Search results for: market crash prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5644

Search results for: market crash prediction

4174 Seasonal Variability of the Price and Quality of Fresh Red Porgy Fish Sold in the Local Market of Igoumenitsa, NW Greece

Authors: C. Nathanailides, P. Logothetis, G. Kanlis S. Anastasiou, L. Kokokiris, P. Mpeza

Abstract:

Farmed Red porgy (Pagrus pagrus) is one of the “new candidate fish species” for the diversification of Mediterranean aquaculture which is predomintly based on the cultivation of the European sea bass, (Dicenfrarchus labrax), and the gilthead sea bream, (Sparus aurata). The quality of farmed red porgy (Pagrus pagrus) was investigated with samples obtained from the local fish market in the region of Igoumenitsa, NW Greece. Sample of the fish (ungutted and with scales) were purchased from three local fish mongers and transported to the laboratory within few minutes in foamed polystyrene boxes in ice. The average weight of whole fish ranged between 271-289g. A sample of the fish flesh taken from the upper epaxial region was transferred aseptically to a stomacher bag containing sterile Buffered Peptone Water solution (0.1%) and homogenized. After serial dilutions in 0.1% peptone water, the homogenates were spread on the surface of agar plates. Total viable counts (TVC) were determined using plate count agar after incubation at 30 oC for 3 days. The quality attributes monitored during the present work included bacterial load (total mesophilic) and the pH of the flesh. There was a marginal increase in the price of fresh red porgy sold during the summer time, with prices ranging, over a period of four seasons, from 5.85 to 7.5 per kilo. The results of the microbiological analysis indicate that with the exception of summer samples (which exhibited 5.23 (±0.13) log cfu/g), the bacterial load remained well below the legal limits and was around 3.1 log cfu/g. The pH values varied between 6.54 and 6.69. The results indicate a possible influence of season on the bacterial load of fish sold in the market. Nevertheless, the parameters investigated in the present work indicate that the bacteria load was well below the legal limit and that fish were sold within few days after harvesting. The peak of bacterial load in the summer samples may be a result of a post-harvesting contamination of the farmed fish and temperature fluctuations during handling and transportation.

Keywords: fish quality, marketing, aquaculture, Pagrus pagrus

Procedia PDF Downloads 681
4173 Utilizing Artificial Intelligence to Predict Post Operative Atrial Fibrillation in Non-Cardiac Transplant

Authors: Alexander Heckman, Rohan Goswami, Zachi Attia, Paul Friedman, Peter Noseworthy, Demilade Adedinsewo, Pablo Moreno-Franco, Rickey Carter, Tathagat Narula

Abstract:

Background: Postoperative atrial fibrillation (POAF) is associated with adverse health consequences, higher costs, and longer hospital stays. Utilizing existing predictive models that rely on clinical variables and circulating biomarkers, multiple societies have published recommendations on the treatment and prevention of POAF. Although reasonably practical, there is room for improvement and automation to help individualize treatment strategies and reduce associated complications. Methods and Results: In this retrospective cohort study of solid organ transplant recipients, we evaluated the diagnostic utility of a previously developed AI-based ECG prediction for silent AF on the development of POAF within 30 days of transplant. A total of 2261 non-cardiac transplant patients without a preexisting diagnosis of AF were found to have a 5.8% (133/2261) incidence of POAF. While there were no apparent sex differences in POAF incidence (5.8% males vs. 6.0% females, p=.80), there were differences by race and ethnicity (p<0.001 and 0.035, respectively). The incidence in white transplanted patients was 7.2% (117/1628), whereas the incidence in black patients was 1.4% (6/430). Lung transplant recipients had the highest incidence of postoperative AF (17.4%, 37/213), followed by liver (5.6%, 56/1002) and kidney (3.6%, 32/895) recipients. The AUROC in the sample was 0.62 (95% CI: 0.58-0.67). The relatively low discrimination may result from undiagnosed AF in the sample. In particular, 1,177 patients had at least 1 AI-ECG screen for AF pre-transplant above .10, a value slightly higher than the published threshold of 0.08. The incidence of POAF in the 1104 patients without an elevated prediction pre-transplant was lower (3.7% vs. 8.0%; p<0.001). While this supported the hypothesis that potentially undiagnosed AF may have contributed to the diagnosis of POAF, the utility of the existing AI-ECG screening algorithm remained modest. When the prediction for POAF was made using the first postoperative ECG in the sample without an elevated screen pre-transplant (n=1084 on account of n=20 missing postoperative ECG), the AUROC was 0.66 (95% CI: 0.57-0.75). While this discrimination is relatively low, at a threshold of 0.08, the AI-ECG algorithm had a 98% (95% CI: 97 – 99%) negative predictive value at a sensitivity of 66% (95% CI: 49-80%). Conclusions: This study's principal finding is that the incidence of POAF is rare, and a considerable fraction of the POAF cases may be latent and undiagnosed. The high negative predictive value of AI-ECG screening suggests utility for prioritizing monitoring and evaluation on transplant patients with a positive AI-ECG screening. Further development and refinement of a post-transplant-specific algorithm may be warranted further to enhance the diagnostic yield of the ECG-based screening.

Keywords: artificial intelligence, atrial fibrillation, cardiology, transplant, medicine, ECG, machine learning

Procedia PDF Downloads 136
4172 Prevalence and Antibiotic Resistance of Bacteria Isolated from Farmers’ Market Fruits and Vegetables Collected from Frostburg and Cumberland Areas in Maryland

Authors: Kumudini Apsara Munasinghe, Devin Gregory Lissau, Ryan Thomas Wade

Abstract:

Fresh fruits and vegetables are rich in vitamins, minerals, and fibers and help maintain a healthy weight over high-calorie food. Eating fruits and vegetables protects us from free radicals produced by metabolic reactions and safeguards us from cardiovascular disease and cancer. However, there has been an increased concern about foodborne diseases tied to contaminated farmers’ market produce. In addition, very little information is available about the contribution of eating raw fruits and vegetables to human exposure to antibiotic-resistant bacteria. This research aims to identify bacteria isolated from farmers’ market fruits and vegetables and understand their antibiotic resistance. Vegetables and fruits were collected from farmers’ markets around Frostburg and Cumberland areas in Maryland and transported to the microbiology lab at Frostburg State University for the isolation of bacteria. Bacteria were extracted from tomatoes, cucumber, strawberry, and lettuce using Tryptic soy broth overnight at 37°C, and Tryptic Soy agar was used for the streak plate technique to isolate bacteria. Pure cultures were used to identify bacteria using biochemical reactions after conducting Gram staining technique. The research used many biochemical reactions, including Mannitol Salt agar, MacConkey agar, and Eosin Methylene blue agar, for identification. Antibiotic sensitivity was tested for many different types of antibiotics, including amoxicillin, penicillin, tetracycline, ampicillin, and erythromycin. Most prevalent bacteria in the isolates were Staphylococcus, Bacillus, Micrococcus, Enterococcus, Enterobacter, Citrobacter, and other bacteria from the family Enterobacteriaceae. The data obtained from this research will be useful to educate and train farmers and individuals involved in post-harvest processes such as transportation and selling in farmers’ markets. Further results for bacterial antibiotic resistance will be obtained, and unculturable bacteria will be identified by next-generation DNA sequencing.

Keywords: antibiotic resistance, farmers markets, fruits, bacteria, vegetables

Procedia PDF Downloads 68
4171 Value at Risk and Expected Shortfall of Firms in the Main European Union Stock Market Indexes: A Detailed Analysis by Economic Sectors and Geographical Situation

Authors: Emma M. Iglesias

Abstract:

We have analyzed extreme movements of the main stocks traded in the Eurozone in the 2000-2012 period. Our results can help future very-risk-averse investors to choose their portfolios in the Eurozone for risk management purposes. We find two main results. First, we can clearly classify firms by economic sector according to their different estimated VaR values in five of the seven countries we analyze. In special, we find sectors in general where companies have very high (telecommunications and banking) and very low (petroleum, utilities, energy and consumption) estimated VaR values. Second, we only find differences according to the geographical situation of where the stocks are traded in two countries: (1) all firms in the Irish stock market (the only financially rescued country we analyze) have very high estimated VaR values in all sectors; while (2) in Spain all firms have very low estimated VaR values including in the banking and the telecommunications sectors. All our results are supported when we study also the expected shortfall of the firms.

Keywords: risk management, firms, pareto tail thickness parameter, GARCH-type models, value-at-risk, extreme value theory, heavy tails, stock indexes, eurozone

Procedia PDF Downloads 371
4170 Self-Perceived Employability of Students of International Relations of University of Warmia and Mazury in Poland

Authors: Marzena Świgoń

Abstract:

Nowadays, graduates should be prepared for serious challenges in the internal and external labor market. The notion that a degree is a “passport to employment” has been relegated to the past. In the last few years a phenomenon in the form of the increasing unemployment of highly educated young people in EU countries, including Poland has been observed. Empirical studies were conducted among Polish students in the scope of the so-called self-perceived employability review. In this study, a special scale was used which consisted of 19 statements regarding five components: student’s perception of university; field of study; self-belief; state of the external labor market; and, personal knowledge management. The respondent group consisted of final-year master’s students of International Relations at the University of Warmia and Mazury in Olsztyn, Poland. The findings of the empirical studies were compiled using statistical methods: descriptive statistics and inferential statistics. In general, in light of the conducted studies, the self-perceived employability of the Polish students was not high. Limitations of the studies were discussed, as well as the implications for future research in the scope of the students’ employability.

Keywords: self-perceived employability, students of international relations, university students, students employability

Procedia PDF Downloads 340
4169 Shariah Perspective on Legal Framework and Practice of Margin Financing in Pakistan

Authors: Anees Tahir

Abstract:

Margin financing plays a significant role in Pakistan's stock market (PSX), offering investors the opportunity to maximize profits by borrowing funds from financiers to purchase marginable stocks. However, this financial practice raises several Shariah-related concerns. The study follows legal doctrinal research methodology. It explains and analyzes the law of margin financing prevailing in PSX and compares it with the principles of Shariah. It also examines and investigates the practices of margin financing from the perspective of Shariah. As part of the study, the researcher has conducted structured interviews with the Shariah advisors of the finance industry, academicians, market practitioners, and regulators. Thus, the study analyzes the findings of interviews. This article explores the legal framework and practice of margin financing in Pakistan from a Shariah perspective. The article investigates various issues relating to margin financing, including the fundamental concern of interest-based lending, which contravenes Islamic principles. It also highlights the problematic subject matter of margin financing, often involving non-Shariah compliant securities. Additionally, the article addresses the restriction on proprietary rights and the problematic element of speculation associated with margin financing. To provide a Shariah-compliant alternative, the Securities and Exchange Commission of Pakistan (SECP) introduced Murabahah Shares Financing (MSF) in 2019. However, the focus of the market is still on conventional margin financing. In the opinion of the researcher, the effective implementation of MSF is imperative because in the absence of such an alternative, the faith sensitive investor will remain deprived of a level playing field, and he is unable to get required financing opportunities through a halal and Shariah-compliant manner. This article argues that margin financing in its current form is incompatible with Shariah principles and should be discontinued. It is recommended that the SECP should gradually phase out the use of margin financing and increase reliance on MSF to provide faith-sensitive and committed investors with Shariah-compliant financing options.

Keywords: margin financing, marginable stocks, faith sensitive investor, Murabahah shares financing

Procedia PDF Downloads 71
4168 An Energy and Economic Comparison of Solar Thermal Collectors for Domestic Hot Water Applications

Authors: F. Ghani, T. S. O’Donovan

Abstract:

Today, the global solar thermal market is dominated by two collector types; the flat plate and evacuated tube collector. With regards to the number of installations worldwide, the evacuated tube collector is the dominant variant primarily due to the Chinese market but the flat plate collector dominates both the Australian and European markets. The market share of the evacuated tube collector is, however, growing in Australia due to a common belief that this collector type is ‘more efficient’ and, therefore, the better choice for hot water applications. In this study, we investigate this issue further to assess the validity of this statement. This was achieved by methodically comparing the performance and economics of several solar thermal systems comprising of; a low-performance flat plate collector, a high-performance flat collector, and an evacuated tube collector coupled with a storage tank and pump. All systems were simulated using the commercial software package Polysun for four climate zones in Australia to take into account different weather profiles in the study and subjected to a thermal load equivalent to a household comprising of four people. Our study revealed that the energy savings and payback periods varied significantly for systems operating under specific environmental conditions. Solar fractions ranged between 58 and 100 per cent, while payback periods range between 3.8 and 10.1 years. Although the evacuated tube collector was found to operate with a marginally higher thermal efficiency over the selective surface flat plate collector due to reduced ambient heat loss, the high-performance flat plate collector outperformed the evacuated tube collector on thermal yield. This result was obtained as the flat plate collector possesses a significantly higher absorber to gross collector area ratio over the evacuated tube collector. Furthermore, it was found for Australian regions operating with a high average solar radiation intensity and ambient temperature, the lower performance collector is the preferred choice due to favorable economics and reduced stagnation temperature. Our study has provided additional insight into the thermal performance and economics of the two prevalent solar thermal collectors currently available. A computational investigation has been carried out specifically for the Australian climate due to its geographic size and significant variation in weather. For domestic hot water applications were fluid temperatures between 50 and 60 degrees Celsius are sought, the flat plate collector is both technically and economically favorable over the evacuated tube collector. This research will be useful to system design engineers, solar thermal manufacturers, and those involved in policy to encourage the implementation of solar thermal systems into the hot water market.

Keywords: solar thermal, energy analysis, flat plate, evacuated tube, collector performance

Procedia PDF Downloads 210
4167 The Youth Employment Peculiarities in Post-Soviet Georgia

Authors: M. Lobzhanidze, N. Damenia

Abstract:

The article analyzes the current structural changes in the economy of Georgia, liberalization and integration processes of the economy. In accordance with this analysis, the peculiarities and the problems of youth employment are revealed. In the paper, the Georgian labor market and its contradictions are studied. Based on the analysis of materials, the socio-economic losses caused by the long-term and mass unemployment of young people are revealed, the objective and subjective circumstances of getting higher education are studied. The youth employment and unemployment rates are analyzed. Based on the research, the factors that increase unemployment are identified. According to the analysis of the youth employment, it has appeared that the unemployment share in the number of economically active population has increased in the younger age group. It demonstrates the high requirements of the labour market in terms of the quality of the workforce. Also, it is highlighted that young people are exposed to a highly paid job. The following research methods are applied in the presented paper: statistical (selection, grouping, observation, trend, etc.) and qualitative research (in-depth interview), as well as analysis, induction and comparison methods. The article presents the data by the National Statistics Office of Georgia and the Ministry of Agriculture of Georgia, policy documents of the Parliament of Georgia, scientific papers by Georgian and foreign scientists, analytical reports, publications and EU research materials on similar issues. The work estimates the students and graduates employment problems existing in the state development strategy and priorities. The measures to overcome the challenges are defined. The article describes the mechanisms of state regulation of youth employment and the ways of improving this regulatory base. As for major findings, it should be highlighted that the main problems are: lack of experience and incompatibility of youth qualification with the requirements of the labor market. Accordingly, it is concluded that the unemployment rate of young people in Georgia is increasing.

Keywords: migration of youth, youth employment, migration management, youth employment and unemployment

Procedia PDF Downloads 148
4166 Lessons Learned in Developing a Clinical Information System and Electronic Health Record (EHR) System That Meet the End User Needs and State of Qatar's Emerging Regulations

Authors: Darshani Premaratne, Afshin Kandampath Puthiyadath

Abstract:

The Government of Qatar is taking active steps in improving quality of health care industry in the state of Qatar. In this initiative development and market introduction of Clinical Information System and Electronic Health Record (EHR) system are proved to be a highly challenging process. Along with an organization specialized on EHR system development and with the blessing of Health Ministry of Qatar the process of introduction of EHR system in Qatar healthcare industry was undertaken. Initially a market survey was carried out to understand the requirements. Secondly, the available government regulations, needs and possible upcoming regulations were carefully studied before deployment of resources for software development. Sufficient flexibility was allowed to cater for both the changes in the market and the regulations. As the first initiative a system that enables integration of referral network where referral clinic and laboratory system for all single doctor (and small scale) clinics was developed. Setting of isolated single doctor clinics all over the state to bring in to an integrated referral network along with a referral hospital need a coherent steering force and a solid top down framework. This paper discusses about the lessons learned in developing, in obtaining approval of the health ministry and in introduction to the industry of the single doctor referral network along with an EHR system. It was concluded that development of this nature required continues balance between the market requirements and upcoming regulations. Further accelerating the development based on the emerging needs, implementation based on the end user needs while tallying with the regulations, diffusion, and uptake of demand-driven and evidence-based products, tools, strategies, and proper utilization of findings were equally found paramount in successful development of end product. Development of full scale Clinical Information System and EHR system are underway based on the lessons learned. The Government of Qatar is taking active steps in improving quality of health care industry in the state of Qatar. In this initiative development and market introduction of Clinical Information System and Electronic Health Record (EHR) system are proved to be a highly challenging process. Along with an organization specialized on EHR system development and with the blessing of Health Ministry of Qatar the process of introduction of EHR system in Qatar healthcare industry was undertaken. Initially a market survey was carried out to understand the requirements. Secondly the available government regulations, needs and possible upcoming regulations were carefully studied before deployment of resources for software development. Sufficient flexibility was allowed to cater for both the changes in the market and the regulations. As the first initiative a system that enables integration of referral network where referral clinic and laboratory system for all single doctor (and small scale) clinics was developed. Setting of isolated single doctor clinics all over the state to bring in to an integrated referral network along with a referral hospital need a coherent steering force and a solid top down framework. This paper discusses about the lessons learned in developing, in obtaining approval of the health ministry and in introduction to the industry of the single doctor referral network along with an EHR system. It was concluded that development of this nature required continues balance between the market requirements and upcoming regulations. Further accelerating the development based on the emerging needs, implementation based on the end user needs while tallying with the regulations, diffusion, and uptake of demand-driven and evidence-based products, tools, strategies, and proper utilization of findings were equally found paramount in successful development of end product. Development of full scale Clinical Information System and EHR system are underway based on the lessons learned.

Keywords: clinical information system, electronic health record, state regulations, integrated referral network of clinics

Procedia PDF Downloads 362
4165 Hydrodynamics Study on Planing Hull with and without Step Using Numerical Solution

Authors: Koe Han Beng, Khoo Boo Cheong

Abstract:

The rising interest of stepped hull design has been led by the demand of more efficient high-speed boat. At the same time, the need of accurate prediction method for stepped planing hull is getting more important. By understanding the flow at high Froude number is the key in designing a practical step hull, the study surrounding stepped hull has been done mainly in the towing tank which is time-consuming and costly for initial design phase. Here the feasibility of predicting hydrodynamics of high-speed planing hull both with and without step using computational fluid dynamics (CFD) with the volume of fluid (VOF) methodology is studied in this work. First the flow around the prismatic body is analyzed, the force generated and its center of pressure are compared with available experimental and empirical data from the literature. The wake behind the transom on the keel line as well as the quarter beam buttock line are then compared with the available data, this is important since the afterbody flow of stepped hull is subjected from the wake of the forebody. Finally the calm water performance prediction of a conventional planing hull and its stepped version is then analyzed. Overset mesh methodology is employed in solving the dynamic equilibrium of the hull. The resistance, trim, and heave are then compared with the experimental data. The resistance is found to be predicted well and the dynamic equilibrium solved by the numerical method is deemed to be acceptable. This means that computational fluid dynamics will be very useful in further study on the complex flow around stepped hull and its potential usage in the design phase.

Keywords: planing hulls, stepped hulls, wake shape, numerical simulation, hydrodynamics

Procedia PDF Downloads 282
4164 Examining the Investment Behavior of Arab Women in the Stock Market

Authors: Razan Salem

Abstract:

Gender plays a vital role in the stock markets because men and women differ in their behavior when investing in stocks. Accordingly, the role of gender differences in investment behavior is an increasingly important strand in the field of behavioral finance research. The investment behaviors of women relative to men have been examined in the behavioral finance literature, mainly for comparison purposes. Women's roles in the stock market have not been examined in the behavioral finance literature, however, particularly with respect to the Arab region. This study aims to contribute towards a better understanding of the investment behavior of Arab women (in regards to their risk tolerance, investment confidence, and investment literacy levels) relative to Arab men; using a sample from Arab women and men investors living in Saudi Arabia and Jordan. In order to achieve the study's main aim, the researcher used non-parametric tests, as Mann-Whitney U test, along with frequency distribution analysis to analyze the study’s primary data. The researcher distributed close-ended online questionnaires to a sample of 550 Arab male and female individuals investing in stocks in both Saudi Arabia and Jordan. The results confirm that the sample Arab women invest less in stocks compared to Arab men due to their risk-averse behaviors and limited confidence levels. The results also reveal that due to Arab women’s very low investment literacy levels, they fear from taking the risk and invest often in stocks relative to Arab men. Overall, the study’s main variables (risk tolerance, investment confidence, and investment literacy levels) have a combined effect on the investment behavior of Arab women and their limited participation in the stock market. Hence, this study is one of the very first studies that indicate the combined effect of the three main variables (which are usually studied separately in the existing literature) on the investment behavior of women, particularly Arab women. This study makes three important contributions to the growing literature on gender differences in investment behavior. First, while the behavioral finance literature documents evidence on gender differences in investment behaviors in many developed countries, there are very limited studies that investigate such differences in Arab countries. Arab women investors, generally, are ignored from the behavioral finance literature due probably to cultural barriers and data collection difficulties. Thus, this study extends the literature to include Arab women and their investment behaviors when trading stock relative to Arab men. Moreover, the study associates women investment literacy and confidence levels with their financial risk behaviors and participation in the stock market. This study provides direct evidence on Arab women's investment behaviors when trading stocks. Overall, studying Arab women investors is important to investigate whether the investment behavior identified for Western women investors are also found in Arab women investors.

Keywords: Arab women, gender differences, investment behavior, stock markets

Procedia PDF Downloads 181
4163 Self-Determination Theory at the Workplace: Associations between Need Satisfaction and Employment Outcomes

Authors: Wendy I. E. Wesseling

Abstract:

The unemployment rate has been on the rise since the outbreak of the global financial crisis in 2008. Especially labor market entrants suffer from economic downfall. Despite the abundance of programs and agencies that help to reintegrate unemployed youth, considerable less research attention has been paid to 'fit' between these programs and its participants that ensure a durable labor market transition. According to Self-Determination Theory, need satisfaction is associated with better (mental) adjustment. As such, three hypothesis were formulated: when workers’ needs for competence (H1), relatedness (H2), and autonomy (H3) are satisfied in the workplace, they are more likely to remain employed at the same employer. To test these assumptions, a sample of approximately 800 young people enrolled in a youth unemployment policy participated in a longitudinal study. The unemployment policy was aimed at the development of generic and vocational competences, and had a maximum duration of six months. Need satisfaction during the program was measured, as well as their employment outcomes up to 12 months after completion of the policy. All hypotheses were (partly) supported. Some limitations should be noted. First, since our sample consisted primarily of highly educated white graduates, it remains to be tested whether our results generalize to other groups of unemployed youth. Moreover, we are unable to conclude whether the results are due to the intervention, participants (selection effect), or both, because of the lack of a control group.

Keywords: need satisfaction, person-job fit, self-determination theory, youth unemployment policy

Procedia PDF Downloads 255
4162 Career Guidance System Using Machine Learning

Authors: Mane Darbinyan, Lusine Hayrapetyan, Elen Matevosyan

Abstract:

Artificial Intelligence in Education (AIED) has been created to help students get ready for the workforce, and over the past 25 years, it has grown significantly, offering a variety of technologies to support academic, institutional, and administrative services. However, this is still challenging, especially considering the labor market's rapid change. While choosing a career, people face various obstacles because they do not take into consideration their own preferences, which might lead to many other problems like shifting jobs, work stress, occupational infirmity, reduced productivity, and manual error. Besides preferences, people should properly evaluate their technical and non-technical skills, as well as their personalities. Professional counseling has become a difficult undertaking for counselors due to the wide range of career choices brought on by changing technological trends. It is necessary to close this gap by utilizing technology that makes sophisticated predictions about a person's career goals based on their personality. Hence, there is a need to create an automated model that would help in decision-making based on user inputs. Improving career guidance can be achieved by embedding machine learning into the career consulting ecosystem. There are various systems of career guidance that work based on the same logic, such as the classification of applicants, matching applications with appropriate departments or jobs, making predictions, and providing suitable recommendations. Methodologies like KNN, Neural Networks, K-means clustering, D-Tree, and many other advanced algorithms are applied in the fields of data and compute some data, which is helpful to predict the right careers. Besides helping users with their career choice, these systems provide numerous opportunities which are very useful while making this hard decision. They help the candidate to recognize where he/she specifically lacks sufficient skills so that the candidate can improve those skills. They are also capable to offer an e-learning platform, taking into account the user's lack of knowledge. Furthermore, users can be provided with details on a particular job, such as the abilities required to excel in that industry.

Keywords: career guidance system, machine learning, career prediction, predictive decision, data mining, technical and non-technical skills

Procedia PDF Downloads 80
4161 Application of Bayesian Model Averaging and Geostatistical Output Perturbation to Generate Calibrated Ensemble Weather Forecast

Authors: Muhammad Luthfi, Sutikno Sutikno, Purhadi Purhadi

Abstract:

Weather forecast has necessarily been improved to provide the communities an accurate and objective prediction as well. To overcome such issue, the numerical-based weather forecast was extensively developed to reduce the subjectivity of forecast. Yet the Numerical Weather Predictions (NWPs) outputs are unfortunately issued without taking dynamical weather behavior and local terrain features into account. Thus, NWPs outputs are not able to accurately forecast the weather quantities, particularly for medium and long range forecast. The aim of this research is to aid and extend the development of ensemble forecast for Meteorology, Climatology, and Geophysics Agency of Indonesia. Ensemble method is an approach combining various deterministic forecast to produce more reliable one. However, such forecast is biased and uncalibrated due to its underdispersive or overdispersive nature. As one of the parametric methods, Bayesian Model Averaging (BMA) generates the calibrated ensemble forecast and constructs predictive PDF for specified period. Such method is able to utilize ensemble of any size but does not take spatial correlation into account. Whereas space dependencies involve the site of interest and nearby site, influenced by dynamic weather behavior. Meanwhile, Geostatistical Output Perturbation (GOP) reckons the spatial correlation to generate future weather quantities, though merely built by a single deterministic forecast, and is able to generate an ensemble of any size as well. This research conducts both BMA and GOP to generate the calibrated ensemble forecast for the daily temperature at few meteorological sites nearby Indonesia international airport.

Keywords: Bayesian Model Averaging, ensemble forecast, geostatistical output perturbation, numerical weather prediction, temperature

Procedia PDF Downloads 280
4160 International Student Mobility to China: A Fastest and Emerging Market for International Students among Developing Countries

Authors: Yasir Khan, Qiu Bin, Antonio-Mihi Ramirez

Abstract:

This study determines the inflow of international students to China in recent years and the corresponding internationalization strategies in the higher education sector. China has placed attracting international students on in its plan along with the growing of global impact. Acknowledging the stable economy, growth rate, trade, lower renminbi rate, high wages, employment opportunities, high level income per capita, relative low taxes and political system consolidate to attract more international students. A large number of international students making a vast contribution to the higher education sector of China. Understanding the significance of education mission as well as of financial ‘bottom line’ the Chinese government gave great importance to invite more international students from worldwide. The large number of international students in the China has been particularly notable from Asian countries specifically neighboring countries, Pakistan, Thailand, India, Vietnam, South Korea, Magnolia, Malaysia, and Russia. This study summarizes internationalization of higher education in China and also provides directions for future research in this regard.

Keywords: international student mobility, 2020 Govt Planning, emerging market, internationalization of higher education

Procedia PDF Downloads 252
4159 Residual Analysis and Ground Motion Prediction Equation Ranking Metrics for Western Balkan Strong Motion Database

Authors: Manuela Villani, Anila Xhahysa, Christopher Brooks, Marco Pagani

Abstract:

The geological structure of Western Balkans is strongly affected by the collision between Adria microplate and the southwestern Euroasia margin, resulting in a considerably active seismic region. The Harmonization of Seismic Hazard Maps in the Western Balkan Countries Project (BSHAP) (2007-2011, 2012-2015) by NATO supported the preparation of new seismic hazard maps of the Western Balkan, but when inspecting the seismic hazard models produced later by these countries on a national scale, significant differences in design PGA values are observed in the border, for instance, North Albania-Montenegro, South Albania- Greece, etc. Considering the fact that the catalogues were unified and seismic sources were defined within BSHAP framework, obviously, the differences arise from the Ground Motion Prediction Equations selection, which are generally the component with highest impact on the seismic hazard assessment. At the time of the project, a modest database was present, namely 672 three-component records, whereas nowadays, this strong motion database has increased considerably up to 20,939 records with Mw ranging in the interval 3.7-7 and epicentral distance distribution from 0.47km to 490km. Statistical analysis of the strong motion database showed the lack of recordings in the moderate-to-large magnitude and short distance ranges; therefore, there is need to re-evaluate the Ground Motion Prediction Equation in light of the recently updated database and the new generations of GMMs. In some cases, it was observed that some events were more extensively documented in one database than the other, like the 1979 Montenegro earthquake, with a considerably larger number of records in the BSHAP Analogue SM database when compared to ESM23. Therefore, the strong motion flat-file provided from the Harmonization of Seismic Hazard Maps in the Western Balkan Countries Project was merged with the ESM23 database for the polygon studied in this project. After performing the preliminary residual analysis, the candidate GMPE-s were identified. This process was done using the GMPE performance metrics available within the SMT in the OpenQuake Platform. The Likelihood Model and Euclidean Distance Based Ranking (EDR) were used. Finally, for this study, a GMPE logic tree was selected and following the selection of candidate GMPEs, model weights were assigned using the average sample log-likelihood approach of Scherbaum.

Keywords: residual analysis, GMPE, western balkan, strong motion, openquake

Procedia PDF Downloads 88
4158 Development and Emerging Risks in the Derivative Market: A Comparison of Impact of Futures Trading on Spot Price Volatility and a Case of Developed, Emerging and Less Developed Economies

Authors: Rancy Chepchirchir Kosgey, John Olukuru

Abstract:

This study examines the impact of introduction of futures trading on the spot price volatility in the commodity market. The paper considers the United States of America, South Africa and Ethiopian economies. Three commodities i.e. coffee, maize and wheat from New York Merchantile Exchange, South African Futures Exchange and Ethiopian Commodity Exchange are analyzed. ARCH LM test is used to check for heteroskedasticity and GARCH and EGARCH are used to check for the behavior of volatility between the pre- and post-futures periods. For all the three economies, the results indicate presence of the ARCH effect in the log returns. For conditional and unconditional variances; spot price volatility for coffee has decreased after futures trading in all the economies and the EGARCH has also shown reduction in persistence of volatility in the post-futures period in the three economies; while that of maize has reduced for the Ethiopian economy while there has been an increase in both the US and South African economies. For wheat, the conditional variance has been found to rise in the post-futures period in all the three economies.

Keywords: derivatives, futures exchange, agricultural commodities, spot price volatility

Procedia PDF Downloads 426
4157 Career Guidance System Using Machine Learning

Authors: Mane Darbinyan, Lusine Hayrapetyan, Elen Matevosyan

Abstract:

Artificial Intelligence in Education (AIED) has been created to help students get ready for the workforce, and over the past 25 years, it has grown significantly, offering a variety of technologies to support academic, institutional, and administrative services. However, this is still challenging, especially considering the labor market's rapid change. While choosing a career, people face various obstacles because they do not take into consideration their own preferences, which might lead to many other problems like shifting jobs, work stress, occupational infirmity, reduced productivity, and manual error. Besides preferences, people should evaluate properly their technical and non-technical skills, as well as their personalities. Professional counseling has become a difficult undertaking for counselors due to the wide range of career choices brought on by changing technological trends. It is necessary to close this gap by utilizing technology that makes sophisticated predictions about a person's career goals based on their personality. Hence, there is a need to create an automated model that would help in decision-making based on user inputs. Improving career guidance can be achieved by embedding machine learning into the career consulting ecosystem. There are various systems of career guidance that work based on the same logic, such as the classification of applicants, matching applications with appropriate departments or jobs, making predictions, and providing suitable recommendations. Methodologies like KNN, neural networks, K-means clustering, D-Tree, and many other advanced algorithms are applied in the fields of data and compute some data, which is helpful to predict the right careers. Besides helping users with their career choice, these systems provide numerous opportunities which are very useful while making this hard decision. They help the candidate to recognize where he/she specifically lacks sufficient skills so that the candidate can improve those skills. They are also capable of offering an e-learning platform, taking into account the user's lack of knowledge. Furthermore, users can be provided with details on a particular job, such as the abilities required to excel in that industry.

Keywords: career guidance system, machine learning, career prediction, predictive decision, data mining, technical and non-technical skills

Procedia PDF Downloads 70
4156 Analysis of Histamine Content in Selected Food Products from the Serbian Market

Authors: Brizita Djordjevic, Bojana Vidovic, Milica Zrnic, Uros Cakar, Ivan Stankovic, Davor Korcok, Sladjana Sobajic

Abstract:

Histamine is a biogenic amine, which is formed by enzymatic decarboxylation from the amino acid histidine. It can be found in foods such as fish and fish products, meat and fermented meat products, cheese, wine and beer. The presence of histamine in these foods can indicate microbiological spoilage or poor manufacturing processes. The consumption of food containing large amounts of histamine can have toxicological consequences. In 62 food products (31 canned fish products, 19 wines and 12 cheeses) from the market of Serbia the content of histamine was determined using enzyme-linked immunosorbent assay (ELISA) test kit according to the manufacturer's instructions (Immunolab GmbH, Kassel, Germany). The detection limits of this assay were 20 µg/kg for fish and cheese and 4 µg/L for wine. The concentration of histamine varied between 0.16-207 mg/kg in canned fish products, 0.03-1.47 mg/kg in cheeses and 0.01- 0.18 mg/L in wines. In all analyzed canned fish products the results obtained for the histamine were below the limits set by European and national legislation, so they can be considered acceptable and safe for the health consumers. The levels of histamine in analyzed cheeses and wines were very low and did not pose safety concerns.

Keywords: cheese, enzyme-linked immunosorbent assay, histamine, fish products, wine

Procedia PDF Downloads 445
4155 Providing a Suitable Model for Launching New Home Appliances Products to the Market

Authors: Ebrahim Sabermaash Eshghi, Donna Sandsmark

Abstract:

In changing modern economic conditions of the world, one the most important issues facing managers of firms, is increasing the sales and profitability through sales of newly developed products. This is while purpose of decreasing unnecessary costs is one of the most essential programs of smart managers for more implementation with new conditions in current business. In modern life, condition of misgiving is dominant in all of the industries. Accordingly, in this research, influence of different aspects of presenting products to the market is investigated. This study is done through a Quantitative-Qualitative (Interviews and Questionnaire) approach. In sum, 103 of informed managers and experts of Pars-Khazar Company have been examined through census. Validity of measurement tools was approved through judgments of experts. Reliability of tools was gained through Cronbach's alpha coefficient in size of 0.930 and in sum, validity and reliability of tools were approved generally. Results of regression test revealed that the influence of all aspects of product introduction supported the performance of product, positively and significantly. In addition that influence of two new factors raised from the interview, namely Human Resource Management and Management of product’s pre-test on performance of products was approved.

Keywords: introducing products, performance, home appliances, price, advertisement, production

Procedia PDF Downloads 211
4154 Effect of Media Reputation on Financial Performance and Abnormal Returns of Corporate Social Responsibility Winner

Authors: Yu-Chen Wei, Dan-Leng Wang

Abstract:

This study examines whether the reputation from media press affect the financial performance and market abnormal returns around the announcement of corporate social responsibility (CSR) award in the Taiwan Stock Market. The differences between this study and prior literatures are that the media reputation of media coverage and net optimism are constructed by using content analyses. The empirical results show the corporation which won CSR awards could promote financial performance next year. The media coverage and net optimism related to CSR winner are higher than the non-CSR companies prior and after the CSR award is announced, and the differences are significant, but the difference would decrease when the day was closing to announcement. We propose that non-CSR companies may try to manipulate media press to increase the coverage and positive image received by investors compared to the CSR winners. The cumulative real returns and abnormal returns of CSR winners did not significantly higher than the non-CSR samples however the leading returns of CSR winners would higher after the award announcement two months. The comparisons of performances between CSR and non-CSR companies could be the consideration of portfolio management for mutual funds and investors.

Keywords: corporate social responsibility, financial performance, abnormal returns, media, reputation management

Procedia PDF Downloads 434
4153 Transmission of Food Wisdom for Salaya Community

Authors: Supranee Wattanasin

Abstract:

The objectives of this research are to find and collect the knowledge in order to transmit the food wisdom of Salaya community. The research is qualitative tool to gather the data. Phase 1: Collect and analyze related literature review on food wisdom including documents about Salaya community to have a clear picture on Salaya community context. Phase 2: Conduct an action research, stage a people forum to exchange knowledge in food wisdom of Salaya community. Learning stage on cooking, types, and benefits of the food wisdom of Salaya community were also set up, as well as a people forum to find ways to transmit and add value to the food wisdom of Salaya community. The result shows that Salaya old market community was once a marketplace located by Mahasawat canal. The old market had become sluggish due to growing development of land transportation. This had affected the ways of food consumption. Residents in the community chose 3 menus that represent the community’s unique food: chicken green curry, desserts in syrup and Khanom Sai-Sai (steamed flour with coconut filling). The researcher had the local residents train the team on how to make these meals. It was found that people in the community transmit the wisdom to the next generation by teaching and telling from parents to children. ‘Learning through the back door’ is one of the learning methods that the community used and still does.

Keywords: transmission, food wisdom, Salaya, cooking

Procedia PDF Downloads 399
4152 Cirrhosis Mortality Prediction as Classification using Frequent Subgraph Mining

Authors: Abdolghani Ebrahimi, Diego Klabjan, Chenxi Ge, Daniela Ladner, Parker Stride

Abstract:

In this work, we use machine learning and novel data analysis techniques to predict the one-year mortality of cirrhotic patients. Data from 2,322 patients with liver cirrhosis are collected at a single medical center. Different machine learning models are applied to predict one-year mortality. A comprehensive feature space including demographic information, comorbidity, clinical procedure and laboratory tests is being analyzed. A temporal pattern mining technic called Frequent Subgraph Mining (FSM) is being used. Model for End-stage liver disease (MELD) prediction of mortality is used as a comparator. All of our models statistically significantly outperform the MELD-score model and show an average 10% improvement of the area under the curve (AUC). The FSM technic itself does not improve the model significantly, but FSM, together with a machine learning technique called an ensemble, further improves the model performance. With the abundance of data available in healthcare through electronic health records (EHR), existing predictive models can be refined to identify and treat patients at risk for higher mortality. However, due to the sparsity of the temporal information needed by FSM, the FSM model does not yield significant improvements. To the best of our knowledge, this is the first work to apply modern machine learning algorithms and data analysis methods on predicting one-year mortality of cirrhotic patients and builds a model that predicts one-year mortality significantly more accurate than the MELD score. We have also tested the potential of FSM and provided a new perspective of the importance of clinical features.

Keywords: machine learning, liver cirrhosis, subgraph mining, supervised learning

Procedia PDF Downloads 134
4151 A Concept for Flexible Battery Cell Manufacturing from Low to Medium Volumes

Authors: Tim Giesen, Raphael Adamietz, Pablo Mayer, Philipp Stiefel, Patrick Alle, Dirk Schlenker

Abstract:

The competitiveness and success of new electrical energy storages such as battery cells are significantly dependent on a short time-to-market. Producers who decide to supply new battery cells to the market need to be easily adaptable in manufacturing with respect to the early customers’ needs in terms of cell size, materials, delivery time and quantity. In the initial state, the required output rates do not yet allow the producers to have a fully automated manufacturing line nor to supply handmade battery cells. Yet there was no solution for manufacturing battery cells in low to medium volumes in a reproducible way. Thus, in terms of cell format and output quantity, a concept for the flexible assembly of battery cells was developed by the Fraunhofer-Institute for Manufacturing Engineering and Automation. Based on clustered processes, the modular system platform can be modified, enlarged or retrofitted in a short time frame according to the ordered product. The paper shows the analysis of the production steps from a conventional battery cell assembly line. Process solutions were found by using I/O-analysis, functional structures, and morphological boxes. The identified elementary functions were subsequently clustered by functional coherences for automation solutions and thus the single process cluster was generated. The result presented in this paper enables to manufacture different cell products on the same production system using seven process clusters. The paper shows the solution for a batch-wise flexible battery cell production using advanced process control. Further, the performed tests and benefits by using the process clusters as cyber-physical systems for an integrated production and value chain are discussed. The solution lowers the hurdles for SMEs to launch innovative cell products on the global market.

Keywords: automation, battery production, carrier, advanced process control, cyber-physical system

Procedia PDF Downloads 337
4150 Powering Profits: A Dynamic Approach to Sales Marketing and Electronics

Authors: Muhammad Awais Kiani, Maryam Kiani

Abstract:

This abstract explores the confluence of these two domains and highlights the key factors driving success in sales marketing for electronics. The abstract begins by digging into the ever-evolving landscape of consumer electronics, emphasizing how technological advancements and the growth of smart devices have revolutionized the way people interact with electronics. This paradigm shift has created tremendous opportunities for sales and marketing professionals to engage with consumers on various platforms and channels. Next, the abstract discusses the pivotal role of effective sales marketing strategies in the electronics industry. It highlights the importance of understanding consumer behavior, market trends, and competitive landscapes and how this knowledge enables businesses to tailor their marketing efforts to specific target audiences. Furthermore, the abstract explores the significance of leveraging digital marketing techniques, such as social media advertising, search engine optimization, and influencer partnerships, to establish brand identity and drive sales in the electronics market. It emphasizes the power of storytelling and creating captivating content to engage with tech-savvy consumers. Additionally, the abstract emphasizes the role of customer relationship management (CRM) systems and data analytics in optimizing sales marketing efforts. It highlights the importance of leveraging customer insights and analyzing data to personalize marketing campaigns, enhance customer experience, and ultimately drive sales growth. Lastly, the abstract concludes by underlining the importance of adapting to the ever-changing landscape of the electronics industry. It encourages businesses to embrace innovation, stay informed about emerging technologies, and continuously evolve their sales marketing strategies to meet the evolving needs and expectations of consumers. Overall, this abstract sheds light on the captivating realm of sales marketing in the electronics industry, emphasizing the need for creativity, adaptability, and a deep understanding of consumers to succeed in this rapidly evolving market.

Keywords: marketing industry, electronics, sales impact, e-commerce

Procedia PDF Downloads 74
4149 Predictive Maintenance: Machine Condition Real-Time Monitoring and Failure Prediction

Authors: Yan Zhang

Abstract:

Predictive maintenance is a technique to predict when an in-service machine will fail so that maintenance can be planned in advance. Analytics-driven predictive maintenance is gaining increasing attention in many industries such as manufacturing, utilities, aerospace, etc., along with the emerging demand of Internet of Things (IoT) applications and the maturity of technologies that support Big Data storage and processing. This study aims to build an end-to-end analytics solution that includes both real-time machine condition monitoring and machine learning based predictive analytics capabilities. The goal is to showcase a general predictive maintenance solution architecture, which suggests how the data generated from field machines can be collected, transmitted, stored, and analyzed. We use a publicly available aircraft engine run-to-failure dataset to illustrate the streaming analytics component and the batch failure prediction component. We outline the contributions of this study from four aspects. First, we compare the predictive maintenance problems from the view of the traditional reliability centered maintenance field, and from the view of the IoT applications. When evolving to the IoT era, predictive maintenance has shifted its focus from ensuring reliable machine operations to improve production/maintenance efficiency via any maintenance related tasks. It covers a variety of topics, including but not limited to: failure prediction, fault forecasting, failure detection and diagnosis, and recommendation of maintenance actions after failure. Second, we review the state-of-art technologies that enable a machine/device to transmit data all the way through the Cloud for storage and advanced analytics. These technologies vary drastically mainly based on the power source and functionality of the devices. For example, a consumer machine such as an elevator uses completely different data transmission protocols comparing to the sensor units in an environmental sensor network. The former may transfer data into the Cloud via WiFi directly. The latter usually uses radio communication inherent the network, and the data is stored in a staging data node before it can be transmitted into the Cloud when necessary. Third, we illustrate show to formulate a machine learning problem to predict machine fault/failures. By showing a step-by-step process of data labeling, feature engineering, model construction and evaluation, we share following experiences: (1) what are the specific data quality issues that have crucial impact on predictive maintenance use cases; (2) how to train and evaluate a model when training data contains inter-dependent records. Four, we review the tools available to build such a data pipeline that digests the data and produce insights. We show the tools we use including data injection, streaming data processing, machine learning model training, and the tool that coordinates/schedules different jobs. In addition, we show the visualization tool that creates rich data visualizations for both real-time insights and prediction results. To conclude, there are two key takeaways from this study. (1) It summarizes the landscape and challenges of predictive maintenance applications. (2) It takes an example in aerospace with publicly available data to illustrate each component in the proposed data pipeline and showcases how the solution can be deployed as a live demo.

Keywords: Internet of Things, machine learning, predictive maintenance, streaming data

Procedia PDF Downloads 386
4148 The Impact of Formulate and Implementation Strategy for an Organization to Better Financial Consequences in Malaysian Private Hospital

Authors: Naser Zouri

Abstract:

Purpose: Measures of formulate and implementation strategy shows amount of product rate-market based strategic management category such as courtesy, competence, and compliance to reach the high loyalty of financial ecosystem. Despite, it solves the market place error intention to fair trade organization. Finding: Finding shows the ability of executives’ level of management to motivate and better decision-making to solve the treatments in business organization. However, it made ideal level of each interposition policy for a hypothetical household. Methodology/design. Style of questionnaire about the data collection was selected to survey of both pilot test and real research. Also, divide of questionnaire and using of Free Scale Semiconductor`s between the finance employee was famous of this instrument. Respondent`s nominated basic on non-probability sampling such as convenience sampling to answer the questionnaire. The way of realization costs to performed the questionnaire divide among the respondent`s approximately was suitable as a spend the expenditure to reach the answer but very difficult to collect data from hospital. However, items of research survey was formed of implement strategy, environment, supply chain, employee from impact of implementation strategy on reach to better financial consequences and also formulate strategy, comprehensiveness strategic design, organization performance from impression on formulate strategy and financial consequences. Practical Implication: Dynamic capability approach of formulate and implement strategy focuses on the firm-specific processes through which firms integrate, build, or reconfigure resources valuable for making a theoretical contribution. Originality/ value of research: Going beyond the current discussion, we show that case studies have the potential to extend and refine theory. We present new light on how dynamic capabilities can benefit from case study research by discovering the qualifications that shape the development of capabilities and determining the boundary conditions of the dynamic capabilities approach. Limitation of the study :Present study also relies on survey of methodology for data collection and the response perhaps connection by financial employee was difficult to responds the question because of limitation work place.

Keywords: financial ecosystem, loyalty, Malaysian market error, dynamic capability approach, rate-market, optimization intelligence strategy, courtesy, competence, compliance

Procedia PDF Downloads 304
4147 A Multi-Dimensional Neural Network Using the Fisher Transform to Predict the Price Evolution for Algorithmic Trading in Financial Markets

Authors: Cristian Pauna

Abstract:

Trading the financial markets is a widespread activity today. A large number of investors, companies, public of private funds are buying and selling every day in order to make profit. Algorithmic trading is the prevalent method to make the trade decisions after the electronic trading release. The orders are sent almost instantly by computers using mathematical models. This paper will present a price prediction methodology based on a multi-dimensional neural network. Using the Fisher transform, the neural network will be instructed for a low-latency auto-adaptive process in order to predict the price evolution for the next period of time. The model is designed especially for algorithmic trading and uses the real-time price series. It was found that the characteristics of the Fisher function applied at the nodes scale level can generate reliable trading signals using the neural network methodology. After real time tests it was found that this method can be applied in any timeframe to trade the financial markets. The paper will also include the steps to implement the presented methodology into an automated trading system. Real trading results will be displayed and analyzed in order to qualify the model. As conclusion, the compared results will reveal that the neural network methodology applied together with the Fisher transform at the nodes level can generate a good price prediction and can build reliable trading signals for algorithmic trading.

Keywords: algorithmic trading, automated trading systems, financial markets, high-frequency trading, neural network

Procedia PDF Downloads 160
4146 Using Statistical Significance and Prediction to Test Long/Short Term Public Services and Patients' Cohorts: A Case Study in Scotland

Authors: Raptis Sotirios

Abstract:

Health and social care (HSc) services planning and scheduling are facing unprecedented challenges due to the pandemic pressure and also suffer from unplanned spending that is negatively impacted by the global financial crisis. Data-driven can help to improve policies, plan and design services provision schedules using algorithms assist healthcare managers’ to face unexpected demands using fewer resources. The paper discusses services packing using statistical significance tests and machine learning (ML) to evaluate demands similarity and coupling. This is achieved by predicting the range of the demand (class) using ML methods such as CART, random forests (RF), and logistic regression (LGR). The significance tests Chi-Squared test and Student test are used on data over a 39 years span for which HSc services data exist for services delivered in Scotland. The demands are probabilistically associated through statistical hypotheses that assume that the target service’s demands are statistically dependent on other demands as a NULL hypothesis. This linkage can be confirmed or not by the data. Complementarily, ML methods are used to linearly predict the above target demands from the statistically found associations and extend the linear dependence of the target’s demand to independent demands forming, thus groups of services. Statistical tests confirm ML couplings making the prediction also statistically meaningful and prove that a target service can be matched reliably to other services, and ML shows these indicated relationships can also be linear ones. Zero paddings were used for missing years records and illustrated better such relationships both for limited years and in the entire span offering long term data visualizations while limited years groups explained how well patients numbers can be related in short periods or can change over time as opposed to behaviors across more years. The prediction performance of the associations is measured using Receiver Operating Characteristic(ROC) AUC and ACC metrics as well as the statistical tests, Chi-Squared and Student. Co-plots and comparison tables for RF, CART, and LGR as well as p-values and Information Exchange(IE), are provided showing the specific behavior of the ML and of the statistical tests and the behavior using different learning ratios. The impact of k-NN and cross-correlation and C-Means first groupings is also studied over limited years and the entire span. It was found that CART was generally behind RF and LGR, but in some interesting cases, LGR reached an AUC=0 falling below CART, while the ACC was as high as 0.912, showing that ML methods can be confused padding or by data irregularities or outliers. On average, 3 linear predictors were sufficient, LGR was found competing RF well, and CART followed with the same performance at higher learning ratios. Services were packed only if when significance level(p-value) of their association coefficient was more than 0.05. Social factors relationships were observed between home care services and treatment of old people, birth weights, alcoholism, drug abuse, and emergency admissions. The work found that different HSc services can be well packed as plans of limited years, across various services sectors, learning configurations, as confirmed using statistical hypotheses.

Keywords: class, cohorts, data frames, grouping, prediction, prob-ability, services

Procedia PDF Downloads 234
4145 Evaluating Thailand’s Cosmetic Surgery Tourism by Taiwanese Female Tourists

Authors: Wen-Yu Chen, Chia-Yuan Hsu, Sasinee Vongsrikul

Abstract:

The present study is to explore the perception of Taiwanese females towards medical tourism in Thailand for the development of applicable marketing strategy, integrating travel motivation and cosmetic surgery trend to attract potential medical tourists from Taiwan. Since previous studies relevant to this research issue are limited, qualitative study is firstly employed by using one focus group interview and in-depth interviews with Taiwanese females. Moreover, the present research collected questionnaires from 290 Taiwanese females to provide greater understanding of research results. The top three factors that affect Taiwanese females’ decision for not going to Thailand for medical tourism are “physicians and nurses cannot speak Chinese”, “low quality of the cosmetic surgery product that I want to do”, and “the county does not have laws to protect medical tourists’ right”. The finding of the empirical part would suggest the area in medical tourism industry which Thailand should promote and emphasizes in order to increase its presence as a hub for cosmetic surgery and attract Taiwanese female market. Therefore, the study contributes to the potential development of marketing strategy for medical tourism, specifically in the area of cosmetic surgery in Thailand while targeting Taiwan market.

Keywords: Thailand, Taiwanese female tourists, medical tourism, cosmetic surgery

Procedia PDF Downloads 423