Search results for: roof materials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6911

Search results for: roof materials

6791 Recycling Carbon Fibers/Epoxy Composites Wastes in Building Materials Based on Geopolymer Binders

Authors: A. Saccani, I. Lancellotti, E. Bursi

Abstract:

Scraps deriving from the production of epoxy-carbon fibers composites have been recycled as a reinforcement to produce building materials. Short chopped fibers (5-7 mm length) have been added at low volume content (max 10%) to produce mortars. The microstructure, mechanical properties (mainly flexural strength) and dimensional stability of the derived materials have been investigated. Two different types of matrix have been used: one based on conventional Portland Cement and the other containing geopolymers formed starting from activated metakaolin and fly ashes. In the second case the materials is almost completely made of recycled ingredients. This is an attempt to produce reliable materials solving waste disposal problems. The first collected results show promising results.

Keywords: building materials, carbon fibres, fly ashes, geopolymers

Procedia PDF Downloads 140
6790 The Eco-Efficient Construction: A Review of Embodied Energy in Building Materials

Authors: Francesca Scalisi, Cesare Sposito

Abstract:

The building construction industry consumes a large amount of resources and energy, both during construction (embodied energy) and during the operational phase (operating energy). This paper presents a review of the literature on low carbon and low embodied energy materials in buildings. The embodied energy comprises the energy consumed during the extraction, processing, transportation, construction, and demolition of building materials. While designing a nearly zero energy building, it is necessary to choose and use materials, components, and technologies that allow to reduce the consumption of energy and also to reduce the emissions in the atmosphere during all the Life Cycle Assessment phases. The appropriate choice of building materials can contribute decisively to reduce the energy consumption of the building sector. The increasing worries for the environmental impact of construction materials are witnessed by a lot of studies. The mentioned worries have brought again the attention towards natural materials. The use of more sustainable construction materials and construction techniques represent a major contribution to the eco-efficiency of the construction industry and thus to a more sustainable development.

Keywords: embodied energy, embodied carbon, life cycle assessment, architecture, sustainability, material construction

Procedia PDF Downloads 318
6789 Study of the Energy Efficiency of Buildings under Tropical Climate with a View to Sustainable Development: Choice of Material Adapted to the Protection of the Environment

Authors: Guarry Montrose, Ted Soubdhan

Abstract:

In the context of sustainable development and climate change, the adaptation of buildings to the climatic context in hot climates is a necessity if we want to improve living conditions in housing and reduce the risks to the health and productivity of occupants due to thermal discomfort in buildings. One can find a wide variety of efficient solutions but with high costs. In developing countries, especially tropical countries, we need to appreciate a technology with a very limited cost that is affordable for everyone, energy efficient and protects the environment. Biosourced insulation is a product based on plant fibers, animal products or products from recyclable paper or clothing. Their development meets the objectives of maintaining biodiversity, reducing waste and protecting the environment. In tropical or hot countries, the aim is to protect the building from solar thermal radiation, a source of discomfort. The aim of this work is in line with the logic of energy control and environmental protection, the approach is to make the occupants of buildings comfortable, reduce their carbon dioxide emissions (CO2) and decrease their energy consumption (energy efficiency). We have chosen to study the thermo-physical properties of banana leaves and sawdust, especially their thermal conductivities, direct measurements were made using the flash method and the hot plate method. We also measured the heat flow on both sides of each sample by the hot box method. The results from these different experiences show that these materials are very efficient used as insulation. We have also conducted a building thermal simulation using banana leaves as one of the materials under Design Builder software. Air-conditioning load as well as CO2 release was used as performance indicator. When the air-conditioned building cell is protected on the roof by banana leaves and integrated into the walls with solar protection of the glazing, it saves up to 64.3% of energy and avoids 57% of CO2 emissions.

Keywords: plant fibers, tropical climates, sustainable development, waste reduction

Procedia PDF Downloads 161
6788 Mathematical Analysis of Matrix and Filler Formulation in Composite Materials

Authors: Olusegun A. Afolabi, Ndivhuwo Ndou

Abstract:

Composite material is an important area that has gained global visibility in many research fields in recent years. Composite material is the combination of separate materials with different properties to form a single material having different properties from the parent materials. Material composition and combination is an important aspect of composite material. The focus of this study is to provide insight into an easy way of calculating the compositions and formulations of constituent materials that make up any composite material. The compositions of the matrix and filler used for fabricating composite materials are taken into consideration. From the composite fabricated, data can be collected and analyzed based on the test and characterizations such as tensile, flexural, compression, impact, hardness, etc. Also, the densities of the matrix and the filler with regard to their constituent materials are discussed.

Keywords: composite material, density, filler, matrix, percentage weight, volume fraction

Procedia PDF Downloads 43
6787 Synthesis of Solid Polymeric Materials by Maghnite-H⁺ as a Green Catalyst

Authors: Draoua Zohra, Harrane Amine

Abstract:

The Solid Polymeric Materials have been successfully prepared by the copolymerization of e-caprolactone (CL) and poly (ethylene glycol) (PEG) employing Maghnite-H+ at 80°C. Maghnite-H+ is a solid catalyst non-toxic. The presence of PEG chains leads to a break in the growth of PCL chains and consequently leads to the copolymer tri-block PCL-PEG-PCL. The objective of this study was to synthesize and characterize of Solid Polymeric Materials. The highly hydrophilic nature of polyethylene glycol has sparked our interest in developing a Solid Polymeric based e-caprolactone and poly (ethylene glycol). PCL and PEG are biocompatible materials. Their ring-opening copolymerization using Maghnite H+ makes to the Solid Polymeric Materials. The morphology and structure of Solid polymeric Materials were characterized by ¹H and ¹³C-NMR spectra and Gel Permeation Chromatography (GPC). This paper developed the application of Maghnite-H+ as an efficient catalyst by an easy-to-handle procedure to get solid polymeric materials. A cationic mechanism for the copolymerization reaction was proposed.

Keywords: block copolymers, maghnite, montmorillonite, poly(e-caprolactone)

Procedia PDF Downloads 143
6786 Rainwater Management in Smart City: Focus in Gomti Nagar Region, Lucknow, Uttar Pradesh, India

Authors: Priyanka Yadav, Rajkumar Ghosh, Alok Saini

Abstract:

Human civilization cannot exist and thrive in the absence of adequate water. As a result, even in smart cities, water plays an important role in human existence. The key causes of this catastrophic water scarcity crisis are lifestyle changes, over-exploitation of groundwater, water over usage, rapid urbanization, and uncontrolled population growth. Furthermore, salty water seeps into deeper aquifers, causing land subsidence. The purpose of this study on artificial groundwater recharge is to address the water shortage in Gomti Nagar, Lucknow. Submersibles are the most common methods of collecting freshwater from groundwater in Gomti Nagar neighbourhood of Lucknow. Gomti Nagar area has a groundwater depletion rate of 1968 m3/day/km2 and is categorized as Zone-A (very high levels) based on the existing groundwater abstraction pattern - A to D. Harvesting rainwater using roof top rainwater harvesting systems (RTRWHs) is an effective method for reducing aquifer depletion in a sustainable water management system. Rainwater collecting using roof top rainwater harvesting systems (RTRWHs) is an effective method for reducing aquifer depletion in a sustainable water conservation system. Due to a water imbalance of 24519 ML/yr, the Gomti Nagar region is facing severe groundwater depletion. According to the Lucknow Development Authority (LDA), the impact of installed RTRWHs (plot area 300 sq. m.) is 0.04 percent of rainfall collected through RTRWHs in Gomti Nagar region of Lucknow. When RTRWHs are deployed in all buildings, their influence will be greater. Bye-laws in India have mandated the installation of RTRWHs on plots greater than 300 sq.m. A better India without any water problem is a pipe dream that may be realized by installing residential and commercial rooftop rainwater collecting systems in every structure. According to the current study, RTRWHs should be used as an alternate source of water to bridge the gap between groundwater recharge and extraction in smart city viz. Gomti Nagar, Lucknow, India.

Keywords: groundwater recharge, RTRWHs, harvested rainwater, rainfall, water extraction

Procedia PDF Downloads 74
6785 Potential of Irish Orientated Strand Board in Bending Active Structures

Authors: Matt Collins, Bernadette O'Regan, Tom Cosgrove

Abstract:

To determine the potential of a low cost Irish engineered timber product to replace high cost solid timber for use in bending active structures such as gridshells a single Irish engineered timber product in the form of orientated strand board (OSB) was selected. A comparative study of OSB and solid timber was carried out to determine the optimum properties that make a material suitable for use in gridshells. Three parameters were identified to be relevant in the selection of a material for gridshells. These three parameters are the strength to stiffness ratio, the flexural stiffness of commercially available sections, and the variability of material and section properties. It is shown that when comparing OSB against solid timber, OSB is a more suitable material for use in gridshells that are at the smaller end of the scale and that have tight radii of curvature. Typically, for solid timber materials, stiffness is used as an indicator for strength and engineered timber is no different. Thus, low flexural stiffness would mean low flexural strength. However, when it comes to bending active gridshells, OSB offers a significant advantage. By the addition of multiple layers, an increased section size is created, thus endowing the structure with higher stiffness and higher strength from initial low stiffness and low strength materials while still maintaining tight radii of curvature. This allows OSB to compete with solid timber on large scale gridshells. Additionally, a preliminary sustainability study using a set of sustainability indicators was carried out to determine the relative sustainability of building a large-scale gridshell in Ireland with a primary focus on economic viability but a mention is also given to social and environmental aspects. For this, the Savill garden gridshell in the UK was used as the functional unit with the sustainability of the structural roof skeleton constructed from UK larch solid timber being compared with the same structure using Irish OSB. Albeit that the advantages of using commercially available OSB in a bending active gridshell are marginal and limited to specific gridshell applications, further study into an optimised engineered timber product is merited.

Keywords: bending active gridshells, high end timber structures, low cost material, sustainability

Procedia PDF Downloads 363
6784 Development of Thermal Insulation Materials Based on Silicate Using Non-Traditional Binders and Fillers

Authors: J. Hroudova, J. Zach, L. Vodova

Abstract:

When insulation and rehabilitation of structures is important to use quality building materials with high utility value. One potentially interesting and promising groups of construction materials in this area are advanced, thermally insulating plaster silicate based. With the present trend reduction of energy consumption of building structures and reducing CO2 emissions to be developed capillary-active materials that are characterized by their low density, low thermal conductivity while maintaining good mechanical properties. The paper describes the results of research activities aimed at the development of thermal insulating and rehabilitation material ongoing at the Technical University in Brno, Faculty of Civil Engineering. The achieved results of this development will be the basis for subsequent experimental analysis of the influence of thermal and moisture loads developed on these materials.

Keywords: insulation materials, rehabilitation materials, lightweight aggregate, fly ash, slag, hemp fibers, glass fibers, metakaolin

Procedia PDF Downloads 216
6783 Computational Material Modeling for Mechanical Properties Prediction of Nanoscale Carbon Based Cementitious Materials

Authors: Maryam Kiani, Abdul Basit Kiani

Abstract:

At larger scales, the performance of cementitious materials is impacted by processes occurring at the nanometer scale. These materials boast intricate hierarchical structures with random features that span from the nanometer to millimeter scale. It is fascinating to observe how the nanoscale processes influence the overall behavior and characteristics of these materials. By delving into and manipulating these processes, scientists and engineers can unlock the potential to create more durable and sustainable infrastructure and construction materials. It's like unraveling a hidden tapestry of secrets that hold the key to building stronger and more resilient structures. The present work employs simulations as the computational modeling methodology to predict mechanical properties for carbon/silica based cementitious materials at the molecular/nano scale level. Studies focused on understanding the effect of higher mechanical properties of cementitious materials with carbon silica nanoparticles via Material Studio materials modeling.

Keywords: nanomaterials, SiO₂, carbon black, mechanical properties

Procedia PDF Downloads 110
6782 Numerical Model of Low Cost Rubber Isolators for Masonry Housing in High Seismic Regions

Authors: Ahmad B. Habieb, Gabriele Milani, Tavio Tavio, Federico Milani

Abstract:

Housings in developing countries have often inadequate seismic protection, particularly for masonry. People choose this type of structure since the cost and application are relatively cheap. Seismic protection of masonry remains an interesting issue among researchers. In this study, we develop a low-cost seismic isolation system for masonry using fiber reinforced elastomeric isolators. The elastomer proposed consists of few layers of rubber pads and fiber lamina, making it lower in cost comparing to the conventional isolators. We present a finite element (FE) analysis to predict the behavior of the low cost rubber isolators undergoing moderate deformations. The FE model of the elastomer involves a hyperelastic material property for the rubber pad. We adopt a Yeoh hyperelasticity model and estimate its coefficients through the available experimental data. Having the shear behavior of the elastomers, we apply that isolation system onto small masonry housing. To attach the isolators on the building, we model the shear behavior of the isolation system by means of a damped nonlinear spring model. By this attempt, the FE analysis becomes computationally inexpensive. Several ground motion data are applied to observe its sensitivity. Roof acceleration and tensile damage of walls become the parameters to evaluate the performance of the isolators. In this study, a concrete damage plasticity model is used to model masonry in the nonlinear range. This tool is available in the standard package of Abaqus FE software. Finally, the results show that the low-cost isolators proposed are capable of reducing roof acceleration and damage level of masonry housing. Through this study, we are also capable of monitoring the shear deformation of isolators during seismic motion. It is useful to determine whether the isolator is applicable. According to the results, the deformations of isolators on the benchmark one story building are relatively small.

Keywords: masonry, low cost elastomeric isolator, finite element analysis, hyperelasticity, damped non-linear spring, concrete damage plasticity

Procedia PDF Downloads 260
6781 Instructional Material Development in ODL: Achievements, Prospects, and Challenges

Authors: Felix Gbenoba, Opeyemi Dahunsi

Abstract:

Customised, self-instructional materials are at the heart of instructional delivery in Open and Distance Learning (ODL). The success of any ODL institution depends on the availability of learning materials in quality and quantity. An ODL study material is expected to imitate what the teacher does in the face-to-face learning environment. This paper evaluates these expectation based on existing data and evidence. It concludes that the reality has not matched the expectation so far in terms of pedagogic aspect of instructional delivery especially in West Africa. This does not mean that instructional materials development has not produced any significant positive results in improving the overall learning (and teaching) experience in these institutions; it implies what will help further to identify the new challenges. Obstacles and problems of instructional materials development that could have affected the open educational resource initiatives are well established. The first section of this paper recalls some of the proposed values of instructional materials. The second section compares achievements so far and suggests that instructional materials development should be consider first at an early stage to realise the aspirations of instructional delivery. The third section highlights the challenges of instructional materials development in the future.

Keywords: face-to-face learning, instructional delivery, open and distance education, self-instructional materials

Procedia PDF Downloads 349
6780 Obtaining of Nanocrystalline Ferrites and Other Complex Oxides by Sol-Gel Method with Participation of Auto-Combustion

Authors: V. S. Bushkova

Abstract:

It is well known that in recent years magnetic materials have received increased attention due to their properties. For this reason a significant number of patents that were published during the last decade are oriented towards synthesis and study of such materials. The aim of this work is to create and study ferrite nanocrystalline materials with spinel structure, using sol-gel technology with participation of auto-combustion. This method is perspective in that it is a cheap and low-temperature technique that allows for the fine control on the product’s chemical composition.

Keywords: magnetic materials, ferrites, sol-gel technology, nanocrystalline powders

Procedia PDF Downloads 386
6779 Direct Synthesis of Composite Materials Type MCM-41/ZSM-5 by Hydrothermal at Atmospheric Pressure in Sealed Pyrex Tubes

Authors: Zoubida Lounis, Naouel Boumesla, Abd El Kader Bengueddach

Abstract:

The main objective of this study is to synthesize a composite materials by direct synthesis at atmospheric pression having the MFI structure and MCM-41 by using double structuring. In the first part of this work we are interested in the study of the synthesis parameters, in addition to temperature, the crystallization time and pH. The second part of this work is to vary the ratio of the concentrations of both structuring C9 [C9H19(CH3)3NBr] and C16 [C16H33(CH3)3NBr] and determining the area of formation of the two materials (microporous and mesoporous at same time), for this reason we performed a battery of experiments ranging from 0 to 100% for both structural. To enhance the economic purposes of this study, the experiments were carried out by using very cheap and simple process, the pyrex tubes were used instead of the reactors, and the synthesis were done at atmospheric pressure and moderate temperature. The final products (composite materials) were obtained at high and pure quality.

Keywords: composite materials, syntheisis, catalysts, mesoporous materials, microporous materials

Procedia PDF Downloads 362
6778 Pioneer Synthesis and Characterization of Boron Containing Hard Materials

Authors: Gülşah Çelik Gül, Figen Kurtuluş

Abstract:

The first laboratory synthesis of hard materials such as diamond proceeded to attack of developing materials with high hardness to compete diamond. Boron rich solids are good candidates owing to their short interatomic bond lengths and strong covalent character. Boron containing hard material was synthesized by modified-microwave method under nitrogen atmosphere by using a fuel (glycine or urea), amorphous boron and/or boric acid in appropriate molar ratio. Characterizations were done by x-ray diffraction (XRD), fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy/energy dispersive analyze (SEM/EDS), thermo gravimetric/differantial thermal analysis (TG/DTA).

Keywords: boron containing materials, hard materials, microwave synthesis, powder X-ray diffraction

Procedia PDF Downloads 575
6777 A Performance Study of a Solar Heating System on the Microclimate of an Agricultural Greenhouse

Authors: Nora Arbaoui, Rachid Tadili

Abstract:

This study focuses on a solar system designed to heat an agricultural greenhouse. This solar system is based on the heating of a transfer fluid that circulates inside the greenhouse through a solar copper coil integrated into the roof of the greenhouse. The thermal energy stored during the day will be released during the night to improve the microclimate of the greenhouse. This system was tested in a small agricultural greenhouse in order to ameliorate the different operational parameters. The climatic and agronomic results obtained with this system are significant in comparison with a greenhouse with no heating system.

Keywords: solar system, agricultural greenhouse, heating, storage, drying

Procedia PDF Downloads 67
6776 Present an Active Solar Energy System to Supply Heating Demands of the Teaching Staff Dormitory of Islamic Azad University of Ramhormoz

Authors: M. Talebzadegan, S. Bina , I. Riazi

Abstract:

The purpose of this paper is to present an active solar energy system to supply heating demands of the teaching staff dormitory of Islamic Azad University of Ramhormoz. The design takes into account the solar radiations and climate data of Ramhormoz town and is based on the daily warm water consumption for health demands of 450 residents of the dormitory, which is equal to 27000 lit of 50 C° water, and building heating requirements with an area of 3500 m² well-protected by heatproof materials. First, heating demands of the building were calculated, then a hybrid system made up of solar and fossil energies was developed and finally, the design was economically evaluated. Since there is only roof space for using 110 flat solar water heaters, the calculations were made to hybridize solar water heating system with heat pumping system in which solar energy contributes 67% of the heat generated. According to calculations, the Net Present Value “N.P.V.” of revenue stream exceeds “N.P.V.” of cash paid off in this project over three years, which makes economically quite promising. The return of investment and payback period of the project is 4 years. Also, the Internal Rate of Return (IRR) of the project was 25%, which exceeds bank rate of interest in Iran and emphasizes the desirability of the project.

Keywords: solar energy, heat demand, renewable, pollution

Procedia PDF Downloads 403
6775 The Role of Nano-Science in Construction of Civil Engineering and Environment

Authors: Mehrdad Abkenari, Naghmeh Pournayeb, Mohsen Ramezan Shirazi

Abstract:

Nano-science has been widely used in different engineering sciences. Generally, materials’ application can be determined through their chemical and physical properties. Nano-science has introduced as a new way in production systems that not only turns the materials into very small particles but also, gives them new and considerable properties. Like other fields of study, civil engineering has not been ignorant of benefits and characteristics of new nanotechnology and has used it in the construction industry and environmental engineering. Therefore, considering such chemical properties as elemental analysis and molecular or atomic structure, the present article is aimed at studying the effects of Nano-materials on different branches of civil engineering. Finally, by identifying new Nano-materials, this study attempts to introduce advantages of using these materials for increasing the strength of materials during construction as well as finding new approaches to prevent or reduce the entrance of chemical pollutants during or after construction to the environment.

Keywords: civil, nano-science, construction, environment

Procedia PDF Downloads 392
6774 The Place of Instructional Materials in Quality Education at Primary School Level in Katsina State, Nigeria

Authors: Murtala Sale

Abstract:

The use of instructional materials is an indispensable tool that enhances qualitative teaching and learning especially at the primary level. Instructional materials are used to facilitate comprehension of ideas in the learners as well as ensure long term retention of ideas and topics taught to pupils. This study examined the relevance of using instructional materials in primary schools in Katsina State, Nigeria. It employed survey design using cluster sampling technique. The questionnaire was used to gather data for analysis, and statistical and frequency tables were used to analyze the data gathered. The results show that teachers and students alike have realized the effectiveness of modern instructional materials in teaching and learning for the attainment of set objectives in the basic primary education policy. It also discovered that reluctance in the use of instructional materials will hamper the achievement of qualitative primary education. The study therefore suggests that there should be the provision of adequate and up-to-date instructional materials to all primary schools in Katsina State for effective teaching and learning process.

Keywords: instructional materials, effective teaching, learning quality, indispensable aspect

Procedia PDF Downloads 233
6773 Evaluation of Gasoline Engine Piston with Various Coating Materials Using Finite Element Method

Authors: Nouby Ghazaly, Gamal Fouad, Ali Abd-El-Tawwab, K. A. Abd El-Gwwad

Abstract:

The purpose of this paper is to examine the piston stress distribution using several thicknesses of the coating materials to achieve higher gasoline engine performance. First of all, finite element structure analysis is used to uncoated petrol piston made of aluminum alloy. Then, steel and cast-iron piston materials are conducted and compared with the aluminum piston. After that, investigation of four coating materials namely, yttria-stabilized zirconia, magnesia-stabilized zirconia, alumina, and mullite are studied for each piston materials. Next, influence of various thickness coating layers on the structure stresses of the top surfaces is examined. Comparison between simulated results for aluminum, steel, and cast-iron materials is reported. Moreover, the influences of different coating thickness on the Von Mises stresses of four coating materials are investigated. From the simulation results, it can report that the maximum Von Mises stresses and deformations for the piston materials are decreasing with increasing the coating thickness for magnesia-stabilized zirconia, yttria-stabilized zirconia, mullite and alumina coated materials.

Keywords: structure analysis, aluminum piston, MgZrO₃, YTZ, mullite and alumina

Procedia PDF Downloads 128
6772 A Solar Heating System Performance on the Microclimate of an Agricultural Greenhouse

Authors: Nora Arbaoui, Rachid Tadili

Abstract:

The experiment adopted a natural technique of heating and cooling an agricultural greenhouse to reduce the fuel consumption and CO2 emissions based on the heating of a transfer fluid that circulates inside the greenhouse through a solar copper coil positioned at the roof of the greenhouse. This experimental study is devoted to the performance evaluation of a solar heating system to improve the microclimate of a greenhouse during the cold period, especially in the Mediterranean climate. This integrated solar system for heating has a positive impact on the quality and quantity of the products under the study greenhouse.

Keywords: solar system, agricultural greenhouse, heating, storage

Procedia PDF Downloads 57
6771 Development of Soft 3D Printing Materials for Textile Applications

Authors: Chi-Chung Marven Chick, Chu-Po Ho, Sau-Chuen Joe Au, Wing-Fai Sidney Wong, Chi-Wai Kan

Abstract:

Recently, 3D printing becomes popular process for manufacturing, especially has special attention in textile applications. However, there are various types of 3D printing materials, including plastic, resin, rubber, ceramics, gold, platinum, silver, iron, titanium but not all these materials are suitable for textile application. Generally speaking, 3D printing of textile mainly uses thermoplastic polymers such as acrylonitrile butadiene styrene (ABS), polylactide (PLA), polycaprolactone (PCL), thermoplastic polyurethane (TPU), polyethylene terephthalate glycol-modified (PETG), polystyrene (PS), polypropylene (PP). Due to the characteristics of the polymers, 3D printed textiles usually have low air permeability and poor comfortable. Therefore, in this paper, we will review the possible materials suitable for textile application with desired physical and mechanical properties.

Keywords: 3D printing, 3D printing materials, textile, properties

Procedia PDF Downloads 36
6770 Biogas Production from Lake Bottom Biomass from Forest Management Areas

Authors: Dessie Tegegne Tibebu, Kirsi Mononen, Ari Pappinen

Abstract:

In areas with forest management, agricultural, and industrial activity, sediments and biomass are accumulated in lakes through drainage system, which might be a cause for biodiversity loss and health problems. One possible solution can be utilization of lake bottom biomass and sediments for biogas production. The main objective of this study was to investigate the potentials of lake bottom materials for production of biogas by anaerobic digestion and to study the effect of pretreatment methods for feed materials on biogas yield. In order to study the potentials of biogas production lake bottom materials were collected from two sites, Likokanta and Kutunjärvi lake. Lake bottom materials were mixed with straw-horse manure to produce biogas in a laboratory scale reactor. The results indicated that highest yields of biogas values were observed when feeds were composed of 50% lake bottom materials with 50% straw horse manure mixture-while with above 50% lake bottom materials in the feed biogas production decreased. CH4 content from Likokanta lake materials with straw-horse manure and Kutunjärvi lake materials with straw-horse manure were similar values when feed consisted of 50% lake bottom materials with 50% straw horse manure mixtures. However, feeds with lake bottom materials above 50%, the CH4 concentration started to decrease, impairing gas process. Pretreatment applied on Kutunjärvi lake materials showed a slight negative effect on the biogas production and lowest CH4 concentration throughout the experiment. The average CH4 production (ml g-1 VS) from pretreated Kutunjärvi lake materials with straw horse manure (208.9 ml g-1 VS) and untreated Kutunjärvi lake materials with straw horse manure (182.2 ml g-1 VS) were markedly higher than from Likokanta lake materials with straw horse manure (157.8 ml g-1 VS). According to the experimental results, utilization of 100% lake bottom materials for biogas production is likely to be impaired negatively. In the future, further analyses to improve the biogas yields, assessment of costs and benefits is needed before utilizing lake bottom materials for the production of biogas.

Keywords: anaerobic digestion, biogas, lake bottom materials, sediments, pretreatment

Procedia PDF Downloads 298
6769 Performance of Segmented Thermoelectric Materials Using 'Open-Short Circuit' Technique under Different Polarity

Authors: N. H. S. Mustafa, N. M. Yatim

Abstract:

Thermoelectric materials arrange in segmented design could increase the conversion of heat to electricity performance. This is due to the properties of materials that perform peak at narrow temperature range. Performance of the materials determines by dimensionless figure-of-merit, ZT which consist of thermoelectric properties namely Seebeck coefficient, electrical resistivity, and thermal conductivity. Since different materials were arrange in segmented, determination of ZT cannot be measured using the conventional approach. Therefore, this research used 'open-short circuit' technique to measure the segmented performance. Segmented thermoelectric materials consist of bismuth telluride, and lead telluride was segmented together under cold press technique. The results show thermoelectric properties measured is comparable with calculated based on commercially available of individual material. Performances of segmented sample under different polarity also indicate dependability of material with position and temperature. Segmented materials successfully measured under real condition and optimization of the segmented can be designed from the study of polarity change.

Keywords: thermoelectric, segmented, ZT, polarity, performance

Procedia PDF Downloads 182
6768 Resources and Strategies towards the Development of a Sustainable Construction Materials Industry in Botswana

Authors: G. Malumbela, E. U. Masuku

Abstract:

The economy of Botswana has increased extensively since its independence. In contrast to this increase, the construction industry which is one of the key indicators of a developing nation continues to be highly dependent on imported building material products from the neighbouring countries of South Africa, Namibia, Zimbabwe, and Zambia. Only two companies in the country currently blend cement. Even then, the overwhelming majority of raw materials used in the blends are imported. Furthermore, there are no glass manufacturers in Botswana. The ceramic industry is limited to the manufacture of clay bricks notwithstanding a few studios on crockery and sanitary ware which nonetheless use imported clay. This paper presents natural resources and industrial waste products in Botswana that can be used for the development of sustainable building materials. It also investigates at the distribution and cost of other widely used building materials in the country. Finally, the present paper looks at projects and national strategies aimed at a country-wide development of a sustainable building materials industry together with their successes and hitches.

Keywords: Botswana construction industry, construction materials, natural resources, sustainable materials

Procedia PDF Downloads 276
6767 An Active Solar Energy System to Supply Heating Demands of the Teaching Staff Dormitory of Islamic Azad University Ramhormoz Branch

Authors: M. Talebzadegan, S. Bina, I. Riazi

Abstract:

The purpose of this paper is to present an active solar energy system to supply heating demands of the teaching staff dormitory of the Islamic Azad University of Ramhormoz. The design takes into account the solar radiations and climate data of Ramhormoz town and is based on the daily warm water consumption for health demands of 450 residents of the dormitory, which is equal to 27000 lit of 50-C° water, and building heating requirements with an area of 3500 m² well-protected by heatproof materials. First, heating demands of the building were calculated, then a hybrid system made up of solar and fossil energies was developed and finally, the design was economically evaluated. Since there is only roof space for using 110 flat solar water heaters, the calculations were made to hybridize solar water heating system with heat pumping system in which solar energy contributes 67% of the heat generated. According to calculations, the net present value “N.P.V.” of revenue stream exceeds “N.P.V.” of cash paid off in this project over three years, which makes economically quite promising. The return of investment and payback period of the project is 4 years. Also, the internal rate of return (IRR) of the project was 25%, which exceeds bank rate of interest in Iran and emphasizes the desirability of the project.

Keywords: Solar energy, Heat Demand, Renewable , Pollution

Procedia PDF Downloads 234
6766 Acoustic Performance and Application of Three Personalized Sound-Absorbing Materials

Authors: Fangying Wang, Zhang Sanming, Ni Qian

Abstract:

In recent years, more and more personalized sound absorbing materials have entered the Chinese room acoustical decoration market. The acoustic performance of three kinds of personalized sound-absorbing materials: Flame-retardant Flax Fiber Sound-absorbing Cotton, Eco-Friendly Sand Acoustic Panel and Transparent Micro-perforated Panel (Film) are tested by Reverberation Room Method. The sound absorption characteristic curves show that their performance match for or even exceed the traditional sound absorbing material. Through the application in the actual projects, these personalized sound-absorbing materials also proved their sound absorption ability and unique decorative effect.

Keywords: acoustic performance, application prospect personalized sound-absorbing materials

Procedia PDF Downloads 166
6765 The Effectiveness of Using MS SharePoint for the Curriculum Repository System

Authors: Misook Ahn

Abstract:

This study examines the Institutional Curriculum Repository (ICR) developed with MS SharePoint. The purpose of using MS SharePoint is to organize, share, and manage the curriculum data. The ICR aims to build a centralized curriculum infrastructure, preserve all curriculum materials, and provide academic service to users (faculty, students, or other agencies). The ICR collection includes core language curriculum materials developed by each language school—foreign language textbooks, language survival kits, and audio files currently in or not in use at the schools. All core curriculum materials with audio and video files have been coded, collected, and preserved at the ICR. All metadata for the collected curriculum materials have been input by language, code, year, book type, level, user, version, and current status (in use/not in use). The qualitative content analysis, including the survey data, is used to evaluate the effectiveness of using MS SharePoint for the repository system. This study explains how to manage and preserve curriculum materials with MS SharePoint, along with challenges and suggestions for further research. This study will be beneficial to other universities or organizations considering archiving or preserving educational materials.

Keywords: digital preservation, ms sharepoint, repository, curriculum materials

Procedia PDF Downloads 80
6764 Study of Receiving Opportunity of Water Soluble and Non-Ballast Micro Fertilizer on the Base of Manganese-Containing Materials

Authors: Marine Shavlakadze

Abstract:

From the raw material base existed in Georgia (manganese ores, manganese containing mud), particularly, within the point of view of production availability, especial interest is paid to micro- fertilizers containing manganese. As a result of conducted investigation, there was established receiving of such manganese containing materials on the basis of manganese raw-material base (ore, mud) existed in Georgia, which shall be able to maximally provide assimilation ability of manganese, as microelement, in the desired period of time. And also, determinant of effectiveness and competitiveness of received materials with new composition shall become high content (more than 30%) of microelements in them (in comparison with existed similar products), when the total sum of useful components presented in them (active i.e. assimilated) is more than 50-70%, i.e. received materials belong to the materials having low-ballast and functionally revealed possibilities.

Keywords: manganese, fertilizers, non-ballast, micro- fertilizers

Procedia PDF Downloads 243
6763 Acoustic and Thermal Insulating Materials Based on Natural Fibres Used in Floor Construction

Authors: Jitka Hroudova, Jiri Zach

Abstract:

The majority of contemporary insulation materials commonly used in the building industry is made from non-renewable raw materials; furthermore, their production often brings high energy costs. A long-term trend as far as sustainable development is concerned has been the reduction of energy and material demands of building material production. One of the solutions is the possibility of using easily renewable natural raw material sources which are considerably more ecological and their production is mostly less energy-consuming compared to the production of normal insulations (mineral wool, polystyrene). The paper describes the results of research focused on the development of thermal and acoustic insulation materials based on natural fibres intended for floor constructions. Given the characteristic open porosity of natural fibre materials, the hygrothermal behaviour of the developed materials was studied. Especially the influence of relative humidity and temperature on thermal insulation properties was observed.

Keywords: Green thermal and acoustic insulating materials, natural fibres, technical hemp, flax, floor construction

Procedia PDF Downloads 316
6762 Seismic Retrofit of Tall Building Structure with Viscous, Visco-Elastic, Visco-Plastic Damper

Authors: Nicolas Bae, Theodore L. Karavasilis

Abstract:

Increasingly, a large number of new and existing tall buildings are required to improve their resilient performance against strong winds and earthquakes to minimize direct, as well as indirect damages to society. Those advent stationary functions of tall building structures in metropolitan regions can be severely hazardous, in socio-economic terms, which also increase the requirement of advanced seismic performance. To achieve these progressive requirements, the seismic reinforcement for some old, conventional buildings have become enormously costly. The methods of increasing the buildings’ resilience against wind or earthquake loads have also become more advanced. Up to now, vibration control devices, such as the passive damper system, is still regarded as an effective and an easy-to-install option, in improving the seismic resilience of buildings at affordable prices. The main purpose of this paper is to examine 1) the optimization of the shape of visco plastic brace damper (VPBD) system which is one of hybrid damper system so that it can maximize its energy dissipation capacity in tall buildings against wind and earthquake. 2) the verification of the seismic performance of the visco plastic brace damper system in tall buildings; up to forty-storey high steel frame buildings, by comparing the results of Non-Linear Response History Analysis (NLRHA), with and without a damper system. The most significant contribution of this research is to introduce the optimized hybrid damper system that is adequate for high rise buildings. The efficiency of this visco plastic brace damper system and the advantages of its use in tall buildings can be verified since tall buildings tend to be affected by wind load at its normal state and also by earthquake load after yielding of steel plates. The modeling of the prototype tall building will be conducted using the Opensees software. Three types of modeling were used to verify the performance of the damper (MRF, MRF with visco-elastic, MRF with visco-plastic model) 22-set seismic records used and the scaling procedure was followed according to the FEMA code. It is shown that MRF with viscous, visco-elastic damper, it is superior effective to reduce inelastic deformation such as roof displacement, maximum story drift, roof velocity compared to the MRF only.

Keywords: tall steel building, seismic retrofit, viscous, viscoelastic damper, performance based design, resilience based design

Procedia PDF Downloads 170