Search results for: optimum deflection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2051

Search results for: optimum deflection

581 Feasibility Study of Constructed Wetlands for Wastewater Treatment and Reuse in Asmara, Eritrea

Authors: Hagos Gebrehiwet Bahta

Abstract:

Asmara, the capital city of Eritrea, is facing a sanitation challenge because the city discharges its wastewater to the environment without any kind of treatment. The aim of this research is to conduct a pre-feasibility study of using constructed wetlands in the peri-urban areas of Asmara for wastewater treatment and reuse. It was found that around 15,000 m³ of wastewater is used daily for agricultural activities, and products are sold in the city's markets, which are claimed to cause some health effects. In this study, three potential sites were investigated around Mai-Bela and an optimum location was selected on the basis of land availability, topography, and geotechnical information. Some types of local microphytes that can be used in constructed wetlands have been identified and documented for further studies. It was found that subsurface constructed wetlands can provide a sufficient pollutant removal with careful planning and design. Following the feasibility study, a preliminary design of screening, grit chamber and subsurface constructed wetland was prepared and cost estimation was done. In the cost estimation part, the filter media was found to be the most expensive part and consists of around 30% percent of the overall cost. The city wastewater drainage runs in two directions and the selected site is located in the southern sub-system, which only carries sewage (separate system). The wastewater analysis conducted particularly around this area (Sembel) indicates high heavy metal levels and organic concentrations, which reveals that there is a high level of industrial pollution in addition to the domestic sewage.

Keywords: agriculture, constructed wetland, Mai-Bela, wastewater reuse

Procedia PDF Downloads 202
580 Arsenic Removal from Drinking Water by Hybrid Hydrogel-Biochar Matrix: An Understanding of Process Parameters

Authors: Vibha Sinha, Sumedha Chakma

Abstract:

Arsenic (As) contamination in drinking water is a serious concern worldwide resulting in severe health maladies. To tackle this problem, several hydrogel based matrix which selectively uptake toxic metals from contaminated water has increasingly been examined as a potential practical method for metal removal. The major concern in hydrogels is low stability of matrix, resulting in poor performance. In this study, the potential of hybrid hydrogel-biochar matrix synthesized from natural plant polymers, specific for As removal was explored. Various compositional and functional group changes of the elements contained in the matrix due to the adsorption of As were identified. Moreover, to resolve the stability issue in hydrogel matrix, optimum and effective mixing of hydrogel with biochar was studied. Mixing varied proportions of matrix components at the time of digestion process was tested. Preliminary results suggest that partial premixing methods may increase the stability and reduce cost. Addition of nanoparticles and specific catalysts with different concentrations of As(III) and As(V) under batch conditions was performed to study their role in performance enhancement of the hydrogel matrix. Further, effect of process parameters, optimal uptake conditions and detailed mechanism derived from experimental studies were suitably conducted. This study provides an efficient, specific and a low-cost As removal method that offers excellent regeneration abilities which can be reused for value.

Keywords: arsenic, catalysts, hybrid hydrogel-biochar, water purification

Procedia PDF Downloads 186
579 Comparative Study on the Effect of Compaction Energy and Moisture Content on the Strength Properties of Lateritic Soil

Authors: Ahmad Idris, O.A. Uche, Ado Y Abdulfatah

Abstract:

Lateritic soils are found in abundance and are the most common types of soils used in construction of roads and embankments in Nigeria. Strength properties of the soils depend on the amount of compaction applied and the amount of water available in the soil at the time of compaction. In this study, the influence of the compactive effort and that of the amount of water in the soil in the determination of the shear strength properties of lateritic soil was investigated. Lateritic soil sample was collected from an existing borrow pit in Kano, Nigeria and its basic characteristics were determined and the soil was classified according to AASHTO classification method. The soil was then compacted under various compactive efforts and at wide range of moisture contents. The maximum dry density (MDD) and optimum moisture content (OMC) at each compactive effort was determined. Unconfined undrained triaxial test was carried out to determine the shear strength properties of the soil under various conditions of moisture and energy. Preliminary results obtained indicated that the soil is an A-7-5 soil. The final results obtained shows that as the compaction energy is increased, both the cohesion and friction angle increased irrespective of the moisture content used in the compaction. However, when the amount of water in the soil was increased and compaction effort kept constant, only the cohesion of the soil increases while the friction angle shows no any pattern of variation. It was also found that the highest values for cohesion and friction angle were obtained when the soil was compacted at the highest energy and at OMC.

Keywords: laterite, OMC, compaction energy, moisture content

Procedia PDF Downloads 401
578 Variation with Depth of Physico-Chemical, Mineralogical and Physical Properties of Overburden over Gneiss Basement Complex in Minna Metropolis, North Central Nigeria

Authors: M. M. Alhaji, M. Alhassan, A. M. Yahaya

Abstract:

Soil engineers pay very little or no attention to variation in the mineralogical and consequently, the geotechnical properties of overburden with depth on basement complexes, a situation which can lead to sudden failure of civil engineering structures. Soil samples collected at depths ranging from 0.5m to 4.0m at 0.5m intervals, from a trial pit dogged manually to depth of 4.0m on an overburden over gneiss basement complex, was evaluated for physico-chemical, mineralogical and physical properties. This is to determine the variation of these properties with depth within the profile of the strata. Results showed that sodium amphibolite and feldspar, which are both primary minerals dominate the overall profile of the overburden. Carbon which dominates the lower profile of the strata was observed to alter to gregorite at upper section of the profile. Organic matter contents and cation exchange capacity reduces with increase in depth while lost on ignition and pH were relatively constant with depth. The index properties, as well as natural moisture contents, increases from 0.5m to between 1.0m to 1.5m depth after which the values reduced to constant values at 3.0m depth. The grain size analysis shows high composition of sand sized particles with silts of low to non-plasticity. The maximum dry density (MDD) values are generally relatively high and increases from 2.262g/cm³ at 0.5m depth to 2.410g/cm³ at 4.0m depth while the optimum moisture content (OMC) reduced from 9.8% at 0.5m depth to 6.7% at 4.0m depth.

Keywords: Gneiss basement complex, mineralogical properties, North Central Nigeria, physico-chemical properties, physical properties, overburden soil

Procedia PDF Downloads 143
577 Effect of Sodium Hydroxide on Geotechnical Properties of Soft Soil in Kathmandu Valley

Authors: Bal Deep Sharma, Suresh Ray Yadav

Abstract:

Local soils are often chosen due to their widespread availability and low cost. However, these soils typically have poor durability, which can lead to significant limitations in their use for construction. To address this issue, various soil stabilization techniques have been developed and used over the years. This study investigates the viability of employing the mineral polymerization (MIP) technique to stabilize black soils, intending to enhance their suitability for construction applications. This technique involves the microstructural transformation of certain clay minerals into solid and stable compounds exhibiting characteristics similar to hydroxy sodalite, feldspathoid, or zeolite. This transformation occurs through the action of an alkaline reactant at atmospheric pressure and low temperature. The soil sample was characterized using grain size distribution, Atterberg limit test, organic content test, and pH-value tests. The unconfined compressive strength of the soil specimens, prepared with varying percentages of sodium hydroxide as an additive and sand as a filler by weight, was determined at the optimum moisture content. The unconfined compressive strength of the specimens was tested under three different conditions: dry, wet, and cycling. The maximum unconfined compressive strengths were 77.568 kg/cm², 38.85 kg/cm², and 56.3 kg/cm² for the dry, wet, and cycling specimens, respectively, while the unconfined compressive strength of the untreated soil was 7.38 kg/cm². The minimum unconfined compressive strength of the wet and cycling specimens was greater than that of the untreated soil. Based on these findings, it can be concluded that these soils can be effectively used as construction material after treatment with sodium hydroxide.

Keywords: soil stabilization technique, soft soil treatment, sodium hydroxide, unconfined compressive strength

Procedia PDF Downloads 75
576 Plastic Behavior of Steel Frames Using Different Concentric Bracing Configurations

Authors: Madan Chandra Maurya, A. R. Dar

Abstract:

Among the entire natural calamities earthquake is the one which is most devastating. If the losses due to all other calamities are added still it will be very less than the losses due to earthquakes. So it means we must be ready to face such a situation, which is only possible if we make our structures earthquake resistant. A review of structural damages to the braced frame systems after several major earthquakes—including recent earthquakes—has identified some anticipated and unanticipated damage. This damage has prompted many engineers and researchers around the world to consider new approaches to improve the behavior of braced frame systems. Extensive experimental studies over the last fourty years of conventional buckling brace components and several braced frame specimens have been briefly reviewed, highlighting that the number of studies on the full-scale concentric braced frames is still limited. So for this reason the study surrounds the words plastic behavior, steel structure, brace frame system. In this study, there are two different analytical approaches which have been used to predict the behavior and strength of an un-braced frame. The first is referred as incremental elasto-plastic analysis a plastic approach. This method gives a complete load-deflection history of the structure until collapse. It is based on the plastic hinge concept for fully plastic cross sections in a structure under increasing proportional loading. In this, the incremental elasto-plastic analysis- hinge by hinge method is used in this study because of its simplicity to know the complete load- deformation history of two storey un-braced scaled model. After that the experiments were conducted on two storey scaled building model with and without bracing system to know the true or experimental load deformation curve of scaled model. Only way, is to understand and analyze these techniques and adopt these techniques in our structures. The study named as Plastic Behavior of Steel Frames using Different Concentric Bracing Configurations deals with all this. This study aimed at improving the already practiced traditional systems and to check the behavior and its usefulness with respect to X-braced system as reference model i.e. is how plastically it is different from X-braced. Laboratory tests involved determination of plastic behavior of these models (with and without brace) in terms of load-deformation curve. Thus, the aim of this study is to improve the lateral displacement resistance capacity by using new configuration of brace member in concentric manner which is different from conventional concentric brace. Once the experimental and manual results (using plastic approach) compared, simultaneously the results from both approach were also compared with nonlinear static analysis (pushover analysis) approach using ETABS i.e how both the previous results closely depicts the behavior in pushover curve and upto what limit. Tests results shows that all the three approaches behaves somewhat in similar manner upto yield point and also the applicability of elasto-plastic analysis (hinge by hinge method) to know the plastic behavior. Finally the outcome from three approaches shows that the newer one configuration which is chosen for study behaves in-between the plane frame (without brace or reference frame) and the conventional X-brace frame.

Keywords: elasto-plastic analysis, concentric steel braced frame, pushover analysis, ETABS

Procedia PDF Downloads 223
575 Assessment of Major Feed Resources and Its Utilization in Manaslu Conservation Area Nepal

Authors: Sabita Subedi, Bhojan Dhakal, Shankar Raj Pant, Naba Raj Devkota

Abstract:

An assessment was made about the available feed resources, its utilization pattern, specifically, roughage and concentrate, produced from the Manaslu Conservation Area (MCA) of Nepal to formulate the appropriate strategies in satisfying the annual dietary requirements of the livestock covering its present production and management scenarios. A comparative study was done by employing a purposively conducted survey to deduct the distribution of forage sources in the area. Findings revealed that natural vegetation, seasonally available crop residues, and dried grasses were major feed resources, whereas their contribution to the total supply varied significantly (p < 0.01). The amount of feed obtained from various sources was calculated by standard conversion and using primary household data. Findings revealed that farmers practice significantly higher (p < 0.01) number of grazing days and hours per day for large ruminants such as Yak and Chauries as compared to small ruminants such as goats and sheep. The findings also indicated seasonal variations of feed supply, whereas January to March is the period of short supply (p < 0.01). It was relatively in good supply from June to September though average roughage and crude protein supplement for the animals was far below than optimum requirements. These scenarios suggest the need for immediate attention to improve the range productivity in the MCA as the deteriorating situations of the rangelands may raise questions on the sustainability of livestock herders.

Keywords: altitude, carrying capacity, dietary requirement, feed resources, rangeland, ruminant

Procedia PDF Downloads 194
574 Investigating Non-suicidal Self-Injury Discussions on Twitter

Authors: Muhammad Abubakar Alhassan, Diane Pennington

Abstract:

Social networking sites have become a space for people to discuss public health issues such as non-suicidal self-injury (NSSI). There are thousands of tweets containing self-harm and self-injury hashtags on Twitter. It is difficult to distinguish between different users who participate in self-injury discussions on Twitter and how their opinions change over time. Also, it is challenging to understand the topics surrounding NSSI discussions on Twitter. We retrieved tweets using #selfham and #selfinjury hashtags and investigated those from the United kingdom. We applied inductive coding and grouped tweeters into different categories. This study used the Latent Dirichlet Allocation (LDA) algorithm to infer the optimum number of topics that describes our corpus. Our findings revealed that many of those participating in NSSI discussions are non-professional users as opposed to medical experts and academics. Support organisations, medical teams, and academics were campaigning positively on rais-ing self-injury awareness and recovery. Using LDAvis visualisation technique, we selected the top 20 most relevant terms from each topic and interpreted the topics as; children and youth well-being, self-harm misjudgement, mental health awareness, school and mental health support and, suicide and mental-health issues. More than 50% of these topics were discussed in England compared to Scotland, Wales, Ireland and Northern Ireland. Our findings highlight the advantages of using the Twitter social network in tackling the problem of self-injury through awareness. There is a need to study the potential risks associated with the use of social networks among self-injurers.

Keywords: self-harm, non-suicidal self-injury, Twitter, social networks

Procedia PDF Downloads 125
573 Optimal-Based Structural Vibration Attenuation Using Nonlinear Tuned Vibration Absorbers

Authors: Pawel Martynowicz

Abstract:

Vibrations are a crucial problem for slender structures such as towers, masts, chimneys, wind turbines, bridges, high buildings, etc., that is why most of them are equipped with vibration attenuation or fatigue reduction solutions. In this work, a slender structure (i.e., wind turbine tower-nacelle model) equipped with nonlinear, semiactive tuned vibration absorber(s) is analyzed. For this study purposes, magnetorheological (MR) dampers are used as semiactive actuators. Several optimal-based approaches to structural vibration attenuation are investigated against the standard ‘ground-hook’ law and passive tuned vibration absorber(s) implementations. The common approach to optimal control of nonlinear systems is offline computation of the optimal solution, however, so determined open loop control suffers from lack of robustness to uncertainties (e.g., unmodelled dynamics, perturbations of external forces or initial conditions), and thus perturbation control techniques are often used. However, proper linearization may be an issue for highly nonlinear systems with implicit relations between state, co-state, and control. The main contribution of the author is the development as well as numerical and experimental verification of the Pontriagin maximum-principle-based vibration control concepts that produce directly actuator control input (not the demanded force), thus force tracking algorithm that results in control inaccuracy is entirely omitted. These concepts, including one-step optimal control, quasi-optimal control, and optimal-based modified ‘ground-hook’ law, can be directly implemented in online and real-time feedback control for periodic (or semi-periodic) disturbances with invariant or time-varying parameters, as well as for non-periodic, transient or random disturbances, what is a limitation for some other known solutions. No offline calculation, excitations/disturbances assumption or vibration frequency determination is necessary, moreover, all of the nonlinear actuator (MR damper) force constraints, i.e., no active forces, lower and upper saturation limits, hysteresis-type dynamics, etc., are embedded in the control technique, thus the solution is optimal or suboptimal for the assumed actuator, respecting its limitations. Depending on the selected method variant, a moderate or decisive reduction in the computational load is possible compared to other methods of nonlinear optimal control, while assuring the quality and robustness of the vibration reduction system, as well as considering multi-pronged operational aspects, such as possible minimization of the amplitude of the deflection and acceleration of the vibrating structure, its potential and/or kinetic energy, required actuator force, control input (e.g. electric current in the MR damper coil) and/or stroke amplitude. The developed solutions are characterized by high vibration reduction efficiency – the obtained maximum values of the dynamic amplification factor are close to 2.0, while for the best of the passive systems, these values exceed 3.5.

Keywords: magnetorheological damper, nonlinear tuned vibration absorber, optimal control, real-time structural vibration attenuation, wind turbines

Procedia PDF Downloads 121
572 Stimulation of Stevioside Accumulation on Stevia rebaudiana (Bertoni) Shoot Culture Induced with Red LED Light in TIS RITA® Bioreactor System

Authors: Vincent Alexander, Rizkita Esyanti

Abstract:

Leaves of Stevia rebaudiana contain steviol glycoside which mainly comprise of stevioside, a natural sweetener compound that is 100-300 times sweeter than sucrose. Current cultivation method of Stevia rebaudiana in Indonesia has yet to reach its optimum efficiency and productivity to produce stevioside as a safe sugar substitute sweetener for people with diabetes. An alternative method that is not limited by environmental factor is in vitro temporary immersion system (TIS) culture method using recipient for automated immersion (RITA®) bioreactor. The aim of this research was to evaluate the effect of red LED light induction towards shoot growth and stevioside accumulation in TIS RITA® bioreactor system, as an endeavour to increase the secondary metabolite synthesis. The result showed that the stevioside accumulation in TIS RITA® bioreactor system induced with red LED light for one hour during night was higher than that in TIS RITA® bioreactor system without red LED light induction, i.e. 71.04 ± 5.36 μg/g and 42.92 ± 5.40 μg/g respectively. Biomass growth rate reached as high as 0.072 ± 0.015/day for red LED light induced TIS RITA® bioreactor system, whereas TIS RITA® bioreactor system without induction was only 0.046 ± 0.003/day. Productivity of Stevia rebaudiana shoots induced with red LED light was 0.065 g/L medium/day, whilst shoots without any induction was 0.041 g/L medium/day. Sucrose, salt, and inorganic consumption in both bioreactor media increased as biomass increased. It can be concluded that Stevia rebaudiana shoot in TIS RITA® bioreactor induced with red LED light produces biomass and accumulates higher stevioside concentration, in comparison to bioreactor without any light induction.

Keywords: LED, Stevia rebaudiana, Stevioside, TIS RITA

Procedia PDF Downloads 367
571 Cleaning Performance of High-Frequency, High-Intensity 360 kHz Frequency Operating in Thickness Mode Transducers

Authors: R. Vetrimurugan, Terry Lim, M. J. Goodson, R. Nagarajan

Abstract:

This study investigates the cleaning performance of high intensity 360 kHz frequency on the removal of nano-dimensional and sub-micron particles from various surfaces, uniformity of the cleaning tank and run to run variation of cleaning process. The uniformity of the cleaning tank was measured by two different methods i.e 1. ppbTM meter and 2. Liquid Particle Counting (LPC) technique. In the second method, aluminium metal spacer components was placed at various locations of the cleaning tank (such as centre, top left corner, bottom left corner, top right corner, bottom right corner) and the resultant particles removed by 360 kHz frequency was measured. The result indicates that the energy was distributed more uniformly throughout the entire cleaning vessel even at the corners and edges of the tank when megasonic sweeping technology is applied. The result also shows that rinsing the parts with 360 kHz frequency at final rinse gives lower particle counts, hence higher cleaning efficiency as compared to other frequencies. When megasonic sweeping technology is applied each piezoelectric transducers will operate at their optimum resonant frequency and generates stronger acoustic cavitational force and higher acoustic streaming velocity. These combined forces are helping to enhance the particle removal and at the same time improve the overall cleaning performance. The multiple extractions study was also carried out for various frequencies to measure the cleaning potential and asymptote value.

Keywords: power distribution, megasonic sweeping, cavitation intensity, particle removal, laser particle counting, nano, submicron

Procedia PDF Downloads 415
570 Sustainable Environmental Management through the Comparative Study of Two Recreational Parks in Nigeria

Authors: Oluwagbemiga Paul Agboola, Cornelius Olatunji Omojola, Dayo Martins Oyeshomo

Abstract:

The role of a recreational park in human and environmental development has attracted much interest in the recent time. Recreation parks' development could act as an effective planning strategy to enhance environmental sustainability, social cohesiveness, and users' quality of life. Similarly, parks enhance neighbourhood's aesthetics, refresh the air and enhance humans' contact with nature. In this connection, recreation parks create natural surroundings of rural areas for leisure, relaxation, recreation, psychological and physical comfort of the people. The purpose of this paper is to investigate the effectiveness of the two recreational parks' development as a strategy for neighbourhood's environmental improvement, sustainability and the recreationists' cohesiveness. A total number of 158 survey questionnaires were distributed to the tourists at Ikogosi cold and warm spring in Ekiti state as well as Olumirin waterfalls, Erin-Ijesa, Osun State, in South-West, Nigeria. The quantitative results of the analyzed data with Relative Importance Index (RII) revealed that recreation parks provide optimum opportunities for users' social cohesiveness and well-being while parks' sustainable environment could be enhanced base on the provision of essential facilities, services, and future developmental plans. It is recommended that for recreation parks to realize their full potential in environmental sustainability, adequate maintenance and provision of essential facilities becomes imperative.

Keywords: environmental sustainability, neighbourhood development, recreational park, Nigeria

Procedia PDF Downloads 223
569 A Large Ion Collider Experiment (ALICE) Diffractive Detector Control System for RUN-II at the Large Hadron Collider

Authors: J. C. Cabanillas-Noris, M. I. Martínez-Hernández, I. León-Monzón

Abstract:

The selection of diffractive events in the ALICE experiment during the first data taking period (RUN-I) of the Large Hadron Collider (LHC) was limited by the range over which rapidity gaps occur. It would be possible to achieve better measurements by expanding the range in which the production of particles can be detected. For this purpose, the ALICE Diffractive (AD0) detector has been installed and commissioned for the second phase (RUN-II). Any new detector should be able to take the data synchronously with all other detectors and be operated through the ALICE central systems. One of the key elements that must be developed for the AD0 detector is the Detector Control System (DCS). The DCS must be designed to operate safely and correctly this detector. Furthermore, the DCS must also provide optimum operating conditions for the acquisition and storage of physics data and ensure these are of the highest quality. The operation of AD0 implies the configuration of about 200 parameters, from electronics settings and power supply levels to the archiving of operating conditions data and the generation of safety alerts. It also includes the automation of procedures to get the AD0 detector ready for taking data in the appropriate conditions for the different run types in ALICE. The performance of AD0 detector depends on a certain number of parameters such as the nominal voltages for each photomultiplier tube (PMT), their threshold levels to accept or reject the incoming pulses, the definition of triggers, etc. All these parameters define the efficiency of AD0 and they have to be monitored and controlled through AD0 DCS. Finally, AD0 DCS provides the operator with multiple interfaces to execute these tasks. They are realized as operating panels and scripts running in the background. These features are implemented on a SCADA software platform as a distributed control system which integrates to the global control system of the ALICE experiment.

Keywords: AD0, ALICE, DCS, LHC

Procedia PDF Downloads 302
568 Preparation of Pegylated Interferon Alpha-2b with High Antiviral Activity Using Linear 20 KDa Polyethylene Glycol Derivative

Authors: Ehab El-Dabaa, Omnia Ali, Mohamed Abd El-Hady, Ahmed Osman

Abstract:

Recombinant human interferon alpha 2 (rhIFN-α2) is FDA approved for treatment of some viral and malignant diseases. Approved pegylated rhIFN-α2 drugs have highly improved pharmacokinetics, pharmacodynamics and therapeutic efficiency compared to native protein. In this work, we studied the pegylation of purified properly refolded rhIFN-α2b using linear 20kDa PEG-NHS (polyethylene glycol- N-hydroxysuccinimidyl ester) to prepare pegylated rhIFN-α2b with high stability and activity. The effect of different parameters like rhIFN-α2b final concentration, pH, rhIFN-α2b/PEG molar ratios and reaction time on the efficiency of pegylation (high percentage of monopegylated rhIFN-α2b) have been studied in small scale (100µl) pegylation reaction trials. Study of the percentages of different components of these reactions (mono, di, polypegylated rhIFN-α2b and unpegylated rhIFN-α2b) indicated that 2h is optimum time to complete the reaction. The pegylation efficiency increased at pH 8 (57.9%) by reducing the protein concentration to 1mg/ml and reducing the rhIFN-α2b/PEG ratio to 1:2. Using larger scale pegylation reaction (65% pegylation efficiency), ion exchange chromatography method has been optimized to prepare and purify the monopegylated rhIFN-α2b with high purity (96%). The prepared monopegylated rhIFN-α2b had apparent Mwt of approximately 65 kDa and high in vitro antiviral activity (2.1x10⁷ ± 0.8 x10⁷ IU/mg). Although it retained approximately 8.4 % of the antiviral activity of the unpegylated rhIFN-α2b, its activity is high compared to other pegylated rhIFN-α2 developed by using similar approach or higher molecular weight branched PEG.

Keywords: antiviral activity, rhIFN-α2b, pegylation, pegylation efficiency

Procedia PDF Downloads 175
567 Hybrid Advanced Oxidative Pretreatment of Complex Industrial Effluent for Biodegradability Enhancement

Authors: K. Paradkar, S. N. Mudliar, A. Sharma, A. B. Pandit, R. A. Pandey

Abstract:

The study explores the hybrid combination of Hydrodynamic Cavitation (HC) and Subcritical Wet Air Oxidation-based pretreatment of complex industrial effluent to enhance the biodegradability selectively (without major COD destruction) to facilitate subsequent enhanced downstream processing via anaerobic or aerobic biological treatment. Advanced oxidation based techniques can be less efficient as standalone options and a hybrid approach by combining Hydrodynamic Cavitation (HC), and Wet Air Oxidation (WAO) can lead to a synergistic effect since both the options are based on common free radical mechanism. The HC can be used for initial turbulence and generation of hotspots which can begin the free radical attack and this agitating mixture then can be subjected to less intense WAO since initial heat (to raise the activation energy) can be taken care by HC alone. Lab-scale venturi-based hydrodynamic cavitation and wet air oxidation reactor with biomethanated distillery wastewater (BMDWW) as a model effluent was examined for establishing the proof-of-concept. The results indicated that for a desirable biodegradability index (BOD: COD - BI) enhancement (up to 0.4), the Cavitation (standalone) pretreatment condition was: 5 bar and 88 min reaction time with a COD reduction of 36 % and BI enhancement of up to 0.27 (initial BI - 0.17). The optimum WAO condition (standalone) was: 150oC, 6 bar and 30 minutes with 31% COD reduction and 0.33 BI. The hybrid pretreatment (combined Cavitation + WAO) worked out to be 23.18 min HC (at 5 bar) followed by 30 min WAO at 150oC, 6 bar, at which around 50% COD was retained yielding a BI of 0.55. FTIR & NMR analysis of pretreated effluent indicated dissociation and/or reorientation of complex organic compounds in untreated effluent to simpler organic compounds post-pretreatment.

Keywords: hybrid, hydrodynamic cavitation, wet air oxidation, biodegradability index

Procedia PDF Downloads 616
566 Family of Density Curves of Queensland Soils from Compaction Tests, on a 3D Z-Plane Function of Moisture Content, Saturation, and Air-Void Ratio

Authors: Habib Alehossein, M. S. K. Fernando

Abstract:

Soil density depends on the volume of the voids and the proportion of the water and air in the voids. However, there is a limit to the contraction of the voids at any given compaction energy, whereby additional water is used to reduce the void volume further by lubricating the particles' frictional contacts. Hence, at an optimum moisture content and specific compaction energy, the density of unsaturated soil can be maximized where the void volume is minimum. However, when considering a full compaction curve and permutations and variations of all these components (soil, air, water, and energy), laboratory soil compaction tests can become expensive, time-consuming, and exhausting. Therefore, analytical methods constructed on a few test data can be developed and used to reduce such unnecessary efforts significantly. Concentrating on the compaction testing results, this study discusses the analytical modelling method developed for some fine-grained and coarse-grained soils of Queensland. Soil properties and characteristics, such as full functional compaction curves under various compaction energy conditions, were studied and developed for a few soil types. Using MATLAB, several generic analytical codes were created for this study, covering all possible compaction parameters and results as they occur in a soil mechanics lab. These MATLAB codes produce a family of curves to determine the relationships between the density, moisture content, void ratio, saturation, and compaction energy.

Keywords: analytical, MATLAB, modelling, compaction curve, void ratio, saturation, moisture content

Procedia PDF Downloads 84
565 Optimum Design of Hybrid (Metal-Composite) Mechanical Power Transmission System under Uncertainty by Convex Modelling

Authors: Sfiso Radebe

Abstract:

The design models dealing with flawless composite structures are in abundance, where the mechanical properties of composite structures are assumed to be known a priori. However, if the worst case scenario is assumed, where material defects combined with processing anomalies in composite structures are expected, a different solution is attained. Furthermore, if the system being designed combines in series hybrid elements, individually affected by material constant variations, it implies that a different approach needs to be taken. In the body of literature, there is a compendium of research that investigates different modes of failure affecting hybrid metal-composite structures. It covers areas pertaining to the failure of the hybrid joints, structural deformation, transverse displacement, the suppression of vibration and noise. In the present study a system employing a combination of two or more hybrid power transmitting elements will be explored for the least favourable dynamic loads as well as weight minimization, subject to uncertain material properties. Elastic constants are assumed to be uncertain-but-bounded quantities varying slightly around their nominal values where the solution is determined using convex models of uncertainty. Convex analysis of the problem leads to the computation of the least favourable solution and ultimately to a robust design. This approach contrasts with a deterministic analysis where the average values of elastic constants are employed in the calculations, neglecting the variations in the material properties.

Keywords: convex modelling, hybrid, metal-composite, robust design

Procedia PDF Downloads 209
564 Effect of Architecture and Operating Conditions of Vehicle on Bulb Lifetime in Automotive

Authors: Hatice Özbek, Caner Çil, Ahmet Rodoplu

Abstract:

Automotive lighting is the leading function in the configuration of vehicle architecture. Especially headlights and taillights from external lighting functions are among the structures that determine the stylistic character of the vehicle. At the same time, the fact that lighting functions are related to many other functions brings along difficulties in design. Customers expect maximum quality from the vehicle. In these circumstances, it is necessary to make designs that aim to keep the performance of bulbs with limited working lives at the highest level. With this study, the factors that influence the working lives of filament lamps were examined and bulb explosions that can occur sooner than anticipated in the future were prevented while the vehicle was still in the design phase by determining the relations with electrical, dynamical and static variables. Especially the filaments of the bulbs used in the front lighting of the vehicle are deformed in a shorter time due to the high voltage requirement. In addition to this, rear lighting lamps vibrate as a result of the tailgate opening and closing and cause the filaments to be exposed to high stress. With this study, the findings that cause bulb explosions were evaluated. Among the most important findings: 1. The structure of the cables to the lighting functions of the vehicle and the effect of the voltage values are drawn; 2. The effect of the vibration to bulb throughout the life of the vehicle; 3 The effect of the loads carried to bulb while the vehicle doors are opened and closed. At the end of the study, the maximum performance was established in the bulb lifetimes with the optimum changes made in the vehicle architecture based on the findings obtained.

Keywords: vehicle architecture, automotive lighting functions, filament lamps, bulb lifetime

Procedia PDF Downloads 149
563 An Application of Integrated Multi-Objective Particles Swarm Optimization and Genetic Algorithm Metaheuristic through Fuzzy Logic for Optimization of Vehicle Routing Problems in Sugar Industry

Authors: Mukhtiar Singh, Sumeet Nagar

Abstract:

Vehicle routing problem (VRP) is a combinatorial optimization and nonlinear programming problem aiming to optimize decisions regarding given set of routes for a fleet of vehicles in order to provide cost-effective and efficient delivery of both services and goods to the intended customers. This paper proposes the application of integrated particle swarm optimization (PSO) and genetic optimization algorithm (GA) to address the Vehicle routing problem in sugarcane industry in India. Suger industry is very prominent agro-based industry in India due to its impacts on rural livelihood and estimated to be employing around 5 lakhs workers directly in sugar mills. Due to various inadequacies, inefficiencies and inappropriateness associated with the current vehicle routing model it costs huge money loss to the industry which needs to be addressed in proper context. The proposed algorithm utilizes the crossover operation that originally appears in genetic algorithm (GA) to improve its flexibility and manipulation more readily and avoid being trapped in local optimum, and simultaneously for improving the convergence speed of the algorithm, level set theory is also added to it. We employ the hybrid approach to an example of VRP and compare its result with those generated by PSO, GA, and parallel PSO algorithms. The experimental comparison results indicate that the performance of hybrid algorithm is superior to others, and it will become an effective approach for solving discrete combinatory problems.

Keywords: fuzzy logic, genetic algorithm, particle swarm optimization, vehicle routing problem

Procedia PDF Downloads 392
562 A Mathematical Programming Model for Lot Sizing and Production Planning in Multi-Product Companies: A Case Study of Azar Battery Company

Authors: Farzad Jafarpour Taher, Maghsud Solimanpur

Abstract:

Production planning is one of the complex tasks in multi-product firms that produce a wide range of products. Since resources in mass production companies are limited and different products use common resources, there must be a careful plan so that firms can respond to customer needs efficiently. Azar-battery Company is a firm that provides twenty types of products for its customers. Therefore, careful planning must be performed in this company. In this research, the current conditions of Azar-battery Company were investigated to provide a mathematical programming model to determine the optimum production rate of the products in this company. The production system of this company is multi-stage, multi-product and multi-period. This system is studied in terms of a one-year planning horizon regarding the capacity of machines and warehouse space limitation. The problem has been modeled as a linear programming model with deterministic demand in which shortage is not allowed. The objective function of this model is to minimize costs (including raw materials, assembly stage, energy costs, packaging, and holding). Finally, this model has been solved by Lingo software using the branch and bound approach. Since the computation time was very long, the solver interrupted, and the obtained feasible solution was used for comparison. The proposed model's solution costs have been compared to the company’s real data. This non-optimal solution reduces the total production costs of the company by about %35.

Keywords: multi-period, multi-product production, multi-stage, production planning

Procedia PDF Downloads 93
561 Biodiesel Production Using Eggshells as a Catalyst

Authors: Ieva Gaide, Violeta Makareviciene

Abstract:

Increasing environmental pollution is caused by various factors, including the usage of vehicles. Legislation is focused on the increased usage of renewable energy sources for fuel production. Electric car usage is also important; however, it is relatively new and expensive transport. It is necessary to increase the amount of renewable energy in the production of diesel fuel, whereas many agricultural machineries are powered by diesel, as are water vehicles. For this reason, research on biodiesel production is relevant. The majority of studies globally are related to the improvement of conventional biofuel production technologies by applying the transesterification process of oil using alcohol and catalyst. Some of the more recent methods to produce biodiesel are based on heterogeneous catalysis, which has the advantage of easy separation of catalyst from the final product. It is known that a large amount of eggshells is treated as waste; therefore, it is eliminated in landfills without any or with minimal pre-treatment. CaO, which is known as a good catalyst for biodiesel synthesis, is a key component of eggshells. In the present work, we evaluated the catalytic efficiency of eggshells and determined the optimal transesterification conditions to obtain biodiesel that meets the standards. Content CaO in eggshells was investigated. Response surface methodology was used to determine the optimal reaction conditions. Three independent variables were investigated: the molar ratio of alcohol to oil, the amount of the catalyst, and the duration of the reaction. It was obtained that the optimum transesterification conditions when the methanol and eggshells as a heterogeneous catalyst are used and the process temperature is 64°C are the following: the alcohol-to-oil molar ratio 10.93:1, the reaction duration 9.48 h, and the catalyst amount 6.80 wt%. Under these conditions, 97.79 wt% of the ester yield was obtained.

Keywords: heterogeneous catalysis, eggshells, biodiesel, oil

Procedia PDF Downloads 113
560 Optimizing Microwave Assisted Extraction of Anti-Diabetic Plant Tinospora cordifolia Used in Ayush System for Estimation of Berberine Using Taguchi L-9 Orthogonal Design

Authors: Saurabh Satija, Munish Garg

Abstract:

Present work reports an efficient extraction method using microwaves based solvent–sample duo-heating mechanism, for the extraction of an important anti-diabetic plant Tinospora cordifolia from AYUSH system for estimation of berberine content. The process is based on simultaneous heating of sample matrix and extracting solvent under microwave energy. Methanol was used as the extracting solvent, which has excellent berberine solubilizing power and warms up under microwave attributable to its great dispersal factor. Extraction conditions like time of irradition, microwave power, solute-solvent ratio and temperature were optimized using Taguchi design and berberine was quantified using high performance thin layer chromatography. The ranked optimized parameters were microwave power (rank 1), irradiation time (rank 2) and temperature (rank 3). This kind of extraction mechanism under dual heating provided choice of extraction parameters for better precision and higher yield with significant reduction in extraction time under optimum extraction conditions. This developed extraction protocol will lead to extract higher amounts of berberine which is a major anti-diabetic moiety in Tinospora cordifolia which can lead to development of cheaper formulations of the plant Tinospora cordifolia and can help in rapid prevention of diabetes in the world.

Keywords: berberine, microwave, optimization, Taguchi

Procedia PDF Downloads 340
559 Evaluation of Real-Time Background Subtraction Technique for Moving Object Detection Using Fast-Independent Component Analysis

Authors: Naoum Abderrahmane, Boumehed Meriem, Alshaqaqi Belal

Abstract:

Background subtraction algorithm is a larger used technique for detecting moving objects in video surveillance to extract the foreground objects from a reference background image. There are many challenges to test a good background subtraction algorithm, like changes in illumination, dynamic background such as swinging leaves, rain, snow, and the changes in the background, for example, moving and stopping of vehicles. In this paper, we propose an efficient and accurate background subtraction method for moving object detection in video surveillance. The main idea is to use a developed fast-independent component analysis (ICA) algorithm to separate background, noise, and foreground masks from an image sequence in practical environments. The fast-ICA algorithm is adapted and adjusted with a matrix calculation and searching for an optimum non-quadratic function to be faster and more robust. Moreover, in order to estimate the de-mixing matrix and the denoising de-mixing matrix parameters, we propose to convert all images to YCrCb color space, where the luma component Y (brightness of the color) gives suitable results. The proposed technique has been verified on the publicly available datasets CD net 2012 and CD net 2014, and experimental results show that our algorithm can detect competently and accurately moving objects in challenging conditions compared to other methods in the literature in terms of quantitative and qualitative evaluations with real-time frame rate.

Keywords: background subtraction, moving object detection, fast-ICA, de-mixing matrix

Procedia PDF Downloads 93
558 Obtaining Bioactive Mg-hydroxyapatite Composite Ceramics From Phosphate Rock For Medical Applications

Authors: Sara Mercedes Barroso Pinzón, Antonio Javier Sanchéz Herencia, Begoña Ferrari, Álvaro Jesús Castro

Abstract:

The current need for durable implants and bone substitutes characterised by biocompatibility, bioactivity and mechanical properties, without immunological rejection, is a major challenge for scientists. Hydroxyapatite (HAp) has been considered for decades as an ideal biomaterial for bone regeneration due to its chemical and crystallographic similarity to the mineral structure bioapatites. However, the lack of trace elements in the hydroxyapatite structure gives it very low mechanical and biological properties. In this sense, the objective of the research is to address the synthesis of hydroxyapatite with Mg from phosphate rock from sedimentary deposits in the central-eastern region of Colombia, taking advantage of the release of the species contained as natural precursors of Ca, P and Mg. The minerals present were studied, fluorapatite as the mineral of interest associated with mineralogical species of magnesium carbonates and quartz. The chemical and mineralogical composition was determined by X-ray fluorescence (XRF) and X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX); as well as the evaluation of the surface physicochemical properties of zeta potential (PZC), with the aim of studying the surface behaviour of the microconstituents present in the phosphate rock and to elucidate the synergistic mechanism between the minerals and establish the optimum conditions for the wet concentration process. From the products obtained and characterised by XRD, XRF, SEM, FTIR, RAMAN, HAp-Mg biocomposite scaffolds are fabricated and the influence of Mg on the morphometric parameters, mechanical and biological properties of the designed materials is evaluated.

Keywords: phosphate rock, hydroxyapatite, magnesium, biomaterials

Procedia PDF Downloads 44
557 Unlocking the Puzzle of Borrowing Adult Data for Designing Hybrid Pediatric Clinical Trials

Authors: Rajesh Kumar G

Abstract:

A challenging aspect of any clinical trial is to carefully plan the study design to meet the study objective in optimum way and to validate the assumptions made during protocol designing. And when it is a pediatric study, there is the added challenge of stringent guidelines and difficulty in recruiting the necessary subjects. Unlike adult trials, there is not much historical data available for pediatrics, which is required to validate assumptions for planning pediatric trials. Typically, pediatric studies are initiated as soon as approval is obtained for a drug to be marketed for adults, so with the adult study historical information and with the available pediatric pilot study data or simulated pediatric data, the pediatric study can be well planned. Generalizing the historical adult study for new pediatric study is a tedious task; however, it is possible by integrating various statistical techniques and utilizing the advantage of hybrid study design, which will help to achieve the study objective in a smoother way even with the presence of many constraints. This research paper will explain how well the hybrid study design can be planned along with integrated technique (SEV) to plan the pediatric study; In brief the SEV technique (Simulation, Estimation (using borrowed adult data and applying Bayesian methods)) incorporates the use of simulating the planned study data and getting the desired estimates to Validate the assumptions.This method of validation can be used to improve the accuracy of data analysis, ensuring that results are as valid and reliable as possible, which allow us to make informed decisions well ahead of study initiation. With professional precision, this technique based on the collected data allows to gain insight into best practices when using data from historical study and simulated data alike.

Keywords: adaptive design, simulation, borrowing data, bayesian model

Procedia PDF Downloads 71
556 Application of Nonparametric Geographically Weighted Regression to Evaluate the Unemployment Rate in East Java

Authors: Sifriyani Sifriyani, I Nyoman Budiantara, Sri Haryatmi, Gunardi Gunardi

Abstract:

East Java Province has a first rank as a province that has the most counties and cities in Indonesia and has the largest population. In 2015, the population reached 38.847.561 million, this figure showed a very high population growth. High population growth is feared to lead to increase the levels of unemployment. In this study, the researchers mapped and modeled the unemployment rate with 6 variables that were supposed to influence. Modeling was done by nonparametric geographically weighted regression methods with truncated spline approach. This method was chosen because spline method is a flexible method, these models tend to look for its own estimation. In this modeling, there were point knots, the point that showed the changes of data. The selection of the optimum point knots was done by selecting the most minimun value of Generalized Cross Validation (GCV). Based on the research, 6 variables were declared to affect the level of unemployment in eastern Java. They were the percentage of population that is educated above high school, the rate of economic growth, the population density, the investment ratio of total labor force, the regional minimum wage and the ratio of the number of big industry and medium scale industry from the work force. The nonparametric geographically weighted regression models with truncated spline approach had a coefficient of determination 98.95% and the value of MSE equal to 0.0047.

Keywords: East Java, nonparametric geographically weighted regression, spatial, spline approach, unemployed rate

Procedia PDF Downloads 316
555 Chemical and Biomolecular Detection at a Polarizable Electrical Interface

Authors: Nicholas Mavrogiannis, Francesca Crivellari, Zachary Gagnon

Abstract:

Development of low-cost, rapid, sensitive and portable biosensing systems are important for the detection and prevention of disease in developing countries, biowarfare/antiterrorism applications, environmental monitoring, point-of-care diagnostic testing and for basic biological research. Currently, the most established commercially available and widespread assays for portable point of care detection and disease testing are paper-based dipstick and lateral flow test strips. These paper-based devices are often small, cheap and simple to operate. The last three decades in particular have seen an emergence in these assays in diagnostic settings for detection of pregnancy, HIV/AIDS, blood glucose, Influenza, urinary protein, cardiovascular disease, respiratory infections and blood chemistries. Such assays are widely available largely because they are inexpensive, lightweight, and portable, are simple to operate, and a few platforms are capable of multiplexed detection for a small number of sample targets. However, there is a critical need for sensitive, quantitative and multiplexed detection capabilities for point-of-care diagnostics and for the detection and prevention of disease in the developing world that cannot be satisfied by current state-of-the-art paper-based assays. For example, applications including the detection of cardiac and cancer biomarkers and biothreat applications require sensitive multiplexed detection of analytes in the nM and pM range, and cannot currently be satisfied with current inexpensive portable platforms due to their lack of sensitivity, quantitative capabilities and often unreliable performance. In this talk, inexpensive label-free biomolecular detection at liquid interfaces using a newly discovered electrokinetic phenomenon known as fluidic dielectrophoresis (fDEP) is demonstrated. The electrokinetic approach involves exploiting the electrical mismatches between two aqueous liquid streams forced to flow side-by-side in a microfluidic T-channel. In this system, one fluid stream is engineered to have a higher conductivity relative to its neighbor which has a higher permittivity. When a “low” frequency (< 1 MHz) alternating current (AC) electrical field is applied normal to this fluidic electrical interface the fluid stream with high conductivity displaces into the low conductive stream. Conversely, when a “high” frequency (20MHz) AC electric field is applied, the high permittivity stream deflects across the microfluidic channel. There is, however, a critical frequency sensitive to the electrical differences between each fluid phase – the fDEP crossover frequency – between these two events where no fluid deflection is observed, and the interface remains fixed when exposed to an external field. To perform biomolecular detection, two streams flow side-by-side in a microfluidic T-channel: one fluid stream with an analyte of choice and an adjacent stream with a specific receptor to the chosen target. The two fluid streams merge and the fDEP crossover frequency is measured at different axial positions down the resulting liquid

Keywords: biodetection, fluidic dielectrophoresis, interfacial polarization, liquid interface

Procedia PDF Downloads 444
554 Stabilization of Spent Engine Oil Contaminated Lateritic Soil Admixed with Cement Kiln Dust for Use as Road Construction Materials

Authors: Johnson Rotimi Oluremi, A. Adedayo Adegbola, A. Samson Adediran, O. Solomon Oladapo

Abstract:

Spent engine oil contains heavy metals and polycyclic aromatic hydrocarbons which contribute to chronic health hazards, poor soil aeration, immobilisation of nutrients and lowering of pH in soil. It affects geotechnical properties of lateritic soil thereby constituting geotechnical and foundation problems. This study is therefore based on the stabilization of spent engine oil (SEO) contaminated lateritic soil using cement kiln dust (CKD) as a mean of restoring it to its pristine state. Geotechnical tests which include sieve analysis, atterberg limit, compaction, California bearing ratio and unconfined compressive strength tests were carried out on the natural, SEO contaminated and CKD stabilized SEO contaminated lateritic soil samples. The natural soil classified as A-2-7 (2) by AASHTO classification and GC according to the Unified Soil Classification System changed to A-4 non-plastic soil due to SEO contaminated even under the influence of CKD it remained unchanged. However, the maximum dry density (MDD) of the SEO contaminated soil increased while the optimum moisture content (OMC) behaved vice versa with the increase in the percentages of CKD. Similarly, the bearing strength of the stabilized SEO contaminated soil measured by California Bearing Ratio (CBR) increased with percentage increment in CKD. In conclusion, spent engine oil has a detrimental effect on the geotechnical properties of the lateritic soil sample but which can be remediated using 10% CKD as a stand alone admixture in stabilizing spent engine oil contaminated soil.

Keywords: spent engine oil, lateritic soil, cement kiln dust, stabilization, compaction, unconfined compressive strength

Procedia PDF Downloads 385
553 Fabrication of a New Electrochemical Sensor Based on New Nanostructured Molecularly Imprinted Polypyrrole for Selective and Sensitive Determination of Morphine

Authors: Samaneh Nabavi, Hadi Shirzad, Arash Ghoorchian, Maryam Shanesaz, Reza Naderi

Abstract:

Morphine (MO), the most effective painkiller, is considered the reference by which analgesics are assessed. It is very necessary for the biomedical applications to detect and maintain the MO concentrations in the blood and urine with in safe ranges. To date, there are many expensive techniques for detecting MO. Recently, many electrochemical sensors for direct determination of MO were constructed. The molecularly imprinted polymer (MIP) is a polymeric material, which has a built-in functionality for the recognition of a particular chemical substance with its complementary cavity.This paper reports a sensor for MO using a combination of a molecularly imprinted polymer (MIP) and differential-pulse voltammetry (DPV). Electropolymerization of MO doped polypyrrole yielded poor quality, but a well-doped, nanostructure and increased impregnation has been obtained in the pH=12. Above a pH of 11, MO is in the anionic forms. The effect of various experimental parameters including pH, scan rate and accumulation time on the voltammetric response of MO was investigated. At the optimum conditions, the concentration of MO was determined using DPV in a linear range of 7.07 × 10−6 to 2.1 × 10−4 mol L−1 with a correlation coefficient of 0.999, and a detection limit of 13.3 × 10-8 mol L−1, respectively. The effect of common interferences on the current response of MO namely ascorbic acid (AA) and uric acid (UA) is studied. The modified electrode can be used for the determination of MO spiked into urine samples, and excellent recovery results were obtained. The nanostructured polypyrrole films were characterized by field emission scanning electron microscopy (FESEM) and furrier transforms infrared (FTIR).

Keywords: morphine detection, sensor, polypyrrole, nanostructure, molecularly imprinted polymer

Procedia PDF Downloads 420
552 Hybrid Nano Material of Ground Egg Shells with Metal Oxide for Lead Removal

Authors: A. Threepanich, S. Youngme, P. Praipipat

Abstract:

Although ground egg shells had the ability to eliminate lead in water, their efficiency may decrease in a case of contaminating of other cations such as Na⁺, Ca²⁺ in the water. The development of ground egg shells may solve this problem in which metal oxides are a good choice for this case since they have the ability to remove any heavy metals including lead in the water. Therefore, this study attempts to use this advantage for improving ground egg shells for the specific lead removal efficiency in the water. X-ray fluorescence (XRF) technique was used for the chemical element contents analysis of ground egg shells (GES) and ground egg shells with metal oxide (GESM), and Transmission electron microscope (TEM) technique was used to examine the material sizes. The batch test studies were designed to investigate the factor effects on dose (5, 10, 15 grams), pH (5, 7, 9), and settling time (1, 3, 5 hours) for the lead removal efficiency in the water. The XRF analysis results showed GES contained calcium (Ca) 91.41% and Silicon (Si) 4.03% and GESM contained calcium (Ca) 91.41%, Silicon (Si) 4.03%, and Iron (Fe) 3.05%. TEM results confirmed the sizes of GES and GESM in the range of 1-20 nm. The batch test studies showed the best optimum conditions for the lead removal in the water of GES and GESM in dose, pH, and settling time were 10 grams, pH 9, 5 hours and 5 grams, pH 9, 3 hours, respectively. The competing ions (Na⁺ and Ca²⁺) study reported GESM had the higher % lead removal efficiency than GES at 90% and 60%, respectively. Therefore, this result can confirm that adding of metal oxide to ground egg shells helps to improve the lead removal efficiency in the water.

Keywords: nano material, ground egg shells, metal oxide, lead

Procedia PDF Downloads 132