Search results for: high-dimensional data analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 42079

Search results for: high-dimensional data analysis

40609 Need for Privacy in the Technological Era: An Analysis in the Indian Perspective

Authors: Amrashaa Singh

Abstract:

In the digital age and the large cyberspace, Data Protection and Privacy have become major issues in this technological era. There was a time when social media and online shopping websites were treated as a blessing for the people. But now the tables have turned, and the people have started to look at them with suspicion. They are getting aware of the privacy implications, and they do not feel as safe as they used to initially. When Edward Snowden informed the world about the snooping United States Security Agencies had been doing, that is when the picture became clear for the people. After the Cambridge Analytica case where the data of Facebook users were stored without their consent, the doubts arose in the minds of people about how safe they actually are. In India, the case of spyware Pegasus also raised a lot of concerns. It was used to snoop on a lot of human right activists and lawyers and the company which invented the spyware claims that it only sells it to the government. The paper will be dealing with the privacy concerns in the Indian perspective with an analytical methodology. The Supreme Court here had recently declared a right to privacy a Fundamental Right under Article 21 of the Constitution of India. Further, the Government is also working on the Data Protection Bill. The point to note is that India is still a developing country, and with the bill, the government aims at data localization. But there are doubts in the minds of many people that the Government would actually be snooping on the data of the individuals. It looks more like an attempt to curb dissenters ‘lawfully’. The focus of the paper would be on these issues in India in light of the European Union (EU) General Data Protection Regulation (GDPR). The Indian Data Protection Bill is also said to be loosely based on EU GDPR. But how helpful would these laws actually be is another concern since the economic and social conditions in both countries are very different? The paper aims at discussing these concerns, how good or bad is the intention of the government behind the bill, and how the nations can act together and draft common regulations so that there is some uniformity in the laws and their application.

Keywords: Article 21, data protection, dissent, fundamental right, India, privacy

Procedia PDF Downloads 114
40608 Mean Monthly Rainfall Prediction at Benina Station Using Artificial Neural Networks

Authors: Hasan G. Elmazoghi, Aisha I. Alzayani, Lubna S. Bentaher

Abstract:

Rainfall is a highly non-linear phenomena, which requires application of powerful supervised data mining techniques for its accurate prediction. In this study the Artificial Neural Network (ANN) technique is used to predict the mean monthly historical rainfall data collected from BENINA station in Benghazi for 31 years, the period of “1977-2006” and the results are compared against the observed values. The specific objective to achieve this goal was to determine the best combination of weather variables to be used as inputs for the ANN model. Several statistical parameters were calculated and an uncertainty analysis for the results is also presented. The best ANN model is then applied to the data of one year (2007) as a case study in order to evaluate the performance of the model. Simulation results reveal that application of ANN technique is promising and can provide reliable estimates of rainfall.

Keywords: neural networks, rainfall, prediction, climatic variables

Procedia PDF Downloads 488
40607 Deep Feature Augmentation with Generative Adversarial Networks for Class Imbalance Learning in Medical Images

Authors: Rongbo Shen, Jianhua Yao, Kezhou Yan, Kuan Tian, Cheng Jiang, Ke Zhou

Abstract:

This study proposes a generative adversarial networks (GAN) framework to perform synthetic sampling in feature space, i.e., feature augmentation, to address the class imbalance problem in medical image analysis. A feature extraction network is first trained to convert images into feature space. Then the GAN framework incorporates adversarial learning to train a feature generator for the minority class through playing a minimax game with a discriminator. The feature generator then generates features for minority class from arbitrary latent distributions to balance the data between the majority class and the minority class. Additionally, a data cleaning technique, i.e., Tomek link, is employed to clean up undesirable conflicting features introduced from the feature augmentation and thus establish well-defined class clusters for the training. The experiment section evaluates the proposed method on two medical image analysis tasks, i.e., mass classification on mammogram and cancer metastasis classification on histopathological images. Experimental results suggest that the proposed method obtains superior or comparable performance over the state-of-the-art counterparts. Compared to all counterparts, our proposed method improves more than 1.5 percentage of accuracy.

Keywords: class imbalance, synthetic sampling, feature augmentation, generative adversarial networks, data cleaning

Procedia PDF Downloads 127
40606 Analysis of Possible Causes of Fukushima Disaster

Authors: Abid Hossain Khan, Syam Hasan, M. A. R. Sarkar

Abstract:

Fukushima disaster is one of the most publicly exposed accidents in a nuclear facility which has changed the outlook of people towards nuclear power. Some have used it as an example to establish nuclear energy as an unsafe source, while others have tried to find the real reasons behind this accident. Many papers have tried to shed light on the possible causes, some of which are purely based on assumptions while others rely on rigorous data analysis. To our best knowledge, none of the works can say with absolute certainty that there is a single prominent reason that has paved the way to this unexpected incident. This paper attempts to compile all the apparent reasons behind Fukushima disaster and tries to analyze and identify the most likely one.

Keywords: fuel meltdown, Fukushima disaster, Manmade calamity, nuclear facility, tsunami

Procedia PDF Downloads 266
40605 Comparing Emotion Recognition from Voice and Facial Data Using Time Invariant Features

Authors: Vesna Kirandziska, Nevena Ackovska, Ana Madevska Bogdanova

Abstract:

The problem of emotion recognition is a challenging problem. It is still an open problem from the aspect of both intelligent systems and psychology. In this paper, both voice features and facial features are used for building an emotion recognition system. A Support Vector Machine classifiers are built by using raw data from video recordings. In this paper, the results obtained for the emotion recognition are given, and a discussion about the validity and the expressiveness of different emotions is presented. A comparison between the classifiers build from facial data only, voice data only and from the combination of both data is made here. The need for a better combination of the information from facial expression and voice data is argued.

Keywords: emotion recognition, facial recognition, signal processing, machine learning

Procedia PDF Downloads 316
40604 Cryptosystems in Asymmetric Cryptography for Securing Data on Cloud at Various Critical Levels

Authors: Sartaj Singh, Amar Singh, Ashok Sharma, Sandeep Kaur

Abstract:

With upcoming threats in a digital world, we need to work continuously in the area of security in all aspects, from hardware to software as well as data modelling. The rise in social media activities and hunger for data by various entities leads to cybercrime and more attack on the privacy and security of persons. Cryptography has always been employed to avoid access to important data by using many processes. Symmetric key and asymmetric key cryptography have been used for keeping data secrets at rest as well in transmission mode. Various cryptosystems have evolved from time to time to make the data more secure. In this research article, we are studying various cryptosystems in asymmetric cryptography and their application with usefulness, and much emphasis is given to Elliptic curve cryptography involving algebraic mathematics.

Keywords: cryptography, symmetric key cryptography, asymmetric key cryptography

Procedia PDF Downloads 124
40603 The Effect of per Pupil Expenditure on Student Academic Achievement: A Meta-Analysis of Correlation Research

Authors: Ting Shen

Abstract:

Whether resource matters to school has been a topic of intense debate since 1960s. Educational researchers and policy makers have been particularly interested in knowing the return or payoff of Per-Pupil Expenditure (PPE) on improving students’ achievement. However, the evidence on the effect of PPE has been mixed and the size of the effect is also unknown. With regard to the methods, it is well-known that meta-analysis study is superior to individual study and it is also preferred to vote counting method in terms of scientifically weighting the evidence by the sample size. This meta-analysis study aims to provide a synthesized evidence on the correlation between PPE and student academic achievement using recent study data from 1990s to 2010s. Meta-analytical approach of fixed- and random-effects models will be utilized in addition to a meta regression with predictors of year, location, region and school type. A preliminary result indicates that by and large there is no statistically significant relationship between per pupil expenditure and student achievement, but location seems to have a mediating effect.

Keywords: per pupil expenditure, student academic achievement, multilevel model, meta-analysis

Procedia PDF Downloads 238
40602 A Reasoning Method of Cyber-Attack Attribution Based on Threat Intelligence

Authors: Li Qiang, Yang Ze-Ming, Liu Bao-Xu, Jiang Zheng-Wei

Abstract:

With the increasing complexity of cyberspace security, the cyber-attack attribution has become an important challenge of the security protection systems. The difficult points of cyber-attack attribution were forced on the problems of huge data handling and key data missing. According to this situation, this paper presented a reasoning method of cyber-attack attribution based on threat intelligence. The method utilizes the intrusion kill chain model and Bayesian network to build attack chain and evidence chain of cyber-attack on threat intelligence platform through data calculation, analysis and reasoning. Then, we used a number of cyber-attack events which we have observed and analyzed to test the reasoning method and demo system, the result of testing indicates that the reasoning method can provide certain help in cyber-attack attribution.

Keywords: reasoning, Bayesian networks, cyber-attack attribution, Kill Chain, threat intelligence

Procedia PDF Downloads 450
40601 The Real Estate Market Sustainability Concept and Its Implementation in Management of Real Estate Companies

Authors: Linda Kauškale, Ineta Geipele

Abstract:

Due to the rapidly changing external environment, portfolio management strategies became closely interconnected with real estate industry development and macroeconomic development tendencies. The aim of the research is to analyze sustainable real estate market development influencing factors, with particular focus on its economic and management aspects that influences real estate investment decisions as well. Scientific literature and article analysis, data analysis, expert evaluation, and other quantitative and qualitative research methods were used in the research. Developed real estate market sustainability model and index analysis approach can be applied by investors and real estate companies in real estate asset management and can help in risk minimization activities in international entrepreneurship. Future research directions have been identified in the research as well.

Keywords: indexes, investment decisions, real estate market, sustainability

Procedia PDF Downloads 360
40600 Assessment of the Road Safety Performance in National Scale

Authors: Abeer K. Jameel, Harry Evdorides

Abstract:

The Assessment of the road safety performance is a challengeable issue. This is not only because of the ineffective and unreliability of road and traffic crash data system but also because of its systematic character. Recent strategic plans and interventions implemented in some of the developed countries where a significant decline in the rate of traffic and road crashes considers that the road safety is a system. This system consists of four main elements which are: road user, road infrastructure, vehicles and speed in addition to other supporting elements such as the institutional framework and post-crash care system. To assess the performance of a system, it is required to assess all its elements. To present an understandable results of the assessment, it is required to present a unique term representing the performance of the overall system. This paper aims to develop an overall performance indicator which may be used to assess the road safety system. The variables of this indicators are the main elements of the road safety system. The data regarding these variables will be collected from the World Health Organization report. Multi-criteria analysis method is used to aggregate the four sub-indicators for the four variables. Two weighting methods will be assumed, equal weights and different weights. For the different weights method, the factor analysis method is used. The weights then will be converting to scores. The total score will be the overall indicator for the road safety performance in a national scale. This indicator will be used to compare and rank countries according to their road safety performance indicator. The country with the higher score is the country which provides most sustainable and effective interventions for successful road safety system. These indicator will be tested by comparing them with the aggregate real crash rate for each country.

Keywords: factor analysis, Multi-criteria analysis, road safety assessment, safe system indicator

Procedia PDF Downloads 270
40599 Structure Clustering for Milestoning Applications of Complex Conformational Transitions

Authors: Amani Tahat, Serdal Kirmizialtin

Abstract:

Trajectory fragment methods such as Markov State Models (MSM), Milestoning (MS) and Transition Path sampling are the prime choice of extending the timescale of all atom Molecular Dynamics simulations. In these approaches, a set of structures that covers the accessible phase space has to be chosen a priori using cluster analysis. Structural clustering serves to partition the conformational state into natural subgroups based on their similarity, an essential statistical methodology that is used for analyzing numerous sets of empirical data produced by Molecular Dynamics (MD) simulations. Local transition kernel among these clusters later used to connect the metastable states using a Markovian kinetic model in MSM and a non-Markovian model in MS. The choice of clustering approach in constructing such kernel is crucial since the high dimensionality of the biomolecular structures might easily confuse the identification of clusters when using the traditional hierarchical clustering methodology. Of particular interest, in the case of MS where the milestones are very close to each other, accurate determination of the milestone identity of the trajectory becomes a challenging issue. Throughout this work we present two cluster analysis methods applied to the cis–trans isomerism of dinucleotide AA. The choice of nucleic acids to commonly used proteins to study the cluster analysis is two fold: i) the energy landscape is rugged; hence transitions are more complex, enabling a more realistic model to study conformational transitions, ii) Nucleic acids conformational space is high dimensional. A diverse set of internal coordinates is necessary to describe the metastable states in nucleic acids, posing a challenge in studying the conformational transitions. Herein, we need improved clustering methods that accurately identify the AA structure in its metastable states in a robust way for a wide range of confused data conditions. The single linkage approach of the hierarchical clustering available in GROMACS MD-package is the first clustering methodology applied to our data. Self Organizing Map (SOM) neural network, that also known as a Kohonen network, is the second data clustering methodology. The performance comparison of the neural network as well as hierarchical clustering method is studied by means of computing the mean first passage times for the cis-trans conformational rates. Our hope is that this study provides insight into the complexities and need in determining the appropriate clustering algorithm for kinetic analysis. Our results can improve the effectiveness of decisions based on clustering confused empirical data in studying conformational transitions in biomolecules.

Keywords: milestoning, self organizing map, single linkage, structure clustering

Procedia PDF Downloads 224
40598 Application of the Mobile Phone for Occupational Self-Inspection Program in Small-Scale Industries

Authors: Jia-Sin Li, Ying-Fang Wang, Cheing-Tong Yan

Abstract:

In this study, an integrated approach of Google Spreadsheet and QR code which is free internet resources was used to improve the inspection procedure. The mobile phone Application(App)was also designed to combine with a web page to create an automatic checklist in order to provide a new integrated information of inspection management system. By means of client-server model, the client App is developed for Android mobile OS and the back end is a web server. It can set up App accounts including authorized data and store some checklist documents in the website. The checklist document URL could generate QR code first and then print and paste on the machine. The user can scan the QR code by the app and filled the checklist in the factory. In the meanwhile, the checklist data will send to the server, it not only save the filled data but also executes the related functions and charts. On the other hand, it also enables auditors and supervisors to facilitate the prevention and response to hazards, as well as immediate report data checks. Finally, statistics and professional analysis are performed using inspection records and other relevant data to not only improve the reliability, integrity of inspection operations and equipment loss control, but also increase plant safety and personnel performance. Therefore, it suggested that the traditional paper-based inspection method could be replaced by the APP which promotes the promotion of industrial security and reduces human error.

Keywords: checklist, Google spreadsheet, APP, self-inspection

Procedia PDF Downloads 118
40597 Proposing an Index for Determining Key Knowledge Management Processes in Decision Making Units Using Fuzzy Quality Function Deployment (QFD), Data Envelopment Analysis (DEA) Method

Authors: Sadegh Abedi, Ali Yaghoubi, Hamidreza Mashatzadegan

Abstract:

This paper proposes an approach to identify key processes required by an organization in the field of knowledge management and aligning them with organizational objectives. For this purpose, first, organization’s most important non-financial objectives which are impacted by knowledge management processes are identified and then, using a quality house, are linked with knowledge management processes which are regarded as technical elements. Using this method, processes that are in need of improvement and more attention are prioritized based on their significance. This means that if a process has more influence on organization’s objectives and is in a dire situation comparing to others, is prioritized for choice and improvement. In this research process dominance is considered to be an influential element in process ranking (in addition to communication matrix). This is the reason for utilizing DEA techniques for prioritizing processes in quality house. Results of implementing the method in Khuzestan steel company represents this method’s capability of identifying key processes that require improvements in organization’s knowledge management system.

Keywords: knowledge management, organizational performance, fuzzy data, envelopment analysis

Procedia PDF Downloads 419
40596 Data Recording for Remote Monitoring of Autonomous Vehicles

Authors: Rong-Terng Juang

Abstract:

Autonomous vehicles offer the possibility of significant benefits to social welfare. However, fully automated cars might not be going to happen in the near further. To speed the adoption of the self-driving technologies, many governments worldwide are passing laws requiring data recorders for the testing of autonomous vehicles. Currently, the self-driving vehicle, (e.g., shuttle bus) has to be monitored from a remote control center. When an autonomous vehicle encounters an unexpected driving environment, such as road construction or an obstruction, it should request assistance from a remote operator. Nevertheless, large amounts of data, including images, radar and lidar data, etc., have to be transmitted from the vehicle to the remote center. Therefore, this paper proposes a data compression method of in-vehicle networks for remote monitoring of autonomous vehicles. Firstly, the time-series data are rearranged into a multi-dimensional signal space. Upon the arrival, for controller area networks (CAN), the new data are mapped onto a time-data two-dimensional space associated with the specific CAN identity. Secondly, the data are sampled based on differential sampling. Finally, the whole set of data are encoded using existing algorithms such as Huffman, arithmetic and codebook encoding methods. To evaluate system performance, the proposed method was deployed on an in-house built autonomous vehicle. The testing results show that the amount of data can be reduced as much as 1/7 compared to the raw data.

Keywords: autonomous vehicle, data compression, remote monitoring, controller area networks (CAN), Lidar

Procedia PDF Downloads 163
40595 Logistic Regression Model versus Additive Model for Recurrent Event Data

Authors: Entisar A. Elgmati

Abstract:

Recurrent infant diarrhea is studied using daily data collected in Salvador, Brazil over one year and three months. A logistic regression model is fitted instead of Aalen's additive model using the same covariates that were used in the analysis with the additive model. The model gives reasonably similar results to that using additive regression model. In addition, the problem with the estimated conditional probabilities not being constrained between zero and one in additive model is solved here. Also martingale residuals that have been used to judge the goodness of fit for the additive model are shown to be useful for judging the goodness of fit of the logistic model.

Keywords: additive model, cumulative probabilities, infant diarrhoea, recurrent event

Procedia PDF Downloads 635
40594 Using ANN in Emergency Reconstruction Projects Post Disaster

Authors: Rasha Waheeb, Bjorn Andersen, Rafa Shakir

Abstract:

Purpose The purpose of this study is to avoid delays that occur in emergency reconstruction projects especially in post disaster circumstances whether if they were natural or manmade due to their particular national and humanitarian importance. We presented a theoretical and practical concepts for projects management in the field of construction industry that deal with a range of global and local trails. This study aimed to identify the factors of effective delay in construction projects in Iraq that affect the time and the specific quality cost, and find the best solutions to address delays and solve the problem by setting parameters to restore balance in this study. 30 projects were selected in different areas of construction were selected as a sample for this study. Design/methodology/approach This study discusses the reconstruction strategies and delay in time and cost caused by different delay factors in some selected projects in Iraq (Baghdad as a case study).A case study approach was adopted, with thirty construction projects selected from the Baghdad region, of different types and sizes. Project participants from the case projects provided data about the projects through a data collection instrument distributed through a survey. Mixed approach and methods were applied in this study. Mathematical data analysis was used to construct models to predict delay in time and cost of projects before they started. The artificial neural networks analysis was selected as a mathematical approach. These models were mainly to help decision makers in construction project to find solutions to these delays before they cause any inefficiency in the project being implemented and to strike the obstacles thoroughly to develop this industry in Iraq. This approach was practiced using the data collected through survey and questionnaire data collection as information form. Findings The most important delay factors identified leading to schedule overruns were contractor failure, redesigning of designs/plans and change orders, security issues, selection of low-price bids, weather factors, and owner failures. Some of these are quite in line with findings from similar studies in other countries/regions, but some are unique to the Iraqi project sample, such as security issues and low-price bid selection. Originality/value we selected ANN’s analysis first because ANN’s was rarely used in project management , and never been used in Iraq to finding solutions for problems in construction industry. Also, this methodology can be used in complicated problems when there is no interpretation or solution for a problem. In some cases statistical analysis was conducted and in some cases the problem is not following a linear equation or there was a weak correlation, thus we suggested using the ANN’s because it is used for nonlinear problems to find the relationship between input and output data and that was really supportive.

Keywords: construction projects, delay factors, emergency reconstruction, innovation ANN, post disasters, project management

Procedia PDF Downloads 165
40593 De novo Transcriptome Assembly of Lumpfish (Cyclopterus lumpus L.) Brain Towards Understanding their Social and Cognitive Behavioural Traits

Authors: Likith Reddy Pinninti, Fredrik Ribsskog Staven, Leslie Robert Noble, Jorge Manuel de Oliveira Fernandes, Deepti Manjari Patel, Torstein Kristensen

Abstract:

Understanding fish behavior is essential to improve animal welfare in aquaculture research. Behavioral traits can have a strong influence on fish health and habituation. To identify the genes and biological pathways responsible for lumpfish behavior, we performed an experiment to understand the interspecies relationship (mutualism) between the lumpfish and salmon. Also, we tested the correlation between the gene expression data vs. observational/physiological data to know the essential genes that trigger stress and swimming behavior in lumpfish. After the de novo assembly of the brain transcriptome, all the samples were individually mapped to the available lumpfish (Cyclopterus lumpus L.) primary genome assembly (fCycLum1.pri, GCF_009769545.1). Out of ~16749 genes expressed in brain samples, we found 267 genes to be statistically significant (P > 0.05) found only in odor and control (1), model and control (41) and salmon and control (225) groups. However, genes with |LogFC| ≥0.5 were found to be only eight; these are considered as differentially expressed genes (DEG’s). Though, we are unable to find the differential genes related to the behavioral traits from RNA-Seq data analysis. From the correlation analysis, between the gene expression data vs. observational/physiological data (serotonin (5HT), dopamine (DA), 3,4-Dihydroxyphenylacetic acid (DOPAC), 5-hydroxy indole acetic acid (5-HIAA), Noradrenaline (NORAD)). We found 2495 genes found to be significant (P > 0.05) and among these, 1587 genes are positively correlated with the Noradrenaline (NORAD) hormone group. This suggests that Noradrenaline is triggering the change in pigmentation and skin color in lumpfish. Genes related to behavioral traits like rhythmic, locomotory, feeding, visual, pigmentation, stress, response to other organisms, taxis, dopamine synthesis and other neurotransmitter synthesis-related genes were obtained from the correlation analysis. In KEGG pathway enrichment analysis, we find important pathways, like the calcium signaling pathway and adrenergic signaling in cardiomyocytes, both involved in cell signaling, behavior, emotion, and stress. Calcium is an essential signaling molecule in the brain cells; it could affect the behavior of fish. Our results suggest that changes in calcium homeostasis and adrenergic receptor binding activity lead to changes in fish behavior during stress.

Keywords: behavior, De novo, lumpfish, salmon

Procedia PDF Downloads 173
40592 Long Hours Impact on Work-Life Balance

Authors: Syeda Faiza Gardazi, Syed Ahsan Ali Gardazi, Ajmal Waheed

Abstract:

The trend of overtime is increasing among workers due to more pressure to perform workloads, job insecurity, and financial issues. Overtime work affects the work-life balance conflict negatively as well positively. Work-life balance conflict has become an important issue as traditional work and family roles have changed. The purpose of the current research was to study the impact of overtime work on work-life balance conflict along with the moderating role of job satisfaction. For this purpose, data is collected from the employees working in different public and private sectors of Pakistan using simple random sampling technique. Descriptive statistics was used for data presentation and analysis. Correlation and regression analysis were used to test four research hypotheses proposed on the basis of research framework. The findings led to the acceptance of four hypotheses. The results show that high working hours and overtime in general lead to high work-life balance conflict. Moreover, job satisfaction moderates the relationship between overtime work and work-life balance conflict.

Keywords: family to work conflict, overtime work, work to family conflict, work-life balance conflict

Procedia PDF Downloads 258
40591 Impact of Audit Committee on Earning Quality of Listed Consumer Goods Companies in Nigeria

Authors: Usman Yakubu, Muktar Haruna

Abstract:

The paper examines the impact of the audit committee on the earning quality of the listed consumer goods sector in Nigeria. The study used data collected from annual reports and accounts of the 13 sampled companies for the periods 2007 to 2018. Data were analyzed by means of descriptive statistics to provide summary statistics for the variables; also, correlation analysis was carried out using the Pearson correlation technique for the correlation between the dependent and independent variables. Regression was employed using the Generalized Least Square technique since the data has both time series and cross sectional attributes (panel data). It was found out that the audit committee had a positive and significant influence on the earning quality in the listed consumer goods companies in Nigeria. Thus, the study recommends that competency and personal integrity should be the worthwhile attributes to be considered while constituting the committee; this could enhance the quality of accounting information. In addition to that majority of the committee members should be independent directors in order to allow a high level of independency to be exercised.

Keywords: earning quality, corporate governance, audit committee, financial reporting

Procedia PDF Downloads 172
40590 Influencers of E-Learning Readiness among Palestinian Secondary School Teachers: An Explorative Study

Authors: Fuad A. A. Trayek, Tunku Badariah Tunku Ahmad, Mohamad Sahari Nordin, Mohammed AM Dwikat

Abstract:

This paper reports on the results of an exploratory factor analysis procedure applied on the e-learning readiness data obtained from a survey of four hundred and seventy-nine (N = 479) teachers from secondary schools in Nablus, Palestine. The data were drawn from a 23-item Likert questionnaire measuring e-learning readiness based on Chapnick's conception of the construct. Principal axis factoring (PAF) with Promax rotation applied on the data extracted four distinct factors supporting four of Chapnick's e-learning readiness dimensions, namely technological readiness, psychological readiness, infrastructure readiness and equipment readiness. Together these four dimensions explained 56% of the variance. These findings provide further support for the construct validity of the items and for the existence of these four factors that measure e-learning readiness.

Keywords: e-learning, e-learning readiness, technological readiness, psychological readiness, principal axis factoring

Procedia PDF Downloads 401
40589 Analysis of Risks in Financing Agriculture a Case of Agricultural Cooperatives in Benue State, Nigeria

Authors: Odey Moses Ogah, Felix Terhemba Ikyereve

Abstract:

The study was carried out to analyzed risks in financing agriculture by agricultural cooperatives in Benue State, Nigeria. The study made use of research questionnaires for data collection. A multistage sampling technique was used to select a sample of 210 respondents from 21 agricultural cooperatives. Both descriptive and inferential statistics were employed in data analysis. Loan defaulting (66.7%) and reduction in savings by members (51.4%) were the major causes of risks faced by agricultural cooperatives in financing agriculture in the study area. Other causes include adverse changes in commodity prices (48.6%), disaster (45.7%), among others. It was found that risks adversely influence the profitability and competition of agricultural cooperatives (82.9%). Multiple regression analysis results showed that the coefficient of multiple determinations was 0.67, implying that the explanatory variables included in the model accounted for 67% of the variation in the level of profitability of agricultural cooperatives. The number of loans, average amount of loan and the interest rate were significant and important determinants of profitability of the cooperatives. The majority of the respondents (88.6%) made use of loan guarantors as a strategy of managing loan default/no repayment. It was found that the majority (70%) of the respondents were faced with the challenge of lack of insurance cover. The study recommends that agricultural cooperative officials should be encouraged to undergo formal training and education to easily acquire administrative skills in the management of agricultural loans; Farmer's loan size should be increased and released on time to enable them to use it effectively. Policies that enhance insuring farm activities should be put in place to discourage farmers from risk aversion.

Keywords: agriculture, analysis, cooperative, finance, risks

Procedia PDF Downloads 113
40588 Nearly Zero Energy Building: Analysis on How End-Users Affect Energy Savings Targets

Authors: Margarida Plana

Abstract:

One of the most important energy challenge of the European policies is the transition to a Net Zero Energy Building (NZEB) model. A NZEB is a new concept of building that has the aim of reducing both the energy consumption and the carbon emissions to nearly zero of the course of a year. To achieve this nearly zero consumption, apart from being buildings with high efficiency levels, the energy consumed by the building has to be produced on-site. This paper is focused on presenting the results of the analysis developed on basis of real projects’ data in order to quantify the impact of end-users behavior. The analysis is focused on how the behavior of building’s occupants can vary the achievement of the energy savings targets and how they can be limited. The results obtained show that on this kind of project, with very high energy performance, is required to limit the end-users interaction with the system operation to be able to reach the targets fixed.

Keywords: end-users impacts, energy efficiency, energy savings, NZEB model

Procedia PDF Downloads 372
40587 The Study of Factors Affecting Social Responsibility among Undergraduate Students of the Faculty of Management Science, Suan Sunandha Rajabhat University

Authors: Somtop Keawchuer

Abstract:

The purpose of the research is to study the level of social responsibility among the undergraduate students of the faculty of Management Science, Suan Sunandha Rajabhat University. The research also studies the factors affecting social responsibility of the undergraduate students. The research methodology applied a self-administered questionnaire as a quantitative method. A convenience sampling was used to distribute the questionnaire. Finally, 350 questionnaires were received for data analysis. Data were analyzed by using descriptive statistics including percentage, mean, standard deviation, and inferential statistics including regression analysis for hypothesis testing. The results indicated that the level of social responsibility of the students was at a good level. In addition, internal and external factors were related to social responsibility of the undergraduate students with the statistical significance level of 0.05.

Keywords: internal and external factors, social responsibility, Suan Sunandha Rajabhat University, undergraduate students

Procedia PDF Downloads 272
40586 Issues in Organizational Assessment: The Case of Frustration Tolerance Measurement in Mexico

Authors: David Ruiz, Carlos Nava, Roberto Carbajal

Abstract:

The psychological profile has become one of the most important sources of information when it comes to individual selection and the hiring process in any organization. Psychological instruments are used to collect data about variables that are considered critically important for performance in work. However, because of conceptual chaos in organizational psychology, most of the information provided by psychological testing is not directly useful for Mexican human resources professionals to take hiring decisions. The aims of this paper are 1) to underline the lack of conceptual precision in theoretical testing foundations in Mexico and 2) presenting a reliability and validity analysis of a frustration tolerance instrument created as an alternative to a heuristically conduct individual assessment in organizations. First, a description of assessment conditions in Mexico is made. Second, an instrument and a theoretical framework is presented as an alternative to the assessment practices in the country. A total of 65 Psychology Iztacala Superior Studies Faculty students were assessed. Cronbach´s alpha coefficient was calculated and an exploratory factor analysis was carried out to prove the scale unidimensionality. Reliability analysis revealed good internal consistency of the scale (Cronbach’s α = 0.825). Factor analysis produced 4 factors for the scale. However, factor loadings and explained variation give proof to the scale unidimensionality. It is concluded that the instrument has good psychometric properties that will allow human resources professionals to collect useful data. Different possibilities to conduct psychological assessment are suggested for future development.

Keywords: psychological assessment, frustration tolerance, human resources, organizational psychology

Procedia PDF Downloads 309
40585 Searching the Efficient Frontier for the Coherent Covering Location Problem

Authors: Felipe Azocar Simonet, Luis Acosta Espejo

Abstract:

In this article, we will try to find an efficient boundary approximation for the bi-objective location problem with coherent coverage for two levels of hierarchy (CCLP). We present the mathematical formulation of the model used. Supported efficient solutions and unsupported efficient solutions are obtained by solving the bi-objective combinatorial problem through the weights method using a Lagrangean heuristic. Subsequently, the results are validated through the DEA analysis with the GEM index (Global efficiency measurement).

Keywords: coherent covering location problem, efficient frontier, lagragian relaxation, data envelopment analysis

Procedia PDF Downloads 334
40584 Multimedia Data Fusion for Event Detection in Twitter by Using Dempster-Shafer Evidence Theory

Authors: Samar M. Alqhtani, Suhuai Luo, Brian Regan

Abstract:

Data fusion technology can be the best way to extract useful information from multiple sources of data. It has been widely applied in various applications. This paper presents a data fusion approach in multimedia data for event detection in twitter by using Dempster-Shafer evidence theory. The methodology applies a mining algorithm to detect the event. There are two types of data in the fusion. The first is features extracted from text by using the bag-ofwords method which is calculated using the term frequency-inverse document frequency (TF-IDF). The second is the visual features extracted by applying scale-invariant feature transform (SIFT). The Dempster - Shafer theory of evidence is applied in order to fuse the information from these two sources. Our experiments have indicated that comparing to the approaches using individual data source, the proposed data fusion approach can increase the prediction accuracy for event detection. The experimental result showed that the proposed method achieved a high accuracy of 0.97, comparing with 0.93 with texts only, and 0.86 with images only.

Keywords: data fusion, Dempster-Shafer theory, data mining, event detection

Procedia PDF Downloads 410
40583 A Corpus-Based Analysis of "MeToo" Discourse in South Korea: Coverage Representation in Korean Newspapers

Authors: Sun-Hee Lee, Amanda Kraley

Abstract:

The “MeToo” movement is a social movement against sexual abuse and harassment. Though the hashtag went viral in 2017 following different cultural flashpoints in different countries, the initial response was quiet in South Korea. This radically changed in January 2018, when a high-ranking senior prosecutor, Seo Ji-hyun, gave a televised interview discussing being sexually assaulted by a colleague. Acknowledging public anger, particularly among women, on the long-existing problems of sexual harassment and abuse, the South Korean media have focused on several high-profile cases. Analyzing the media representation of these cases is a window into the evolving South Korean discourse around “MeToo.” This study presents a linguistic analysis of “MeToo” discourse in South Korea by utilizing a corpus-based approach. The term corpus (pl. corpora) is used to refer to electronic language data, that is, any collection of recorded instances of spoken or written language. A “MeToo” corpus has been collected by extracting newspaper articles containing the keyword “MeToo” from BIGKinds, big data analysis, and service and Nexis Uni, an online academic database search engine, to conduct this language analysis. The corpus analysis explores how Korean media represent accusers and the accused, victims and perpetrators. The extracted data includes 5,885 articles from four broadsheet newspapers (Chosun, JoongAng, Hangyore, and Kyunghyang) and 88 articles from two Korea-based English newspapers (Korea Times and Korea Herald) between January 2017 and November 2020. The information includes basic data analysis with respect to keyword frequency and network analysis and adds refined examinations of select corpus samples through naming strategies, semantic relations, and pragmatic properties. Along with the exponential increase of the number of articles containing the keyword “MeToo” from 104 articles in 2017 to 3,546 articles in 2018, the network and keyword analysis highlights ‘US,’ ‘Harvey Weinstein’, and ‘Hollywood,’ as keywords for 2017, with articles in 2018 highlighting ‘Seo Ji-Hyun, ‘politics,’ ‘President Moon,’ ‘An Ui-Jeong, ‘Lee Yoon-taek’ (the names of perpetrators), and ‘(Korean) society.’ This outcome demonstrates the shift of media focus from international affairs to domestic cases. Another crucial finding is that word ‘defamation’ is widely distributed in the “MeToo” corpus. This relates to the South Korean legal system, in which a person who defames another by publicly alleging information detrimental to their reputation—factual or fabricated—is punishable by law (Article 307 of the Criminal Act of Korea). If the defamation occurs on the internet, it is subject to aggravated punishment under the Act on Promotion of Information and Communications Network Utilization and Information Protection. These laws, in particular, have been used against accusers who have publicly come forward in the wake of “MeToo” in South Korea, adding an extra dimension of risk. This corpus analysis of “MeToo” newspaper articles contributes to the analysis of the media representation of the “MeToo” movement and sheds light on the shifting landscape of gender relations in the public sphere in South Korea.

Keywords: corpus linguistics, MeToo, newspapers, South Korea

Procedia PDF Downloads 223
40582 DGA Data Interpretation Using Extension Theory for Power Transformer Diagnostics

Authors: O. P. Rahi, Manoj Kumar

Abstract:

Power transformers are essential and expensive equipments in electrical power system. Dissolved gas analysis (DGA) is one of the most useful techniques to detect incipient faults in power transformers. However, the identification of the faulted location by conventional method is not always an easy task due to variability of gas data and operational variables. In this paper, an extension theory based power transformer fault diagnosis method is presented. Extension theory tries to solve contradictions and incompatibility problems. This paper first briefly introduces the basic concept of matter element theory, establishes the matter element models for three-ratio method, and then briefly discusses extension set theory. Detailed analysis is carried out on the extended relation function (ERF) adopted in this paper for transformer fault diagnosis. The detailed diagnosing steps are offered. Simulation proves that the proposed method can overcome the drawbacks of the conventional three-ratio method, such as no matching and failure to diagnose multi-fault. It enhances diagnosing accuracy.

Keywords: DGA, extension theory, ERF, fault diagnosis power transformers, fault diagnosis, fuzzy logic

Procedia PDF Downloads 412
40581 Legal Issues of Collecting and Processing Big Health Data in the Light of European Regulation 679/2016

Authors: Ioannis Iglezakis, Theodoros D. Trokanas, Panagiota Kiortsi

Abstract:

This paper aims to explore major legal issues arising from the collection and processing of Health Big Data in the light of the new European secondary legislation for the protection of personal data of natural persons, placing emphasis on the General Data Protection Regulation 679/2016. Whether Big Health Data can be characterised as ‘personal data’ or not is really the crux of the matter. The legal ambiguity is compounded by the fact that, even though the processing of Big Health Data is premised on the de-identification of the data subject, the possibility of a combination of Big Health Data with other data circulating freely on the web or from other data files cannot be excluded. Another key point is that the application of some provisions of GPDR to Big Health Data may both absolve the data controller of his legal obligations and deprive the data subject of his rights (e.g., the right to be informed), ultimately undermining the fundamental right to the protection of personal data of natural persons. Moreover, data subject’s rights (e.g., the right not to be subject to a decision based solely on automated processing) are heavily impacted by the use of AI, algorithms, and technologies that reclaim health data for further use, resulting in sometimes ambiguous results that have a substantial impact on individuals. On the other hand, as the COVID-19 pandemic has revealed, Big Data analytics can offer crucial sources of information. In this respect, this paper identifies and systematises the legal provisions concerned, offering interpretative solutions that tackle dangers concerning data subject’s rights while embracing the opportunities that Big Health Data has to offer. In addition, particular attention is attached to the scope of ‘consent’ as a legal basis in the collection and processing of Big Health Data, as the application of data analytics in Big Health Data signals the construction of new data and subject’s profiles. Finally, the paper addresses the knotty problem of role assignment (i.e., distinguishing between controller and processor/joint controllers and joint processors) in an era of extensive Big Health data sharing. The findings are the fruit of a current research project conducted by a three-member research team at the Faculty of Law of the Aristotle University of Thessaloniki and funded by the Greek Ministry of Education and Religious Affairs.

Keywords: big health data, data subject rights, GDPR, pandemic

Procedia PDF Downloads 129
40580 Site Suitability Analysis for Multipurpose Dams Using Geospatial Technologies

Authors: Saima Iftikhar Rida Shabbir, Zeeshan Hassan

Abstract:

Water shortage, energy crisis and natural misfortunes are the glitches which reduce the efficacy of agricultural ecosystems especially in Pakistan where these are more frequent besides being intense. Accordingly, the agricultural water resources, food security and country’s economy are at risk. To address this, we have used Geospatial techniques incorporating ASTER Global DEM, Geological map, rainfall data, discharge data, Landsat 5 image of Swat valley in order to assess the viability of selected sites. The sites have been studied via GIS tools, Hydrological investigation and multiparametric analysis for their potentialities of collecting and securing the rain water; regulating floods by storing the surplus water bulks by check dams and developing them for power generation. Our results showed that Siat1-1 was very useful for low-cost dam with main objective of as Debris dam; Site-2 and Site 3 were check dams sites having adequate storing reservoir so as to arrest the inconsistent flow accompanied by catering the sedimentation effects and the debris flows; Site 4 had a huge reservoir capacity but it entails enormous edifice cost over very great flood plain. Thus, there is necessity of active Hydrological developments to estimate the flooded area using advanced and multifarious GIS and remote sensing approaches so that the sites could be developed for harnessing those sites for agricultural and energy drives.

Keywords: site suitability, check dams, SHP, terrain analysis, volume estimation

Procedia PDF Downloads 313