Search results for: green catalysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2315

Search results for: green catalysis

845 Effect of Gel Concentration on Physical Properties of an Electrochromic Device

Authors: Sharan K. Indrakar, Aakash B. Prasad, Arash Takshi, Sesha Srinivasan, Elias K. Stefanakos

Abstract:

In this work, we present an exclusive study on the effect of the feeding ratio of polyaniline-based redox-active gel layer on electrical and optical properties of innovative electrochromic devices (ECs). An electrochromic device consisting of polyaniline (PANI) has a redox-active gel electrolyte placed between two conducting transparent fluorine-doped tin oxide glass substrates. The redox-active composite gel is a mixture of different concentrations of aniline (monomer), a water-soluble polymer poly (vinyl alcohol), hydrochloric acid, and an oxidant. The EC device shows the color change from dark green to transparent for the applied potential between -0.5 V to +2.0 V. The coloration and decoloration of the ECs were tested for electrochemical behavior using techniques such as cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). The optical transparency of the EC devices was examined at two different biasing voltage conditions under UV-visible spectroscopic technique; the result showed 65% transmittance at 564 nm and zero transmittance when the cell was biased at 0.0 V and 2.0 V, the synthesized mol fraction gel was analyzed for surface morphology and structural properties by scanning electron microscopy and Fourier transformer spectroscopy.

Keywords: electrochromic, gel electrolyte, polyaniline, conducting polymer

Procedia PDF Downloads 138
844 Biodiesel Production from Fruit Pulp of Cassia fistula L. Using Green Microalga Chlorella minutissima

Authors: Rajesh Chandra, Uttam K. Ghosh

Abstract:

This study demonstrates microalgal bio-diesel generation from a cheap, abundant, non-edible fruit pulp of Cassia fistula L. The Cassia fistula L. fruit pulp aqueous extract (CFAE) was utilized as a growth medium for cultivation of microalga Chlorella minutissima (C. minutissima). This microalga accumulated a high amount of lipids when cultivated with CFAE as a source of nutrition in comparison to BG-11 medium. Different concentrations (10, 20, 30, 40 and 50%) of CFAE diluted with distilled water were used to cultivate microalga. Effects of light intensity and photoperiod were also observed on biomass and lipid yield of microalga. Light intensity of 8000 lux with a photoperiod of 18 h resulted in maximum biomass and lipid yield of 1.28 ± 0.03 and 0.3968 ± 0.05 g/L, respectively when cultivated with 40% CFAE. Fatty acid methyl ester (FAME) profile of bio-diesel obtained shown the presence of myristic acid (C14:0), palmitic acid (C16:0), palmitoleic acid (C16:1), stearic acid (C18:0), linoleic acid (C18:2), linolenic acid (C18:3), arachidic acid (C20:0), and gondoic acid (C20:1), as major fatty acids. These facts reflect that the fruit pulp of Cassia fistula L. can be used for cultivation of C. minutissima.

Keywords: biomass, bio-diesel, Cassia fistula L., C. minutissima, GC-MS, lipid

Procedia PDF Downloads 156
843 Synthesis of Biostabilized Gold Nanoparticles Using Garcinia indica Extract and Its Antimicrobial and Anticancer Properties

Authors: Rebecca Thombre, Aishwarya Borate

Abstract:

Chemical synthesis of nanoparticles produces toxic by-products, as a result of which eco-friendly methods of synthesis are gaining importance. The synthesis of nanoparticles using plant derived extracts is economical, safe and eco-friendly. Biostabilized gold nanoparticles were synthesized using extracts of Garcinia indica. The gold nanoparticles were characterized using UV-Vis spectrophotometry and demonstrated a peak at 527 nm. The presence of plant derived peptides and phytoconstituents was confirmed using the FTIR spectra. TEM analysis revealed formation of gold nanopyramids and nanorods. The SAED analysis confirmed the crystalline nature of nanoparticles. The gold nanoparticles demonstrated antibacterial and antifungal activity against Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Aspergillus niger and Pichia pastoris. The cytotoxic activity of gold nanoparticles was studied using HEK, Hela and L929 cancerous cell lines and the apoptosis of cancerous cells were observed using propidium iodide staining. Thus, a simple and eco-friendly method for synthesis of biostabilized gold nanoparticles using fruit extracts of Garcinia indica was developed and the nanoparticles had potent antibacterial, antifungal and anticancer properties.

Keywords: cytotoxic, gold nanoparticles, green synthesis, Garcinia indica, anticancer

Procedia PDF Downloads 929
842 Functional Properties of Sunflower Protein Concentrates Extracted Using Different Anti-greening Agents - Low-Fat Whipping Cream Preparation

Authors: Tamer M. El-Messery

Abstract:

By-products from sunflower oil extraction, such as sunflower cakes, are rich sources of proteins with desirable functional properties for the food industry. However, challenges such as sensory drawbacks and the presence of phenolic compounds have hindered their widespread use. In this study, sunflower protein concentrates were obtained from sunflower cakes using different ant-greening solvents (ascorbic acid (ASC) and N-acetylcysteine (NAC)), and their functional properties were evaluated. The color of extracted proteins ranged from dark green to yellow, where the using of ASC and NAC agents enhanced the color. The protein concentrates exhibited high solubility (>70%) and antioxidant activity, with hydrophobicity influencing emulsifying activity. Emulsions prepared with these proteins showed stability and microencapsulation efficiency. Incorporation of protein concentrates into low-fat whipping cream formulations increased overrun and affected color characteristics. Rheological studies demonstrated pseudoplastic behavior in whipped cream, influenced by shear rates and protein content. Overall, sunflower protein isolates showed promising functional properties, indicating their potential as valuable ingredients in food formulations.

Keywords: functional properties, sunflower protein concentrates, antioxidant capacity, ant-greening agents, low-fat whipping cream

Procedia PDF Downloads 48
841 Use of Biomass as Co-Fuel in Briquetting of Low-Rank Coal: Strengthen the Energy Supply and Save the Environment

Authors: Mahidin, Yanna Syamsuddin, Samsul Rizal

Abstract:

In order to fulfill world energy demand, several efforts have been done to look for new and renewable energy candidates to substitute oil and gas. Biomass is one of new and renewable energy sources, which is abundant in Indonesia. Palm kernel shell is a kind of biomass discharge from palm oil industries as a waste. On the other hand, Jatropha curcas that is easy to grow in Indonesia is also a typical energy source either for bio-diesel or biomass. In this study, biomass was used as co-fuel in briquetting of low-rank coal to suppress the release of emission (such as CO, NOx and SOx) during coal combustion. Desulfurizer, CaO-base, was also added to ensure the SOx capture is effectively occurred. Ratio of coal to palm kernel shell (w/w) in the bio-briquette were 50:50, 60:40, 70:30, 80:20 and 90:10, while ratio of calcium to sulfur (Ca/S) in mole/mole were 1:1; 1.25:1; 1.5:1; 1.75:1 and 2:1. The bio-briquette then subjected to physical characterization and combustion test. The results show that the maximum weight loss in the durability measurement was ±6%. In addition, the highest stove efficiency for each desulfurizer was observed at the coal/PKS ratio of 90:10 and Ca/S ratio of 1:1 (except for the scallop shell desulfurizer that appeared at two Ca/S ratios; 1.25:1 and 1.5:1, respectively), i.e. 13.8% for the lime; 15.86% for the oyster shell; 14.54% for the scallop shell and 15.84% for the green mussel shell desulfurizers.

Keywords: biomass, low-rank coal, bio-briquette, new and renewable energy, palm kernel shell

Procedia PDF Downloads 445
840 The Use of Waste Fibers as Reinforcement in Biopolymer Green Composites

Authors: Dalila Hammiche, Lisa Klaai, Amar Boukerrou

Abstract:

Following this trend, natural fiber reinforcements have been gaining importance in the composites sector. The effectiveness of natural fiber–reinforced PLA composite as an alternative material to substitute the non-renewable petroleum-based materials has been examined by researchers. In this study, we investigated the physicochemical, particle size and distribution, and thermal behavior of prickly pear seed flour (PPSF). Then, composites were manufactured with 20% in PPSF. Thermal, morphological, and mechanical properties have been studied, and water absorption tests as well. The characterization of this fiber has shown that cellulose is the majority constituent (30%), followed by hemicellulose (27%). To improve the fiber-matrix adhesion, the PPS was chemically treated with alkali treatment. The addition of PPSF decreases the thermal properties, and the study of the mechanical properties showed that the increase in the fiber content from 0 to 20% increased Young’s modulus. According to the results, the mechanical and thermal behaviors of composites are improved after fiber treatment. However, there is an increase in water absorption of composites compared to the PLA matrix. The moisture sensitivity of natural fiber composites limits their use in structural applications. Degradation of the fiber-matrix interface is likely to occur when the material is subjected to variable moisture conditions.

Keywords: biopolymer, composites, alcali treatment, mechanical properties

Procedia PDF Downloads 127
839 Warm Mix and Reclaimed Asphalt Pavement: A Greener Road Approach

Authors: Lillian Gungat, Meor Othman Hamzah, Mohd Rosli Mohd Hasan, Jan Valentin

Abstract:

Utilization of a high percentage of reclaimed asphalt pavement (RAP) requires higher production temperatures and consumes more energy. High production temperature expedites the aging of bitumen in RAP, which could affect the mixture performance. Warm mix asphalt (WMA) additive enables reduced production temperatures as a result of viscosity reduction. This paper evaluates the integration of a high percentage of RAP with a WMA additive known as RH-WMA. The optimum dosage of RH-WMA was determined from basic properties tests. A total of 0%, 30% and 50% RAP contents from two roads sources were modified with RH-WMA. The modified RAP bitumen were examined for viscosity, stiffness, rutting resistance and greenhouse gas emissions. The addition of RH-WMA improved the flow of bitumen by reducing the viscosity, and thus, decreased the construction temperature. The stiffness of the RAP modified bitumen reduced with the incorporation of RH-WMA. The positive improvement in rutting resistance was observed on bitumen with the addition of RAP and RH-WMA in comparison with control. It was estimated that the addition of RH-WMA could potentially reduce fuel usage and GHG emissions by 22 %. Hence, the synergy of RAP and WMA technology can be an alternative in green road construction.

Keywords: reclaimed asphalt pavement, WMA additive, viscosity, stiffness, emissions

Procedia PDF Downloads 355
838 Fast-Modulated Surface-Confined Plasma for Catalytic Nitrogen Fixation and Energy Intensification

Authors: Pradeep Lamichhane, Nima Pourali, E. V. Rebrov, Volker Hessel

Abstract:

Nitrogen fixation is critical for plants for the biosynthesis of protein and nucleic acid. Most of our atmosphere is nitrogen, yet plants cannot directly absorb it from the air, and natural nitrogen fixation is insufficient to meet the demands. This experiment used a fast-modulated surface-confined atmospheric pressure plasma created by a 6 kV (peak-peak) sinusoidal power source with a repetition frequency of 68 kHz to fix nitrogen. Plasmas have been proposed for excitation of nitrogen gas, which quickly oxidised to NOX. With different N2/O2 input ratios, the rate of NOX generation was investigated. The rate of NOX production was shown to be optimal for mixtures of 60–70% O2 with N2. To boost NOX production in plasma, metal oxide catalysts based on TiO2 were coated over the dielectric layer of a reactor. These results demonstrate that nitrogen activation was more advantageous in surface-confined plasma sources because micro-discharges formed on the sharp edges of the electrodes, which is a primary function attributed to NOX synthesis and is further enhanced by metal oxide catalysts. The energy-efficient and sustainable NOX synthesis described in this study will offer a fresh perspective for ongoing research on green nitrogen fixation techniques.

Keywords: nitrogen fixation, fast-modulated, surface-confined, sustainable

Procedia PDF Downloads 107
837 Analysis of Relative Gene Expression Data of GATA3-AS1 Associated with Resistance to Neoadjuvant Chemotherapy in Locally Advanced Breast Cancer Patients of Luminal B Subtype

Authors: X. Cervantes-López, C. Arriaga-Canon, L. Contreras Espinosa

Abstract:

The goal of this study is to validate the overexpression of the lncRNA GATA3-AS1 associated with resistance to neoadjuvant chemotherapy of female patients with locally advanced mammary adenocarcinoma of luminal B subtype This study involved a cohort of one hundred thirty-seven samples for which total RNA was isolated from formalin fixed paraffin embedded (FFPE) tissue. Samples were cut using a Microtome Hyrax M25 Zeiss and RNA was isolated using the RNeasy FFPE kit and a deparaffinization solution, the next step consisted in the analysis of RNA concentration and quality, then 18 µg of RNA was treated with DNase I, and cDNA was synthesized from 50 ng total RNA, finally real-time PCR was performed with SYBR Green/ROX qPCR Master Mix in order to determined relative gene expression using RPS28 as a housekeeping gene to normalize in a fold calculation ΔCt. As a result, we validated by real-time PCR that the overexpression of the lncRNA GATA3-AS1 is associated with resistance to neoadjuvant chemotherapy in locally advanced breast cancer patients of luminal B subtype.

Keywords: breast cancer, biomarkers, genomics, neoadjuvant chemotherapy, lncRNAS

Procedia PDF Downloads 55
836 Urban Resilience: Relation between COVID-19 and Urban Environment in Amman City

Authors: Layla Mujahed

Abstract:

COVID-19 is an exam for all the city’s systems. It shows many gaps in the systems such as healthcare, economic, social, and environment. This pandemic is paving for a new era, an era of technology and it has changed people’s lives, such as physical, and emotional changes, and converting communication into digitalized. The effect of COVID-19 has covered all urban city parts. COVID-19 will not be the last pandemic our cities will face. For that, more researches focus on enhancing the quality of the urban environment. This pandemic encourages a rethinking of the environment’s role, especially in cities. Cities are trying to provide the best suitable strategies and regulations to prevent the spread of COVID-19, and an example of that is Amman city. Amman has a high increment in the number of COVID-19 infected people, while it has controlled the situation for months. For that, this paper studies the relation between COVID-19 and urban environmental studies cases about cities around the world, and learns from their models to face COVID-19. In Amman, people’s behavior has changed towards public transportation and public green spaces. N­ew governmental regulations focus on increasing people’s mental awareness, supporting local businesses, and enhancing neighborhood planning that can help Amman to face any future pandemics.

Keywords: COVID-19, urban environment, urban planning, urban resilience

Procedia PDF Downloads 123
835 Molecular Profiling of an Oleaginous Trebouxiophycean Alga Parachlorella kessleri Subjected to Nutrient Deprivation

Authors: Pannaga Pavan Jutur

Abstract:

Parachlorella kessleri, a marine unicellular green alga belonging to class Trebouxiophyceae, accumulates large amounts of oil, i.e., lipids under nutrient-deprived (-N, -P, and -S) conditions. Understanding their metabolic imprints is important for elucidating the physiological mechanisms of lipid accumulations in this microalga subjected to nutrient deprivation. Metabolic and lipidomic profiles were obtained respectively using gas chromatography-mass spectrometry (GC-MS) of P. kessleri under nutrient starvation (-N, -P and -S) conditions. Relative quantities of more than 100 metabolites were systematically compared in all these three starvation conditions. Our results demonstrate that in lipid metabolism, the quantities of neutral lipids increased significantly followed by the decrease in other metabolites involved in photosynthesis, nitrogen assimilation, etc. In conclusion, the metabolomics and lipidomic profiles have identified a few common metabolites such as citric acid, valine, and trehalose to play a significant role in the overproduction of oil by this microalga subjected to nutrient deprivation. Understanding the entire system through untargeted metabolome profiling will lead to identifying relevant metabolites involved in the biosynthesis and degradation of precursor molecules that may have the potential for biofuel production, aiming towards the vision of tomorrow’s bioenergy needs.

Keywords: algae, biofuels, nutrient stress, omics

Procedia PDF Downloads 277
834 Hybrid Treatment Method for Decolorization of Mixed Dyes: Rhodamine-B, Brilliant Green and Congo Red

Authors: D. Naresh Yadav, K. Anand Kishore, Bhaskar Bethi, Shirish H. Sonawane, D. Bhagawan

Abstract:

The untreated industrial wastewater discharged into the environment causes the contamination of soil, water and air. Advanced treatment methods for enhanced wastewater treatment are attracting substantial interest among the currently employed unit processes in wastewater treatment. The textile industry is one of the predominant in wastewater production at current industrialized situation. The refused dyes at textile industry need to be treated in proper manner before its discharge into water bodies. In the present investigation, hybrid treatment process has been developed for the treatment of synthetic mixed dye wastewater. Photocatalysis and ceramic nanoporous membrane are mainly used for process integration to minimize the fouling and increase the flux. Commercial semiconducting powders (TiO2 and ZnO) has used as a nano photocatalyst for the degradation of mixed dye in the hybrid system. Commercial ceramic nanoporous tubular membranes have been used for the rejection of dye and suspended catalysts. Photocatalysis with catalyst has shown the average of 34% of decolorization (RB-32%, BG-34% and CR-36%), whereas ceramic nanofiltration has shown the 56% (RB-54%, BG-56% and CR-58%) of decolorization. Integration of photocatalysis and ceramic nanofiltration has shown 96% (RB-94%, BG-96% and CR-98%) of dye decolorization over 90 min of operation.

Keywords: photocatalysis, ceramic nanoporous membrane, wastewater treatment, advanced oxidation process, process integration

Procedia PDF Downloads 264
833 Trade Outcomes of Agri-Environmental Regulations’ Heterogeneity: New Evidence from a Gravity Model

Authors: Najla Kamergi

Abstract:

In a world context of increasing interest in environmental issues, this paper investigates the effect of agri-environmental regulations heterogeneity on the volume of crop commodities’ exports using a theoretically justified gravity model of Anderson and van Wincoop (2003) for the 2003–2013 period. Our findings show that the difference in exporter and importer environmental regulations is more relevant to agricultural trade than trade agreements. In fact, the environmental gap between the two partners is decreasing slightly but significantly crop commodities’ exports according to our results. We also note that the sector of fruit and vegetables is more sensitive to this determinant, unlike cereals that remain relatively less affected. Furthermore, high-income countries have more tendency to trade with countries characterized by similar environmental stringency. Further results show that the BRICS are clearly importing from developed countries where the environmental difference is relatively important. It is likely that emerging countries are witnessing a growing demand for high-quality and “green” crop commodities captured by high-income exporters. Surprisingly, our results suggest that low and middle-income countries with the same level of environmental stringency are more likely to trade crop commodities.

Keywords: agricultural trade, environment, gravity model, food crops, agri-environmental efficiency, DEA

Procedia PDF Downloads 137
832 Impact Factor of Annealing on Electrical Properties of Zinc Selenide (ZnSe) Thin Films

Authors: Esubalew Yehualaw Melaku, Tizazu Abeza

Abstract:

ZnSe thin films in an aqueous solution of zinc acetate and hydrazine hydrate (HH) using the non-toxic complexing agent EDTA along with the films were annealed at 200, 300, and 400oC. This research aimed to investigate the effect of annealing on the structural, optical, and electrical properties of the films. X-ray diffraction (XRD) analysis was used to study the structure and crystallite size of the ZnSe thin film. The ZnSe thin films are annealed in an oven at various temperatures which are characterized by structural and optical properties. An increase in annealing temperature distorted the nanocrystillinity and made the ZnSe thin films amorphous. The variation of resistivity indicates the semiconducting nature of the thin film. The electrical resistivity of the films decreases with increasing annealing temperature. In this study, the Band gap of ZnSe decreases from 2.8eV to 2.65eV with the increase in temperature and decreases for as-deposited to 2.5eV. As a result of this research, ZnSe is used for certain applications; it has been widely utilized in various optoelectronic devices such as thin film solar cells, green-blue light emitting diodes, lasers, photo-luminescent, and electro-luminescent devices.

Keywords: chemical bath deposition, ZnSe thin film, band gap, solar cells

Procedia PDF Downloads 132
831 Ecosystem Services Assessment for Urban Nature-Based Solutions Implemented in the Public Space: Case Study of Alhambra Square in Bogotá, Colombia

Authors: Diego Sánchez, Sandra M. Aguilar, José F. Gómez, Gustavo Montaño, Laura P. Otero, Carlos V. Rey, José A. Martínez, Juliana Robles, Jorge E. Burgos, Juan S. López

Abstract:

Bogota is making efforts towards urban resilience through Nature-based Solutions (NbS) incorporation in public projects as a climate change resilience strategy. The urban renovation project on the Alhambra square includes Green Infrastructure (GI), like Sustainable Urban Drainage Systems (SUDS) and Urban Trees (UT), as ecosystem services (ES) boosters. This study analyzes 3 scenarios: (1) the initial situation without NbS, (2) the expected situation including NbS in the design and (3) the projection of the second one after 30 years, calculating the ecosystem services, the stormwater management benefits provided by SUDS and the cultural services. The obtained results contribute to the understanding of the urban NbS benefits in public spaces, providing valuable information to foster investment in sustainable projects and encouraging policy makers to integrate NbS in urban planning.

Keywords: ecosystem services, nature-based solutions, stormwater management, sustainable urban drainage systems

Procedia PDF Downloads 158
830 Networks, Regulations and Public Action: The Emerging Experiences of Sao Paulo

Authors: Lya Porto, Giulia Giacchè, Mario Aquino Alves

Abstract:

The paper aims to describe the linkage between government and civil society proposing a study on agro-ecological agriculture policy and urban action in São Paulo city underling the main achievements obtained. The negotiation processes between social movements and the government (inputs) and its results on political regulation and public action for Urban Agriculture (UA) in São Paulo city (outputs) have been investigated. The method adopted is qualitative, with techniques of semi-structured interviews, participant observation, and documental analysis. The authors conducted 30 semi-structured interviews with organic farmers, activists, governmental and non-governmental managers. Participant observation was conducted in public gardens, urban farms, public audiences, democratic councils, and social movements meetings. Finally, public plans and laws were also analyzed. São Paulo city with around 12 million inhabitants spread out in a 1522 km2 is the economic capital of Brazil, marked by spatial and socioeconomic segregation, currently aggravated by environmental crisis, characterized by water scarcity, pollution, and climate changes. In recent years, Urban Agriculture (UA) social movements gained strength and struggle for a different city with more green areas, organic food production, and public occupation. As the dynamics of UA occurs by the action of multiple actresses and institutions that struggle to build multiple senses on UA, the analysis will be based on literature about solidarity economy, governance, public action and networks. Those theories will mark out the analysis that will emphasize the approach of inter-subjectivity built between subjects, as well as the hybrid dynamics of multiple actors and spaces in the construction of policies for UA. Concerning UA we identified four main typologies based on land ownership, main function (economic or activist), form of organization of the space, and type of production (organic or not). The City Hall registers 500 productive unities of agriculture, with around 1500 producers, but researcher estimated a larger number of unities. Concerning the social movements we identified three categories that differ in goals and types of organization, but all of them work by networks of activists and/or organizations. The first category does not consider themselves as a movement, but a network. They occupy public spaces to grow organic food and to propose another type of social relations in the city. This action is similar to what became known as the green guerrillas. The second is configured as a movement that is structured to raise awareness about agro-ecological activities. The third one is a network of social movements, farmers, organizations and politicians that work focused on pressure and negotiation with executive and legislative government to approve regulations and policies on organic and agro-ecological Urban Agriculture. We conclude by highlighting how the interaction among institutions and civil society produced important achievements for recognition and implementation of UA within the city. Some results of this process are awareness for local production, legal and institutional recognition of the rural zone around the city into the planning tool, the investment on organic school public procurements, the establishment of participatory management of public squares, the inclusion of UA on Municipal Strategic Plan and Master Plan.

Keywords: public action, policies, agroecology, urban and peri-urban agriculture, Sao Paulo

Procedia PDF Downloads 294
829 Sonication as a Versatile Tool for Photocatalysts’ Synthesis and Intensification of Flow Photocatalytic Processes Within the Lignocellulose Valorization Concept

Authors: J. C. Colmenares, M. Paszkiewicz-Gawron, D. Lomot, S. R. Pradhan, A. Qayyum

Abstract:

This work is a report of recent selected experiments of photocatalysis intensification using flow microphotoreactors (fabricated by an ultrasound-based technique) for photocatalytic selective oxidation of benzyl alcohol (BnOH) to benzaldehyde (PhCHO) (in the frame of the concept of lignin valorization), and the proof of concept of intensifying a flow selective photocatalytic oxidation process by acoustic cavitation. The synthesized photocatalysts were characterized by using different techniques such as UV-Vis diffuse reflectance spectroscopy, X-ray diffraction, nitrogen sorption, thermal gravimetric analysis, and transmission electron microscopy. More specifically, the work will be on: a Design and development of metal-containing TiO₂ coated microflow reactor for photocatalytic partial oxidation of benzyl alcohol: The current work introduces an efficient ultrasound-based metal (Fe, Cu, Co)-containing TiO₂ deposition on the inner walls of a perfluoroalkoxy alkanes (PFA) microtube under mild conditions. The experiments were carried out using commercial TiO₂ and sol-gel synthesized TiO₂. The rough surface formed during sonication is the site for the deposition of these nanoparticles in the inner walls of the microtube. The photocatalytic activities of these semiconductor coated fluoropolymer based microreactors were evaluated for the selective oxidation of BnOH to PhCHO in the liquid flow phase. The analysis of the results showed that various features/parameters are crucial, and by tuning them, it is feasible to improve the conversion of benzyl alcohol and benzaldehyde selectivity. Among all the metal-containing TiO₂ samples, the 0.5 at% Fe/TiO₂ (both, iron and titanium, as cheap, safe, and abundant metals) photocatalyst exhibited the highest BnOH conversion under visible light (515 nm) in a microflow system. This could be explained by the higher crystallite size, high porosity, and flake-like morphology. b. Designing/fabricating photocatalysts by a sonochemical approach and testing them in the appropriate flow sonophotoreactor towards sustainable selective oxidation of key organic model compounds of lignin: Ultrasonication (US)-assitedprecipitaion and US-assitedhydrosolvothermal methods were used for the synthesis of metal-oxide-based and metal-free-carbon-based photocatalysts, respectively. Additionally, we report selected experiments of intensification of a flow photocatalytic selective oxidation through the use of ultrasonic waves. The effort of our research is focused on the utilization of flow sonophotocatalysis for the selective transformation of lignin-based model molecules by nanostructured metal oxides (e.g., TiO₂), and metal-free carbocatalysts. A plethora of parameters that affects the acoustic cavitation phenomena, and as a result the potential of sonication were investigated (e.g. ultrasound frequency and power). Various important photocatalytic parameters such as the wavelength and intensity of the irradiated light, photocatalyst loading, type of solvent, mixture of solvents, and solution pH were also optimized.

Keywords: heterogeneous photo-catalysis, metal-free carbonaceous materials, selective redox flow sonophotocatalysis, titanium dioxide

Procedia PDF Downloads 101
828 Production of Spherical Cementite within Bainitic Matrix Microstructures in High Carbon Powder Metallurgy Steels

Authors: O. Altuntaş, A. Güral

Abstract:

The hardness-microstructure relationships of spherical cementite in bainitic matrix obtained by a different heat treatment cycles carried out to high carbon powder metallurgy (P/M) steel were investigated. For this purpose, 1.5 wt.% natural graphite powder admixed in atomized iron powders and the mixed powders were compacted under 700 MPa at room temperature and then sintered at 1150 °C under a protective argon gas atmosphere. The densities of the green and sintered samples were measured via the Archimedes method. A density of 7.4 g/cm3 was obtained after sintering and a density of 94% was achieved. The sintered specimens having primary cementite plus lamellar pearlitic structures were fully quenched from 950 °C temperature and then over-tempered at 705 °C temperature for 60 minutes to produce spherical-fine cementite particles in the ferritic matrix. After by this treatment, these samples annealed at 735 °C temperature for 3 minutes were austempered at 300 °C salt bath for a period of 1 to 5 hours. As a result of this process, it could be able to produced spherical cementite particle in the bainitic matrix. This microstructure was designed to improve wear and toughness of P/M steels. The microstructures were characterized and analyzed by SEM and micro and macro hardness.

Keywords: powder metallurgy steel, bainite, cementite, austempering and spheroidization heat treatment

Procedia PDF Downloads 161
827 Redefinition of Village Landscape with Ruins-Taking Cunwei Village in Nanping City, Fujian Province as Example

Authors: Siyu Bu, Jie Wang, Yajing Jiang

Abstract:

Nowadays, villages still occupying 94.7% of the national territorial area (almost nine million square kilometers) of China. Some of them are meeting urbanization and grow as satellite; however, others are witnessing more and more citizens swarming into with nostalgia, seek enjoyment from the beautiful green countryside. In villages, new types of house come and we see billions of old houses lay unused, or even be dying at every second, which cause a lot of 'bad palaces', decadent and dangerous. In this context, there are lots of tries for gearing villages in China. This article deconstructs the traditional village house to excavate its’ landscape potential for future. By research in CunWei Village, Nanping City, Fujian Province, China, a method of reconstruction of old houses comes out: the wreckage will be a strong landscape, showing the great beauty of nature. It will be a better use of the old material as well as the space pattern. It was supposed to gain a juxtaposition of traditional village life and modern social life by offering possibilities of multiple event, replacing the bad space to attractive one by strengthen the old structures without destroy traditional patterns. Furthermore , this method acts as an exploring for building redefinition of village landscape that fit Chinese villages, using local nature resource and traditional construction logic.

Keywords: juxtaposition, replace, village, ruins

Procedia PDF Downloads 251
826 Protein Derived Biodegradable Food Packaging Material from Poultry By-Product

Authors: Muhammad Zubair, Aman Ullah, Jianping Wu

Abstract:

During the last decades, petroleum derived synthetic polymers like polyethylene terephthalate, polyvinylchloride, polyethylene, polypropylene and polystyrene has extensively been used in the field of food packaging and mostly are non-degradable. Biopolymers are a good fit for single-use or short-lived products such as food packaging. Spent hens, a poultry by-product which is of little economic value and their disposal are environmentally harmful. Through current study, we have explored the possibility to transform proteins from spent fowl into green food packaging material. Proteins from spent fowl were extracted within 1 hour using pH shift method with recovery of about 74%. Different plasticizers were tried like glycerol, sorbitol, glutaraldehyde, 1,2 ethylene glycol and 1,2 butanediol. Glycerol was the best plasticizer among all these plasticizers. A naturally occurring and non-toxic cross-linking agent, chitosan, was used to form the chitosan/glycerol/protein blend by casting and compression molding techniques. The mechanical properties were characterized using tensile strength analyzer. The nano-reinforcements with homogeneous dispersion of nanoparticles lead to improved physical properties suggesting that these materials have great potential for food packaging applications.

Keywords: differential scanning calorimetry, dynamic mechanical analysis, scanning electron microscopy, spent hen

Procedia PDF Downloads 276
825 Comparison of Real-Time PCR and FTIR with Chemometrics Technique in Analysing Halal Supplement Capsules

Authors: Mohd Sukri Hassan, Ahlam Inayatullah Badrul Munir, M. Husaini A. Rahman

Abstract:

Halal authentication and verification in supplement capsules are highly required as the gelatine available in the market can be from halal or non-halal sources. It is an obligation for Muslim to consume and use the halal consumer goods. At present, real-time polymerase chain reaction (RT-PCR) is the most common technique being used for the detection of porcine and bovine DNA in gelatine due to high sensitivity of the technique and higher stability of DNA compared to protein. In this study, twenty samples of supplements capsules from different products with different Halal logos were analyzed for porcine and bovine DNA using RT-PCR. Standard bovine and porcine gelatine from eurofins at a range of concentration from 10-1 to 10-5 ng/µl were used to determine the linearity range, limit of detection and specificity on RT-PCR (SYBR Green method). RT-PCR detected porcine (two samples), bovine (four samples) and mixture of porcine and bovine (six samples). The samples were also tested using FT-IR technique where normalized peak of IR spectra were pre-processed using Savitsky Golay method before Principal Components Analysis (PCA) was performed on the database. Scores plot of PCA shows three clusters of samples; bovine, porcine and mixture (bovine and porcine). The RT-PCR and FT-IR with chemometrics technique were found to give same results for porcine gelatine samples which can be used for Halal authentication.

Keywords: halal, real-time PCR, gelatine, chemometrics

Procedia PDF Downloads 241
824 Value Added by Spirulina Platensis in Two Different Diets on Growth Performance, Gut Microbiota, and Meat Quality of Japanese Quails

Authors: Mohamed Yusuf

Abstract:

Aim: The growth promoting the effect of the blue-green filamentous alga Spirulina platensis (SP) was observed on meat type Japanese quail with antibiotic growth promoter alternative and immune enhancing power. Materials and Methods: This study was conducted on 180 Japanese quail chicks for 4 weeks to find out the effect of diet type (vegetarian protein diet [VPD] and fish meal protein diet [FMPD])- Spirulina dose interaction (1 or 2 g/kg diet) on growth performance, gut microbiota, and sensory meat quality of growing Japanese quails (1-5 weeks old). Results: Data revealed improvement (p<0.05) of weight gain, feed conversion ratio, and European efficiency index due to 1, 2 g (SP)/kg VPD, and 2 g (SP)/kg FMPD, respectively. There was a significant decrease of ileum mean pH value by 1 g(SP)/kg VPD. Concerning gut microbiota, there was a trend toward an increase in Lactobacilli count in both 1; 2 g (SP)/kgVPD and 2 g (SP)/kg FMPD. It was concluded that 1 or 2 g (SP)/kg vegetarian diet may enhance parameters of performance without obvious effect on both meat quality and gut microbiota. Moreover, 1 and/or 2 g (SP) may not be invited to share fishmeal based diet for growing Japanese quails. Conclusion: Using of SP will support the profitable production of Japanese quails fed vegetable protein diet.

Keywords: isocaloric, isonitrogenous, meat quality, performances, quails, spirulina, spirulina

Procedia PDF Downloads 250
823 Art, Space and Nature in Design: Analysing the Perception of Landscape Architecture Students

Authors: M. Danial Ismail, Turkan Sultan Yasar Ismail, Mehmet Cetin

Abstract:

Eco-design issues are seldom addressed as a major importance in most projects in Turkey. Cities undergo a rapid urban expansion with less awareness and focus on green spaces. The aim of this paper is firstly to analyse the graduating landscape architecture students of Kastamonu University’s perception on the new course content that discusses the relationship of art, space and nature in the context of landscape architectural design using the perception analysis methodology. Secondly, this paper also addresses how these elements synthesize together in an artistic perception in concept and form. In this study, a new coursework subject was introduced as a part of the curriculum for the 4th year students of the undergraduate program and project proposals dealing with the concept of art, space and nature were discussed and graded. Simulations of contemporary art installations in gallery spaces are built upon the concept of critical awareness to ecological problems. These concepts and simulations are important as they will influence future developments and projects. This paper will give an insight to scholars and professionals regarding new concepts of multidisciplinary education strategies and its positive effects on critical and creative design thinking within the scope of ecological design.

Keywords: art, ecological design, landscape architecture curriculum, space and nature

Procedia PDF Downloads 346
822 Recycling of Polymers in the Presence of Nanocatalysts: A Green Approach towards Sustainable Environment

Authors: Beena Sethi

Abstract:

This work involves the degradation of plastic waste in the presence of three different nanocatalysts. A thin film of LLDPE was formed with all three nanocatalysts separately in the solvent. Thermo Gravimetric Analysis (TGA) and Differential Scanning Calorimetric (DSC) analysis of polymers suggest that the presence of these catalysts lowers the degradation temperature and the change mechanism of degradation. Gas chromatographic analysis was carried out for two films. In gas chromatography (GC) analysis, it was found that degradation of pure polymer produces only 32% C3/C4 hydrocarbons and 67.6% C5/C9 hydrocarbons. In the presence of these catalysts, more than 80% of polymer by weight was converted into either liquid or gaseous hydrocarbons. Change in the mechanism of degradation of polymer was observed therefore more C3/C4 hydrocarbons along with valuable feedstock are produced. Adjustment of dose of nanocatalyst, use of nano-admixtures and recycling of catalyst can make this catalytic feedstock recycling method a good tool to get sustainable environment. The obtained products can be utilized as fuel or can be transformed into other useful products. In accordance with the principles of sustainable development, chemical recycling i.e. tertiary recycling of polymers along with the reuse (zero order recycling) of plastics can be the most appropriate and promising method in this direction. The tertiary recycling is attracting much attention from the viewpoint of the energy resource.

Keywords: degradation, differential scanning calorimetry, feedstock recycling, gas chromatography, thermogravimetric analysis

Procedia PDF Downloads 422
821 A Technical and Economic Feasibility Study of the Use of Concentrating Solar Power (CSP) in Desalination Plants on the Kenyan Coast

Authors: Kathy Mwende Kiema, Remember Samu, Murat Fahrioglu

Abstract:

Despite the implementation of a Feed in Tariff (FiT) for solar power plants in Kenya, the uptake and subsequent development of utility scale power plants has been slow. This paper, therefore, proposes a Concentrating Solar Power (CSP) plant configuration that can supply both power to the grid and operate a sea water desalination plant, thus providing an economically viable alternative to Independent Power Producers (IPPs). The largest city on the coast, Mombasa, has a chronic water shortage and authorities are looking to employ desalination plants to supply a deficit of up to 100 million cubic meters of fresh water per day. In this study the desalination plant technology was selected based on an analysis of operational costs in $/m3 of plants that are already running. The output of the proposed CSP plant, Net Present Value (NPV), plant capacity factor, thermal efficiency and quantity of CO2 emission avoided were simulated using Greenius software (Green energy system analysis tool) developed by the institute of solar research at the German Aerospace Center (DLR). Data on solar irradiance were derived from the Solar and Wind Energy Resource Assessment (SWERA) for Kenya.

Keywords: desalination, feed in tariff, independent power producer, solar CSP

Procedia PDF Downloads 285
820 A Review on Parametric Optimization of Casting Processes Using Optimization Techniques

Authors: Bhrugesh Radadiya, Jaydeep Shah

Abstract:

In Indian foundry industry, there is a need of defect free casting with minimum production cost in short lead time. Casting defect is a very large issue in foundry shop which increases the rejection rate of casting and wastage of materials. The various parameters influences on casting process such as mold machine related parameters, green sand related parameters, cast metal related parameters, mold related parameters and shake out related parameters. The mold related parameters are most influences on casting defects in sand casting process. This paper review the casting produced by foundry with shrinkage and blow holes as a major defects was analyzed and identified that mold related parameters such as mold temperature, pouring temperature and runner size were not properly set in sand casting process. These parameters were optimized using different optimization techniques such as Taguchi method, Response surface methodology, Genetic algorithm and Teaching-learning based optimization algorithm. Finally, concluded that a Teaching-learning based optimization algorithm give better result than other optimization techniques.

Keywords: casting defects, genetic algorithm, parametric optimization, Taguchi method, TLBO algorithm

Procedia PDF Downloads 728
819 Unconventional Strategies for Combating Multidrug Resistant Bacterial Biofilms

Authors: Soheir Mohamed Fathey

Abstract:

Biofilms are complex biological communities which are hard to be eliminated by conventional antibiotic administration and implemented in eighty percent of humans infections. Green remedies have been used for centuries and have shown obvious effects in hindering and combating microbial biofilm infections. Nowadays, there has been a growth in the number of researches on the anti-biofilm performance of natural agents such as plant essential oil (EOs) and propolis. In this study, we investigated the antibiofilm performance of various natural agents, including four essential oils (EOs), cinnamon (Cinnamomum cassia), tea tree (Melaleuca alternifolia), and clove (Syzygium aromaticum), as well as propolis versus the biofilm of both Gram-positive pathogenic bacterium Staphylococcus aureus and Gram-negative pathogenic bacterium Pseudomonas aeruginosa which are major human and animal pathogens rendering a high risk due to their biofilm development ability. The antibiofilm activity of the tested agents was evaluated by crystal violet staining assay and detected by scanning electron and fluorescent microscopy. Antibiofilm performance declared a potent effect of the tested products versus the tested bacterial biofilms.

Keywords: biofilm, essential oils, electron microscopy, fluorescent

Procedia PDF Downloads 96
818 Planning Strategies for Urban Flood Mitigation through Different Case Studies of Best Practices across the World

Authors: Bismina Akbar, Smitha M. V.

Abstract:

Flooding is a global phenomenon that causes widespread devastation, economic damage, and loss of human lives. In the past twenty years, the number of reported flood events has increased significantly. Millions of people around the globe are at risk of flooding from coastal, dam breaks, groundwater, and urban surface water and wastewater sources. Climate change is one of the important causes for them since it affects, directly and indirectly, the river network. Although the contribution of climate change is undeniable, human contributions are there to increase the frequency of floods. There are different types of floods, such as Flash floods, Coastal floods, Urban floods, River (or fluvial) floods, and Ponding (or pluvial flooding). This study focuses on formulating mitigation strategies for urban flood risk reduction through analysis of different best practice case studies, including China, Japan, Indonesia, and Brazil. The mitigation measures suggest that apart from the structural and non-structural measures, environmental considerations like blue-green solutions are beneficial for flood risk reduction. And also, Risk-Informed Master plans are essential nowadays to take risk-based decision processes that enable more sustainability and resilience.

Keywords: hazard, mitigation, risk reduction, urban flood

Procedia PDF Downloads 77
817 Utilization of Functionalized Biochar from Water Hyacinth (Eichhornia crassipes) as Green Nano-Fertilizers

Authors: Adewale Tolulope Irewale, Elias Emeka Elemike, Christian O. Dimkpa, Emeka Emmanuel Oguzie

Abstract:

As the global population steadily approaches the 10billion mark, the world is currently faced with two major challenges among others – accessing sustainable and clean energy, and food security. Accessing cleaner and sustainable energy sources to drive global economy and technological advancement, and feeding the teeming human population require sustainable, innovative, and smart solutions. To solve the food production problem, producers have relied on fertilizers as a way of improving crop productivity. Commercial inorganic fertilizers, which is employed to boost agricultural food production, however, pose significant ecological sustainability and economic problems including soil and water pollution, reduced input efficiency, development of highly resistant weeds, micronutrient deficiency, soil degradation, and increased soil toxicity. These ecological and sustainability concerns have raised uncertainties about the continued effectiveness of conventional fertilizers. With the application of nanotechnology, plant biomass upcycling offers several advantages in greener energy production and sustainable agriculture through reduction of environmental pollution, increasing soil microbial activity, recycling carbon thereby reducing GHG emission, and so forth. This innovative technology has the potential for a circular economy and creating a sustainable agricultural practice. Nanomaterials have the potential to greatly enhance the quality and nutrient composition of organic biomass which in turn, allows for the conversion of biomass into nanofertilizers that are potentially more efficient. Water hyacinth plant harvested from an inland water at Warri, Delta State Nigeria were air-dried and milled into powder form. The dry biomass were used to prepare biochar at a pre-determined temperature in an oxygen deficient atmosphere. Physicochemical analysis of the resulting biochar was carried out to determine its porosity and general morphology using the Scanning Transmission Electron Microscopy (STEM). The functional groups (-COOH, -OH, -NH2, -CN, -C=O) were assessed using the Fourier Transform InfraRed Spectroscopy (FTIR) while the heavy metals (Cr, Cu, Fe, Pb, Mg, Mn) were analyzed using Inductively Coupled Plasma – Optical Emission Spectrometry (ICP-OES). Impregnation of the biochar with nanonutrients were achieved under varied conditions of pH, temperature, nanonutrient concentrations and resident time to achieve optimum adsorption. Adsorption and desorption studies were carried out on the resulting nanofertilizer to determine kinetics for the potential nutrients’ bio-availability to plants when used as green fertilizers. Water hyacinth (Eichhornia crassipes) which is an aggressively invasive aquatic plant known for its rapid growth and profusion is being examined in this research to harness its biomass as a sustainable feedstock to formulate functionalized nano-biochar fertilizers, offering various benefits including water hyacinth biomass upcycling, improved nutrient delivery to crops and aquatic ecosystem remediation. Altogether, this work aims to create output values in the three dimensions of environmental, economic, and social benefits.

Keywords: biochar-based nanofertilizers, eichhornia crassipes, greener agriculture, sustainable ecosystem, water hyacinth

Procedia PDF Downloads 65
816 In vitro Antioxidant and DNA Protectant Activity of Different Skin Colored Eggplant (Solanum melongena)

Authors: K. M. Somawathie, V. Rizliya, H. A. M. Wickrmasinghe, Terrence Madhujith

Abstract:

The main objective of our study was to determine the in vitro antioxidant and DNA protectant activity of aqueous extract of S. melongena with different skin colors; dark purple (DP), moderately purple (MP), light purple (LP) and purple and green (PG). The antioxidant activity was evaluated using the DPPH and ABTS free radical scavenging assay, ferric reducing antioxidant power (FRAP), ferric thiocyanate (FTC) and the egg yolk model. The effectiveness of eggplant extracts against radical induced DNA damage was also determined. There was a significant difference (p < 0.0001) between the skin color and antioxidant activity. TPC and FRAP values of eggplant extracts ranged from 48.67±0.27-61.11±0.26 (mg GAE/100 g fresh weight) and 4.19±0.11-7.46±0.26 (mmol of FeS04/g of fresh weight) respectively. MP displayed the highest percentage of DPPH radical scavenging activity while, DP demonstrated the strongest total antioxidant capacity. In the FTC and egg yolk model, DP and MP showed better antioxidant activity than PG and LP. All eggplant extracts showed potent antioxidant activity in retaining DNA against AAPH mediated radical damage. DP and MP demonstrated better antioxidant activity which may be attributed to the higher phenolic content since a positive correlation was observed between the TPC and the antioxidant parameters.

Keywords: Solanum melongena, skin color, antioxidant, DNA protection, lipid peroxidation

Procedia PDF Downloads 431