Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1115

Search results for: recurrent event

1115 Logistic Regression Model versus Additive Model for Recurrent Event Data

Authors: Entisar A. Elgmati

Abstract:

Recurrent infant diarrhea is studied using daily data collected in Salvador, Brazil over one year and three months. A logistic regression model is fitted instead of Aalen's additive model using the same covariates that were used in the analysis with the additive model. The model gives reasonably similar results to that using additive regression model. In addition, the problem with the estimated conditional probabilities not being constrained between zero and one in additive model is solved here. Also martingale residuals that have been used to judge the goodness of fit for the additive model are shown to be useful for judging the goodness of fit of the logistic model.

Keywords: additive model, cumulative probabilities, infant diarrhoea, recurrent event

Procedia PDF Downloads 449
1114 Analyzing Large Scale Recurrent Event Data with a Divide-And-Conquer Approach

Authors: Jerry Q. Cheng

Abstract:

Currently, in analyzing large-scale recurrent event data, there are many challenges such as memory limitations, unscalable computing time, etc. In this research, a divide-and-conquer method is proposed using parametric frailty models. Specifically, the data is randomly divided into many subsets, and the maximum likelihood estimator from each individual data set is obtained. Then a weighted method is proposed to combine these individual estimators as the final estimator. It is shown that this divide-and-conquer estimator is asymptotically equivalent to the estimator based on the full data. Simulation studies are conducted to demonstrate the performance of this proposed method. This approach is applied to a large real dataset of repeated heart failure hospitalizations.

Keywords: big data analytics, divide-and-conquer, recurrent event data, statistical computing

Procedia PDF Downloads 40
1113 Event Monitoring Based On Web Services for Heterogeneous Event Sources

Authors: Arne Koschel

Abstract:

This article discusses event monitoring options for heterogeneous event sources as they are given in nowadays heterogeneous distributed information systems. It follows the central assumption, that a fully generic event monitoring solution cannot provide complete support for event monitoring; instead, event source specific semantics such as certain event types or support for certain event monitoring techniques have to be taken into account. Following from this, the core result of the work presented here is the extension of a configurable event monitoring (Web) service for a variety of event sources. A service approach allows us to trade genericity for the exploitation of source specific characteristics. It thus delivers results for the areas of SOA, Web services, CEP and EDA.

Keywords: event monitoring, ECA, CEP, SOA, web services

Procedia PDF Downloads 255
1112 Complex Event Processing System Based on the Extended ECA Rule

Authors: Kwan Hee Han, Jun Woo Lee, Sung Moon Bae, Twae Kyung Park

Abstract:

ECA (Event-Condition-Action) languages are largely adopted for event processing since they are an intuitive and powerful paradigm for programming reactive systems. However, there are some limitations about ECA rules for processing of complex events such as coupling of event producer and consumer. The objective of this paper is to propose an ECA rule pattern to improve the current limitations of ECA rule, and to develop a prototype system. In this paper, conventional ECA rule is separated into 3 parts and each part is extended to meet the requirements of CEP. Finally, event processing logic is established by combining the relevant elements of 3 parts. The usability of proposed extended ECA rule is validated by a test scenario in this study.

Keywords: complex event processing, ECA rule, Event processing system, event-driven architecture, internet of things

Procedia PDF Downloads 402
1111 Event Extraction, Analysis, and Event Linking

Authors: Anam Alam, Rahim Jamaluddin Kanji

Abstract:

With the rapid growth of event in everywhere, event extraction has now become an important matter to retrieve the information from the unstructured data. One of the challenging problems is to extract the event from it. An event is an observable occurrence of interaction among entities. The paper investigates the effectiveness of event extraction capabilities of three software tools that are Wandora, Nitro and SPSS. We performed standard text mining techniques of these tools on the data sets of (i) Afghan War Diaries (AWD collection), (ii) MUC4 and (iii) WebKB. Information retrieval measures such as precision and recall which are computed under extensive set of experiments for Event Extraction. The experimental study analyzes the difference between events extracted by the software and human. This approach helps to construct an algorithm that will be applied for different machine learning methods.

Keywords: event extraction, Wandora, nitro, SPSS, event analysis, extraction method, AFG, Afghan War Diaries, MUC4, 4 universities, dataset, algorithm, precision, recall, evaluation

Procedia PDF Downloads 449
1110 A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata

Authors: Pavan K. Rallabandi, Kailash C. Patidar

Abstract:

In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence or pattern recognition/ classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.

Keywords: hybrid systems, hidden markov models, recurrent neural networks, deterministic finite state automata

Procedia PDF Downloads 239
1109 Oct to Study Efficacy of Avastin in Recurrent Wet Age Related Macular Degeneration and Persistent Diffuse DME

Authors: Srinivasarao Akuthota, Rajasekhar Pabolu, Bharathi Hepattam

Abstract:

Purpose: To assess the efficacy of intravitreal Avastin in subjects with recurrent wet AMD and persistent diffuse DME on the basis of OCT. Design: Retrospective, non-comparative, observational study,single center study. Conclusion: The study showed that intravitreal Avastin has an equivalent effect on recurrent AMD and in persistent diffuse DME.

Keywords: age-related macular degeneration (AMD), diffuse diabetic retinopathy (DME), intravitreal Avastin (IVA), optical coherence tomography (OCT)

Procedia PDF Downloads 266
1108 Site Effect Observations after 2016 Amatrice Earthquake, Central Italy

Authors: Giovanni Forte, Melania De Falco, Antonio Santo

Abstract:

On 24th August 2016, central Italy was affected by a Mw 6.0 earthquake, representing the main shock of a long seismic sequence, which had a second shock Mw 6.6 on 26th October and lasts still nowadays. After the event, several field survey were carried out in the affected areas, which is made of historical masonry buildings. The post event reconnaissance missions were aimed at collecting information on the damage states of the buildings, the triggering of the landslides and the relationships with site effects. In this paper, the data collected after the event are analyzed considering the role of the geological and geomorphological setting and the ground motion scenario. The buildings displayed an uneven damage distribution, which was affected by both topographic and stratigraphic amplification. As pertains the landslides, which were the most recurrent among the ground failures, consisted mainly of rock falls and subordinately of translational slides. Finally, the collected knowledge showed a strong contribution of the local geological and geomorphological site condition on the resulting damage.

Keywords: Amatrice earthquake, damage states, landslides, site effects

Procedia PDF Downloads 228
1107 Endometriosis: The Optimal Treatment of Recurrent Endometrioma in Infertile Patients

Authors: Smita Lakhotia, C. Kew, S. H. M. Siraj, B. Chern

Abstract:

Up to 50% of those with endometriosis may suffer from infertility due to either distorted pelvic anatomy/impaired oocyte release or inhibit ovum pickup and transport, altered peritoneal function, endocrine and anovulatory disorders, including LUF, impaired implantation, progesterone resistance or decreased levels of cellular immunity. The dilemma continues as to whether the surgery or IVF is the optimal management for such recurrent endometriomas. The core question is whether surgery adds anything of value for infertile women with recurrent endometriosis or not. Complete and detailed information on risks and benefits of treatment alternatives must be offered to patients, giving a realistic estimate of chances of success of repetitive surgery and of multiple IVF cycles in order to allow unbiased choices between different possible optionsAn individualized treatment plan should be developed taking into account patient age, duration of infertility, previous pregnancies and specific clinical conditions and wish.

Keywords: recurrent endometriosis, infertility, oocyte release, pregnancy

Procedia PDF Downloads 134
1106 Emotion Classification Using Recurrent Neural Network and Scalable Pattern Mining

Authors: Jaishree Ranganathan, MuthuPriya Shanmugakani Velsamy, Shamika Kulkarni, Angelina Tzacheva

Abstract:

Emotions play an important role in everyday life. An-alyzing these emotions or feelings from social media platforms like Twitter, Facebook, blogs, and forums based on user comments and reviews plays an important role in various factors. Some of them include brand monitoring, marketing strategies, reputation, and competitor analysis. The opinions or sentiments mined from such data helps understand the current state of the user. It does not directly provide intuitive insights on what actions to be taken to benefit the end user or business. Actionable Pattern Mining method provides suggestions or actionable recommendations on what changes or actions need to be taken in order to benefit the end user. In this paper, we propose automatic classification of emotions in Twitter data using Recurrent Neural Network - Gated Recurrent Unit. We achieve training accuracy of 87.58% and validation accuracy of 86.16%. Also, we extract action rules with respect to the user emotion that helps to provide actionable suggestion.

Keywords: emotion mining, twitter, recurrent neural network, gated recurrent unit, actionable pattern mining

Procedia PDF Downloads 29
1104 The Prevalence of X-Chromosome Aneuploidy in Recurrent Pregnancy Loss

Authors: Rim Frikha, Nouha Bouayed, Afifa Sellami, Nozha Chakroun, Salima Douad, Leila Keskes, Tarek Rebai

Abstract:

Recurrent pregnancy loss (RPL), classically defined as the occurrence of two or more failed pregnancies, is a serious reproductive problem, in which, chromosomal rearrangements in either carrier are a major cause; mainly the chromosome aneuploidy. This study was conducted to determine the frequency and contribution of X-chromosome aneuploidy in recurrent pregnancy loss. A retrospective study was carried out among 100 couples with more than 2 miscarriages, referred to our genetic counseling. In all the cases the detailed reproductive histories were taken. Chromosomal analysis was performed using RHG banding in peripheral blood. Of a total of 100 couples; 3 patients with a detected X-chromosome aneuploidy were identified with an overall frequency of 3%. Chromosome abnormalities are as below: a Turner syndrome with 45, X/46, XX mosaicism, a 47, XXX, and a Klinefelter syndrome with 46, XY/47, XXY. These data show a high incidence of X-chromosome aneuploidy; mainly with mosaicism; in RPL. Thus, couples with such chromosomal abnormality should be referred to a clinical geneticist with whom the option of pre-implantation genetic diagnosis in subsequent pregnancy should be discussed.

Keywords: aneuploidy, genetic testing, recurrent pregnancy loss, X-chromosome

Procedia PDF Downloads 205
1103 Predicting Global Solar Radiation Using Recurrent Neural Networks and Climatological Parameters

Authors: Rami El-Hajj Mohamad, Mahmoud Skafi, Ali Massoud Haidar

Abstract:

Several meteorological parameters were used for the prediction of monthly average daily global solar radiation on horizontal using recurrent neural networks (RNNs). Climatological data and measures, mainly air temperature, humidity, sunshine duration, and wind speed between 1995 and 2007 were used to design and validate a feed forward and recurrent neural network based prediction systems. In this paper we present our reference system based on a feed-forward multilayer perceptron (MLP) as well as the proposed approach based on an RNN model. The obtained results were promising and comparable to those obtained by other existing empirical and neural models. The experimental results showed the advantage of RNNs over simple MLPs when we deal with time series solar radiation predictions based on daily climatological data.

Keywords: recurrent neural networks, global solar radiation, multi-layer perceptron, gradient, root mean square error

Procedia PDF Downloads 321
1102 Modeling and Analyzing the WAP Class 2 Wireless Transaction Protocol Using Event-B

Authors: Rajaa Filali, Mohamed Bouhdadi

Abstract:

This paper presents an incremental formal development of the Wireless Transaction Protocol (WTP) in Event-B. WTP is part of the Wireless Application Protocol (WAP) architectures and provides a reliable request-response service. To model and verify the protocol, we use the formal technique Event-B which provides an accessible and rigorous development method. This interaction between modelling and proving reduces the complexity and helps to eliminate misunderstandings, inconsistencies, and specification gaps. As result, verification of WTP allows us to find some deficiencies in the current specification.

Keywords: event-B, wireless transaction protocol, proof obligation, refinement, Rodin, ProB

Procedia PDF Downloads 201
1101 Validity and Reliability of Lifestyle Measurement of the LSAS among Recurrent Stroke Patients in Selected Hospital, Central Java, Indonesia

Authors: Meida Laely Ramdani, Earmporn Thongkrajai, Dedy Purwito

Abstract:

Lifestyle is one of the most important factors affecting health. Measurement of lifestyle behaviors is necessary for the identification of causal associations between unhealthy lifestyle and health outcomes. There was many instruments have been measured for lifestyle, but not specific for stroke recurrence. This study aimed to develop a new questionnaire of Lifestyle Adjustment Scale (LSAS) among recurrent stroke patients in Indonesia and to measure the reliability and validity of LSAS. The instrument consist of 33 items was developed from the responses of 30 recurrent stroke patients with the maximum age 60 years. Data was collected during October to November 2015. The properties of the instrument were evaluated by validity assessment and reliability measures. The content validity was judged adequate by a panel of five experts, with the result of I-CVI was 0.97. The Cronbach’s alpha analysis was carried out to measure the reliability of LSAS. The result showed that Cronbach’s alpha coefficient was 0.819. LSAS were classified under the domains of dietary habit, smoking habit, physical activity, and stress management. The results of Cronbach’s alpha coefficient for each subscale were 0.60, 0.39, 0.67, 0.65 and 0.76 respectively. LSAS instrument was valid and reliable therefore can be used as research tool among recurrent stroke patients. The development of this questionnaire has been adapted to the socio-cultural context in Indonesia.

Keywords: LSAS, recurrent stroke patients, lifestyle, Indonesia

Procedia PDF Downloads 150
1100 Prevalence of Autoimmune Thyroid Disease in Recurrent Aphthous Stomatitis

Authors: Arghavan Tonkaboni, Shamsolmolouk Najafi, Mohmmad Taghi Kiani, Mehrzad Gholampour, Touraj Goli

Abstract:

Introduction: Recurrent aphthous stomatitis (RAS) is a multifactorial recurrent oral lesion; which is an autoimmune disease. TH1 cytokines are the most important etiological factors. Autoimmune thyroid disease (ATD) is one of the most common autoimmune diseases and generally coexists with other autoimmune diseases. This study assessed the prevalence of thyroid disease in patients with recurrent aphthous stomatitis. Materials and Methods: This case control study assessed 100 known RAS patients who were diagnosed clinically by oral medicine specialists; venous blood samples were analyzed for thyroid stimulating hormone (TSH), free triiodothyronine (fT3), total thyroxine (fT4), thyroglobulin, anti-thyroid peroxidase antibody (anti-TPO) and anti-thyroglobulin antibody (anti-TG) levels. Results: Fifty patients with RAS aged between 18-42 years (28.5±5.8) and 50 healthy volunteers aged 19-45 years (27.3±5.4) participated. In RAS patients, fT3 and TSH levels were significantly higher (P=0.031, P=0.706); however, fT4 level was lower in the RAS group (P=0.447). Anti TG and anti-TPO levels were significantly higher in the RAS group (P=0.008, P=0.067). Conclusion: Our study showed that ATD prevalence was significantly higher in RAS patients. Based on this study, we recommend assessment of thyroid hormones and antibodies in RAS patients.

Keywords: recurrent aphthous stomatitis, thyroid antibodies, thyroid hormone, thyroid autoimmune disease

Procedia PDF Downloads 256
1099 An Incremental Refinement Approach to a Development of Dynamic Host Configuration Protocol (DHCP) Using Event-B

Authors: Rajaa Filali, Mohamed Bouhdadi

Abstract:

This paper presents an incremental development of the Dynamic Host Configuration Protocol (DHCP) in Event-B. DHCP is widely used communication protocol, which provides a standard mechanism to obtain configuration parameters. The specification is performed in a stepwise manner and verified through a series of refinements. The Event-B formal method uses the Rodin platform to modeling and verifying some properties of the protocol such as safety, liveness and deadlock freedom. To model and verify the protocol, we use the formal technique Event-B which provides an accessible and rigorous development method. This interaction between modelling and proving reduces the complexity and helps to eliminate misunderstandings, inconsistencies, and specification gaps.

Keywords: DHCP protocol, Event-B, refinement, proof obligation, Rodin

Procedia PDF Downloads 109
1098 Study of Transformer and Motor Winding under Pulsed Power Application

Authors: Arijit Basuray, Saibal Chatterjee

Abstract:

Pulsed Power in the form of Recurrent Surge Generator (RSG) can be used for testing various parameters of Motor or Transformer windings including inter-turn, interlayer insulation. Windings with solid insulation in motor and transformer have many interfaces and undesirable defects, and these defects can be exposed under this nondestructive testing methodology. Due to rapid development in power electronics variable frequency drives (VFD), Dry Type or cast resin Transformer used with PWM Sine wave inverters for solar power, solid insulation system used nowadays are shifting more and more to a high-frequency application. Authors have used the recurrent surge generator for testing winding integrity as well as Partial Discharge(PD) at fast rising voltage enabling PD measurement at closer situation under which the insulation system is supposed to work. Authors have discussed test results on a different system with recurrent surge voltages of different rise time.

Keywords: fast rising voltage, partial discharge, pulsed power, recurrent surge generator, solid insulation

Procedia PDF Downloads 186
1097 A Refinement Strategy Coupling Event-B and Planning Domain Definition Language (PDDL) for Planning Problems

Authors: Sabrine Ammar, Mohamed Tahar Bhiri

Abstract:

Automatic planning has a de facto standard language called Planning Domain Definition Language (PDDL) for describing planning problems. It aims to formalize the planning problems described by the concept of state space. PDDL-related dynamic analysis tools, namely planners and validators, are insufficient for verifying and validating PDDL descriptions. Indeed, these tools made it possible to detect errors a posteriori by means of test activity. In this paper, we recommend a formal approach coupling the two languages Event-B and PDDL, for automatic planning. Event-B is used for formal modeling by stepwise refinement with mathematical proofs of planning problems. Thus, this paper proposes a refinement strategy allowing to obtain reliable PDDL descriptions from an ultimate Event-B model correct by construction. The ultimate Event-B model, correct by construction which is supposed to be translatable into PDDL, is automatically translated into PDDL using our MDE Event-B2PDDL tool.

Keywords: code generation, event-b, PDDL, refinement strategy, translation rules

Procedia PDF Downloads 34
1096 Chinese Event Detection with Joint Learning of Semantic and Syntactic Representation

Authors: Yao Bai, Dan Liu, Youming Guo, Meiwen Li

Abstract:

Event detection (ED), the basis of event extraction, is a very challenging problem, especially in Chinese scenes. The syntactic structure of event sentences is helpful for semantic understanding. This paper proposed a novel ED model called BERT+D-T-LSTM+D-Attention (BDD), which aims to learn semantic and syntactic representation of sentences jointly to enhance event-sentence understanding ability. We use the word vector based on BERT as the information source, the Long-Short Term Memory model based on the dependency tree (DT-LSTM) to integrate the learning of syntactic structure and sentence semantics, an attention mechanism based on the dependency vector to strengthen the distinction of different syntactic structure at the aim of ED. The experiment results on the CEC corpus demonstrate that BDD performs rather well, especially outperforming the SOTA models on recall rate and F value.

Keywords: BERT, D-Attention, dependency vector, D-T-LSTM, event detection

Procedia PDF Downloads 1
1095 Event-Led Strategy for Cultural Tourism Development: The Case of Liverpool as the 2008 European Capital of Culture

Authors: Yi-De Liu

Abstract:

Cultural tourism is one of the largest and fastest growing global tourism markets and the cultures are increasingly being used to promote cities and to increase their competitiveness and attractiveness. One of the major forms of cultural tourism development undertaken throughout Europe has been the staging of a growing number of cultural events. The event of European Capitals of Culture (ECOC) is probably the best example of the new trends of cultural tourism in Europe, which is therefore used in this article to demonstrate some of the key issues surrounding the event-led strategy for cultural tourism development. Based on the experience of the 2008 ECOC Liverpool, UK, the study’s findings point to a number of ways in which the ECOC constitutes a boost for the development of cultural tourism in terms of realising experience economy, enhancing city image, facilitating urban regeneration, promoting cultural production and consumption, as well as establishing partnerships. This study is concluded by drawing some critical factors that event and tourism organisers should consider.

Keywords: cultural tourism, event tourism, cultural event, European capital of culture, Liverpool

Procedia PDF Downloads 314
1094 One-Step Time Series Predictions with Recurrent Neural Networks

Authors: Vaidehi Iyer, Konstantin Borozdin

Abstract:

Time series prediction problems have many important practical applications, but are notoriously difficult for statistical modeling. Recently, machine learning methods have been attracted significant interest as a practical tool applied to a variety of problems, even though developments in this field tend to be semi-empirical. This paper explores application of Long Short Term Memory based Recurrent Neural Networks to the one-step prediction of time series for both trend and stochastic components. Two types of data are analyzed - daily stock prices, that are often considered to be a typical example of a random walk, - and weather patterns dominated by seasonal variations. Results from both analyses are compared, and reinforced learning framework is used to select more efficient between Recurrent Neural Networks and more traditional auto regression methods. It is shown that both methods are able to follow long-term trends and seasonal variations closely, but have difficulties with reproducing day-to-day variability. Future research directions and potential real world applications are briefly discussed.

Keywords: long short term memory, prediction methods, recurrent neural networks, reinforcement learning

Procedia PDF Downloads 136
1093 Deep Learning Based, End-to-End Metaphor Detection in Greek with Recurrent and Convolutional Neural Networks

Authors: Konstantinos Perifanos, Eirini Florou, Dionysis Goutsos

Abstract:

This paper presents and benchmarks a number of end-to-end Deep Learning based models for metaphor detection in Greek. We combine Convolutional Neural Networks and Recurrent Neural Networks with representation learning to bear on the metaphor detection problem for the Greek language. The models presented achieve exceptional accuracy scores, significantly improving the previous state-of-the-art results, which had already achieved accuracy 0.82. Furthermore, no special preprocessing, feature engineering or linguistic knowledge is used in this work. The methods presented achieve accuracy of 0.92 and F-score 0.92 with Convolutional Neural Networks (CNNs) and bidirectional Long Short Term Memory networks (LSTMs). Comparable results of 0.91 accuracy and 0.91 F-score are also achieved with bidirectional Gated Recurrent Units (GRUs) and Convolutional Recurrent Neural Nets (CRNNs). The models are trained and evaluated only on the basis of training tuples, the related sentences and their labels. The outcome is a state-of-the-art collection of metaphor detection models, trained on limited labelled resources, which can be extended to other languages and similar tasks.

Keywords: metaphor detection, deep learning, representation learning, embeddings

Procedia PDF Downloads 29
1092 The Impact of Reshuffle in Indonesian Working Cabinet Volume II to Abnormal Return and Abnormal Trading Activity of Companies Listed in the Jakarta Islamic Index

Authors: Fatin Fadhilah Hasib, Dewi Nuraini, Nisful Laila, Muhammad Madyan

Abstract:

A big political event such as Cabinet reshuffle mostly can affect the stock price positively or negatively, depend on the perception of each investor and potential investor. This study aims to analyze the movement of the market and trading activities which respect to an event using event study method. This method is used to measure the movement of the stock exchange in which abnormal return can be obtained by investor related to the event. This study examines the differences of reaction on abnormal return and trading volume activity from the companies listed in the Jakarta Islamic Index (JII), before and after the announcement of the Cabinet Work Volume II on 27 July 2016. The study was conducted in observation of 21 days in total which consists of 10 days before the event and 10 days after the event. The method used in this study is event study with market adjusted model method that observes market reaction to the information of an announcement or publicity events. The Results from the study showed that there is no significant negative nor positive reaction at the abnormal return and abnormal trading before and after the announcement of the cabinet reshuffle. It is indicated by the results of statistical tests whose value not exceeds the level of significance. Stock exchange of the JII just reflects from the previous stock prices without reflecting the information regarding to the Cabinet reshuffle event. It can be concluded that the capital market is efficient with a weak form.

Keywords: abnormal return, abnormal trading volume activity, event study, political event

Procedia PDF Downloads 154
1091 Thrombophilic Mutations in Tunisian Patients with Recurrent Pregnancy Loss

Authors: Frikha Rim, Abdelmoula Bouayed Nouha, Rebai Tarek

Abstract:

Pregnancy is a hypercoagulable state which causing a defective maternal haemostatic response and leading to thrombosis of the uteroplacental vasculature, that might cause pregnancy complications as recurrent pregnancy loss (RPL). Since heritable Thrombophilic defects are associated with increased thrombosis, their prevalence was evaluated in patients with special emphasis on combinations of the above pathologies. Especially, Factor V Leiden (FVL) G1691A, methylene tetra hydro folate reductase (MTHFR) C677T, and factor II (FII) G20210A mutations are three important causes of thrombophilia, which might be related to recurrent pregnancy loss (RPL). In this study we evaluated the presence of these three mutations [factor V Leiden (FVL), prothrombin G20210A (PTG) and methylenetetrahydrofolate reductase (MTHFR) C677T] amongst 35 Tunisian women with more than 2 miscarriages, referred to our genetic counseling. DNA was extracted from peripheral blood samples and PCR-RFLP was performed for the molecular diagnosis of each mutation. Factor V Leiden and Prothrombin mutation were detected respectively in 5.7% and 2.9% of women with particular history of early fetal loss and thrombotic events. Despites the luck of strength of this study, we insist that testing for the most inherited thrombophilia (FVL and FII mutation) should be performed in women with RPL in the context of thrombotic events. Multi-centre collaboration is necessary to clarify the real impact of thrombotic molecular defects on the pregnancy outcome, to ascertain the effect of thrombophilia on recurrent pregnancy loss and then to evaluate the appropriate therapeutic approach.

Keywords: thrombophilia, recurrent pregnancy loss, factor V Leiden, prothrombin G20210A, methylene tetra hydro folate reductase

Procedia PDF Downloads 347
1090 Single Event Transient Tolerance Analysis in 8051 Microprocessor Using Scan Chain

Authors: Jun Sung Go, Jong Kang Park, Jong Tae Kim

Abstract:

As semi-conductor manufacturing technology evolves; the single event transient problem becomes more significant issue. Single event transient has a critical impact on both combinational and sequential logic circuits, so it is important to evaluate the soft error tolerance of the circuits at the design stage. In this paper, we present a soft error detecting simulation using scan chain. The simulation model generates a single event transient randomly in the circuit, and detects the soft error during the execution of the test patterns. We verified this model by inserting a scan chain in an 8051 microprocessor using 65 nm CMOS technology. While the test patterns generated by ATPG program are passing through the scan chain, we insert a single event transient and detect the number of soft errors per sub-module. The experiments show that the soft error rates per cell area of the SFR module is 277% larger than other modules.

Keywords: scan chain, single event transient, soft error, 8051 processor

Procedia PDF Downloads 212
1089 Transportation Mode Classification Using GPS Coordinates and Recurrent Neural Networks

Authors: Taylor Kolody, Farkhund Iqbal, Rabia Batool, Benjamin Fung, Mohammed Hussaeni, Saiqa Aleem

Abstract:

The rising threat of climate change has led to an increase in public awareness and care about our collective and individual environmental impact. A key component of this impact is our use of cars and other polluting forms of transportation, but it is often difficult for an individual to know how severe this impact is. While there are applications that offer this feedback, they require manual entry of what transportation mode was used for a given trip, which can be burdensome. In order to alleviate this shortcoming, a data from the 2016 TRIPlab datasets has been used to train a variety of machine learning models to automatically recognize the mode of transportation. The accuracy of 89.6% is achieved using single deep neural network model with Gated Recurrent Unit (GRU) architecture applied directly to trip data points over 4 primary classes, namely walking, public transit, car, and bike. These results are comparable in accuracy to results achieved by others using ensemble methods and require far less computation when classifying new trips. The lack of trip context data, e.g., bus routes, bike paths, etc., and the need for only a single set of weights make this an appropriate methodology for applications hoping to reach a broad demographic and have responsive feedback.

Keywords: classification, gated recurrent unit, recurrent neural network, transportation

Procedia PDF Downloads 24
1088 Cross-Layer Design of Event-Triggered Adaptive OFDMA Resource Allocation Protocols with Application to Vehicle Clusters

Authors: Shaban Guma, Naim Bajcinca

Abstract:

We propose an event-triggered algorithm for the solution of a distributed optimization problem by means of the projected subgradient method. Thereby, we invoke an OFDMA resource allocation scheme by applying an event-triggered sensitivity analysis at the access point. The optimal resource assignment of the subcarriers to the involved wireless nodes is carried out by considering the sensitivity analysis of the overall objective function as defined by the control of vehicle clusters with respect to the information exchange between the nodes.

Keywords: consensus, cross-layer, distributed, event-triggered, multi-vehicle, protocol, resource, OFDMA, wireless

Procedia PDF Downloads 206
1087 Effects of Using a Recurrent Adverse Drug Reaction Prevention Program on Safe Use of Medicine among Patients Receiving Services at the Accident and Emergency Department of Songkhla Hospital Thailand

Authors: Thippharat Wongsilarat, Parichat tuntilanon, Chonlakan Prataksitorn

Abstract:

Recurrent adverse drug reactions are harmful to patients with mild to fatal illnesses, and affect not only patients but also their relatives, and organizations. To compare safe use of medicine among patients before and after using the recurrent adverse drug reaction prevention program . Quasi-experimental research with the target population of 598 patients with drug allergy history. Data were collected through an observation form tested for its validity by three experts (IOC = 0.87), and analyzed with a descriptive statistic (percentage). The research was conducted jointly with a multidisciplinary team to analyze and determine the weak points and strong points in the recurrent adverse drug reaction prevention system during the past three years, and 546, 329, and 498 incidences, respectively, were found. Of these, 379, 279, and 302 incidences, or 69.4; 84.80; and 60.64 percent of the patients with drug allergy history, respectively, were found to have caused by incomplete warning system. In addition, differences in practice in caring for patients with drug allergy history were found that did not cover all the steps of the patient care process, especially a lack of repeated checking, and a lack of communication between the multidisciplinary team members. Therefore, the recurrent adverse drug reaction prevention program was developed with complete warning points in the information technology system, the repeated checking step, and communication among related multidisciplinary team members starting from the hospital identity card room, patient history recording officers, nurses, physicians who prescribe the drugs, and pharmacists. Including in the system were surveillance, nursing, recording, and linking the data to referring units. There were also training concerning adverse drug reactions by pharmacists, monthly meetings to explain the process to practice personnel, creating safety culture, random checking of practice, motivational encouragement, supervising, controlling, following up, and evaluating the practice. The rate of prescribing drugs to which patients were allergic per 1,000 prescriptions was 0.08, and the incidence rate of recurrent drug reaction per 1,000 prescriptions was 0. Surveillance of recurrent adverse drug reactions covering all service providing points can ensure safe use of medicine for patients.

Keywords: recurrent drug, adverse reaction, safety, use of medicine

Procedia PDF Downloads 316
1086 Preparation on Sentimental Analysis on Social Media Comments with Bidirectional Long Short-Term Memory Gated Recurrent Unit and Model Glove in Portuguese

Authors: Leonardo Alfredo Mendoza, Cristian Munoz, Marco Aurelio Pacheco, Manoela Kohler, Evelyn Batista, Rodrigo Moura

Abstract:

Natural Language Processing (NLP) techniques are increasingly more powerful to be able to interpret the feelings and reactions of a person to a product or service. Sentiment analysis has become a fundamental tool for this interpretation but has few applications in languages other than English. This paper presents a classification of sentiment analysis in Portuguese with a base of comments from social networks in Portuguese. A word embedding's representation was used with a 50-Dimension GloVe pre-trained model, generated through a corpus completely in Portuguese. To generate this classification, the bidirectional long short-term memory and bidirectional Gated Recurrent Unit (GRU) models are used, reaching results of 99.1%.

Keywords: natural processing language, sentiment analysis, bidirectional long short-term memory, BI-LSTM, gated recurrent unit, GRU

Procedia PDF Downloads 35