Authors: Kumar Kanudkuri, A. Sandhya
Abstract:
Typically, in a MRI clinical setting, there are several protocols run, each indicated for a specific anatomy and disease condition. However, these protocols or parameters within them can change over time due to changes to the recommendations by the physician groups or updates in the software or by the availability of new technologies. Most of the time, the changes are performed by the MRI technologist to account for either time, coverage, physiological, or Specific Absorbtion Rate (SAR ) reasons. However, giving properly guidelines to MRI technologist is important so that they do not change the parameters that negatively impact the image quality. Typically a standard American College of Radiology (ACR) MRI phantom is used for Quality Control (QC) in order to guarantee that the primary objectives of MRI are met. The visual evaluation of quality depends on the operator/reviewer and might change amongst operators as well as for the same operator at various times. Therefore, overcoming these constraints is essential for a more impartial evaluation of quality. This makes quantitative estimation of image quality (IQ) metrics for MRI quality control is very important. So in order to solve this problem, we proposed that there is a need for a robust, open-source, and automated MRI image control tool. The Designed and developed an automatic analysis tool for measuring MRI image quality (IQ) metrics like Signal to Noise Ratio (SNR), Signal to Noise Ratio Uniformity (SNRU), Visual Information Fidelity (VIF), Feature Similarity (FSIM), Gray level co-occurrence matrix (GLCM), slice thickness accuracy, slice position accuracy, High contrast spatial resolution) provided good accuracy assessment. A standardized quality report has generated that incorporates metrics that impact diagnostic quality.Keywords: ACR MRI phantom, MRI image quality metrics, SNRU, VIF, FSIM, GLCM, slice thickness accuracy, slice position accuracy
Procedia PDF Downloads 16820530 Contradictions of Contemporary Culture and Civilization, Processes of Tradition and Innovation
Authors: G. K. Abdigalieva, Z. N. Ismagambetova, T. H. Gabitov, K. A. Biazdikova, A. A. Mukhanbet , B. E. Moldagaliyev, Saira Shamahay
Abstract:
In the article was shown attitude to contemporary traditional culture and cultural heritage preservation issues and features of further development of a culture. Concerning innovation, appeal to cultural heritage, ability of reception of a culture and cultural diffusion in the process of globalization, it is offered further positive development of Kazakhstan’s based human experience and achieved with time. System of traditions is considered as a phenomenon which describes unity, harmony and stability of social body. Contradictions of contemporary culture and civilization, processes of tradition and innovation, cultural changes, and creativities are considered as second side of a society development. Innovation is analyzed as a method of renewal of a culture, tradition and innovation are considered as universal feature of any culture.Keywords: culture, civilization, innovation, tradition, reality, customs, social relations, morality, values
Procedia PDF Downloads 748