Search results for: remote monitoring
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4068

Search results for: remote monitoring

3948 Virtual Marketing Team Leadership and Burnout: Literature Review, Implications for Managers, and Recommendations for Future Research

Authors: Chad A. Roberts

Abstract:

In the digitally connected world, global virtual teams are increasingly becoming the norm at large, multinational companies. Marketing managers see the positives of virtual teams. They also see the negatives. Employees who work from home may feel isolated, unorganized, and distracted by homelife. These complexities create a phenomenon that leaves virtual team members feeling burnout, a significant issue for marketing leaders and their team members. This paper examines remote worker burnout in global virtual marketing team settings. It provides an overview of the benefits and downsides to remote working marketing teams. The paper presents the literature on remote work stress and burnout, discusses ways marketing leaders can help prevent virtual employee burnout and suggests future research studies.

Keywords: burnout, COVID-19 pandemic, leadership, marketing, remote work, virtual team

Procedia PDF Downloads 217
3947 Machine Learning Based Smart Beehive Monitoring System Without Internet

Authors: Esra Ece Var

Abstract:

Beekeeping plays essential role both in terms of agricultural yields and agricultural economy; they produce honey, wax, royal jelly, apitoxin, pollen, and propolis. Nowadays, these natural products become more importantly suitable and preferable for nutrition, food supplement, medicine, and industry. However, to produce organic honey, majority of the apiaries are located in remote or distant rural areas where utilities such as electricity and Internet network are not available. Additionally, due to colony failures, world honey production decreases year by year despite the increase in the number of beehives. The objective of this paper is to develop a smart beehive monitoring system for apiaries including those that do not have access to Internet network. In this context, temperature and humidity inside the beehive, and ambient temperature were measured with RFID sensors. Control center, where all sensor data was sent and stored at, has a GSM module used to warn the beekeeper via SMS when an anomaly is detected. Simultaneously, using the collected data, an unsupervised machine learning algorithm is used for detecting anomalies and calibrating the warning system. The results show that the smart beehive monitoring system can detect fatal anomalies up to 4 weeks prior to colony loss.

Keywords: beekeeping, smart systems, machine learning, anomaly detection, apiculture

Procedia PDF Downloads 239
3946 Foot Self-Monitoring Knowledge, Attitude, Practice, and Related Factors among Diabetic Patients: A Descriptive and Correlational Study in a Taiwan Teaching Hospital

Authors: Li-Ching Lin, Yu-Tzu Dai

Abstract:

Recurrent foot ulcers or foot amputation have a major impact on patients with diabetes mellitus (DM), medical professionals, and society. A critical procedure for foot care is foot self-monitoring. Medical professionals’ understanding of patients’ foot self-monitoring knowledge, attitude, and practice is beneficial for raising patients’ disease awareness. This study investigated these and related factors among patients with DM through a descriptive study of the correlations. A scale for measuring the foot self-monitoring knowledge, attitude, and practice of patients with DM was used. Purposive sampling was adopted, and 100 samples were collected from the respondents’ self-reports or from interviews. The statistical methods employed were an independent-sample t-test, one-way analysis of variance, Pearson correlation coefficient, and multivariate regression analysis. The findings were as follows: the respondents scored an average of 12.97 on foot self-monitoring knowledge, and the correct answer rate was 68.26%. The respondents performed relatively lower in foot health screenings and recording, and awareness of neuropathy in the foot. The respondents held a positive attitude toward self-monitoring their feet and a negative attitude toward having others check the soles of their feet. The respondents scored an average of 12.64 on foot self-monitoring practice. Their scores were lower in their frequency of self-monitoring their feet, recording their self-monitoring results, checking their pedal pulse, and examining if their soles were red immediately after taking off their shoes. Significant positive correlations were observed among foot self-monitoring knowledge, attitude, and practice. The correlation coefficient between self-monitoring knowledge and self-monitoring practice was 0.20, and that between self-monitoring attitude and self-monitoring practice was 0.44. Stepwise regression analysis revealed that the main predictive factors of the foot self-monitoring practice in patients with DM were foot self-monitoring attitude, prior experience in foot care, and an educational attainment of college or higher. These factors predicted 33% of the variance. This study concludes that patients with DM lacked foot self-monitoring practice and advises that the patients’ self-monitoring abilities be evaluated first, including whether patients have poor eyesight, difficulties in bending forward due to obesity, and people who can assist them in self-monitoring. In addition, patient education should emphasize self-monitoring knowledge and practice, such as perceptions regarding the symptoms of foot neurovascular lesions, pulse monitoring methods, and new foot self-monitoring equipment. By doing so, new or recurring ulcers may be discovered in their early stages.

Keywords: diabetic foot, foot self-monitoring attitude, foot self-monitoring knowledge, foot self-monitoring practice

Procedia PDF Downloads 195
3945 Realization of Wearable Inertial Measurement Units-Sensor-Fusion Harness to Control Therapeutic Smartphone Applications

Authors: Svilen Dimitrov, Manthan Pancholi, Norbert Schmitz, Didier Stricker

Abstract:

This paper presents the end-to-end development of a wearable motion sensing harness consisting of computational unit and four inertial measurement units to control three smartphone therapeutic games for children. The inertial data is processed in real time to obtain lower body motion information like knee raises, feet taps and squads. By providing a Wi-Fi connection interface the sensor harness acts wireless remote control for smartphone applications. By performing various lower body movements the users provoke corresponding game state changes. In contrary to the current similar offers, like Nintendo Wii Remote, Xbox Kinect and Playstation Move, this product, consisting of the sensor harness and the applications on top of it, are fully wearable, which means they do not rely on the user to be bound to concrete soft- or hardwareequipped space.

Keywords: wearable harness, inertial measurement units, smartphone therapeutic games, motion tracking, lower-body activity monitoring

Procedia PDF Downloads 402
3944 Monitoring Large-Coverage Forest Canopy Height by Integrating LiDAR and Sentinel-2 Images

Authors: Xiaobo Liu, Rakesh Mishra, Yun Zhang

Abstract:

Continuous monitoring of forest canopy height with large coverage is essential for obtaining forest carbon stocks and emissions, quantifying biomass estimation, analyzing vegetation coverage, and determining biodiversity. LiDAR can be used to collect accurate woody vegetation structure such as canopy height. However, LiDAR’s coverage is usually limited because of its high cost and limited maneuverability, which constrains its use for dynamic and large area forest canopy monitoring. On the other hand, optical satellite images, like Sentinel-2, have the ability to cover large forest areas with a high repeat rate, but they do not have height information. Hence, exploring the solution of integrating LiDAR data and Sentinel-2 images to enlarge the coverage of forest canopy height prediction and increase the prediction repeat rate has been an active research topic in the environmental remote sensing community. In this study, we explore the potential of training a Random Forest Regression (RFR) model and a Convolutional Neural Network (CNN) model, respectively, to develop two predictive models for predicting and validating the forest canopy height of the Acadia Forest in New Brunswick, Canada, with a 10m ground sampling distance (GSD), for the year 2018 and 2021. Two 10m airborne LiDAR-derived canopy height models, one for 2018 and one for 2021, are used as ground truth to train and validate the RFR and CNN predictive models. To evaluate the prediction performance of the trained RFR and CNN models, two new predicted canopy height maps (CHMs), one for 2018 and one for 2021, are generated using the trained RFR and CNN models and 10m Sentinel-2 images of 2018 and 2021, respectively. The two 10m predicted CHMs from Sentinel-2 images are then compared with the two 10m airborne LiDAR-derived canopy height models for accuracy assessment. The validation results show that the mean absolute error (MAE) for year 2018 of the RFR model is 2.93m, CNN model is 1.71m; while the MAE for year 2021 of the RFR model is 3.35m, and the CNN model is 3.78m. These demonstrate the feasibility of using the RFR and CNN models developed in this research for predicting large-coverage forest canopy height at 10m spatial resolution and a high revisit rate.

Keywords: remote sensing, forest canopy height, LiDAR, Sentinel-2, artificial intelligence, random forest regression, convolutional neural network

Procedia PDF Downloads 91
3943 Research on the Strategy of Orbital Avoidance for Optical Remote Sensing Satellite

Authors: Zheng DianXun, Cheng Bo, Lin Hetong

Abstract:

This paper focuses on the orbit avoidance strategies of optical remote sensing satellite. The optical remote sensing satellite, moving along the Sun-synchronous orbit, is equipped with laser warning equipment to alert CCD camera from laser attacks. There are three ways to protect the CCD camera: closing the camera cover, satellite attitude maneuver and satellite orbit avoidance. In order to enhance the safety of optical remote sensing satellite in orbit, this paper explores the strategy of satellite avoidance. The avoidance strategy is expressed as the evasion of pre-determined target points in the orbital coordinates of virtual satellite. The so-called virtual satellite is a passive vehicle which superposes the satellite at the initial stage of avoidance. The target points share the consistent cycle time and the same semi-major axis with the virtual satellite, which ensures the properties of the satellite’s Sun-synchronous orbit remain unchanged. Moreover, to further strengthen the avoidance capability of satellite, it can perform multi-target-points avoid maneuvers. On occasions of fulfilling the satellite orbit tasks, the orbit can be restored back to virtual satellite through orbit maneuvers. Thereinto, the avoid maneuvers adopts pulse guidance. And the fuel consumption is also optimized. The avoidance strategy discussed in this article is applicable to optical remote sensing satellite when it is encountered with hostile attack of space-based laser anti-satellite.

Keywords: optical remote sensing satellite, satellite avoidance, virtual satellite, avoid target-point, avoid maneuver

Procedia PDF Downloads 403
3942 Studying in the Outback: A Hermeneutic Phenomenological Study of the Lived Experience of Women in Regional, Rural and Remote Areas Studying Nursing Online

Authors: Keden Montgomery, Kathie Ardzejewska, Alison Casey, Rosemarie Hogan

Abstract:

Research was undertaken to explore the question “what is known about the experiences of regional, rural and remote Australian women undertaking a Bachelor of Nursing program delivered online?”. The findings will support future research aimed at improving the retention and completion rates of women studying nursing in regional, rural and remote areas.  There is a critical shortage of nurses working in regional, rural and remote (RRR) Australia. It is well supported that this shortage of nurses is most likely to be addressed by nursing students who are completing their studies in RRR areas. Despite this, students from RRR Australia remain an equity group and experience poorer outcomes than their metropolitan counterparts. Completion rates for RRR students who enrol in tertiary education courses are much less than students from metropolitan areas. In addition to this, RRR students are less likely than students from metropolitan areas to gain a tertiary level qualification at all, and even less likely to gain a Bachelor level degree which is required for Registered Nurses. Supporting students to remain in regional, rural and remote areas while they study reduces the need for students to relocate to metropolitan areas and to continue living and working in RRR areas after graduation. This research holds implications for workforce shortages internationally.

Keywords: nurse education, online education, regional, rural, remote, workforce

Procedia PDF Downloads 86
3941 Answering the Call for Empirical Evidence: Burnout, Context and Remote Work

Authors: Clif P. Lewis, Ise-Lu Möller

Abstract:

The COVID-19 pandemic has had a profound impact on employment. The ‘future of work’ is now the ‘present of work’. Changes in the social context within which organisations are embedded necessitated drastic changes in how we work. Through the leveraging of technology and changes in mindset, we have seen exciting innovations in the world of work. This global shift in the context of employment offers a unique opportunity to examine a key unresolved issue in the study of Burnout, namely contextual antecedents. This study answers the call for deeper empirical insight into the contexts within which Burnout occur. We explore the emergence of Burnout within a remote work context by using survey data that incorporates the latest global work trends into the Areas of Worklife framework.

Keywords: burnout, remote work, pandemic, wellness

Procedia PDF Downloads 179
3940 Implementation of Clinical Monitoring System of Physiological Parameters

Authors: Abdesselam Babouri, Ahcène Lemzadmi, M Rahmane, B. Belhadi, N. Abouchi

Abstract:

Medical monitoring aims at monitoring and remotely controlling the vital physiological parameters of the patient. The physiological sensors provide repetitive measurements of these parameters in the form of electrical signals that vary continuously over time. Various measures allow informing us about the health of the person's physiological data (weight, blood pressure, heart rate or specific to a disease), environmental conditions (temperature, humidity, light, noise level) and displacement and movements (physical efforts and the completion of major daily living activities). The collected data will allow monitoring the patient’s condition and alerting in case of modification. They are also used in the diagnosis and decision making on medical treatment and the health of the patient. This work presents the implementation of a monitoring system to be used for the control of physiological parameters.

Keywords: clinical monitoring, physiological parameters, biomedical sensors, personal health

Procedia PDF Downloads 471
3939 Oil Pollution Analysis of the Ecuadorian Rainforest Using Remote Sensing Methods

Authors: Juan Heredia, Naci Dilekli

Abstract:

The Ecuadorian Rainforest has been polluted for almost 60 years with little to no regard to oversight, law, or regulations. The consequences have been vast environmental damage such as pollution and deforestation, as well as sickness and the death of many people and animals. The aim of this paper is to quantify and localize the polluted zones, which something that has not been conducted and is the first step for remediation. To approach this problem, multi-spectral Remote Sensing imagery was utilized using a novel algorithm developed for this study, based on four normalized indices available in the literature. The algorithm classifies the pixels in polluted or healthy ones. The results of this study include a new algorithm for pixel classification and quantification of the polluted area in the selected image. Those results were finally validated by ground control points found in the literature. The main conclusion of this work is that using hyperspectral images, it is possible to identify polluted vegetation. The future work is environmental remediation, in-situ tests, and more extensive results that would inform new policymaking.

Keywords: remote sensing, oil pollution quatification, amazon forest, hyperspectral remote sensing

Procedia PDF Downloads 161
3938 Remote Sensing of Aerated Flows at Large Dams: Proof of Concept

Authors: Ahmed El Naggar, Homyan Saleh

Abstract:

Dams are crucial for flood control, water supply, and the creation of hydroelectric power. Every dam has a water conveyance system, such as a spillway, providing the safe discharge of catastrophic floods when necessary. Spillway design has historically been investigated in laboratory research owing to the absence of suitable full-scale flow monitoring equipment and safety problems. Prototype measurements of aerated flows are urgently needed to quantify projected scale effects and provide missing validation data for design guidelines and numerical simulations. In this work, an image-based investigation of free-surface flows on a tiered spillway was undertaken at the laboratory (fixed camera installation) and prototype size (drone video) (drone footage) (drone footage). The drone videos were generated using data from citizen science. Analyses permitted the measurement of the free-surface aeration inception point, air-water surface velocities, fluctuations, and residual energy at the chute's downstream end from a remote site. The prototype observations offered full-scale proof of concept, while laboratory results were efficiently confirmed against invasive phase-detection probe data. This paper stresses the efficacy of image-based analyses at prototype spillways. It highlights how citizen science data may enable academics better understand real-world air-water flow dynamics and offers a framework for a small collection of long-missing prototype data.

Keywords: remote sensing, aerated flows, large dams, proof of concept, dam spillways, air-water flows, prototype operation, remote sensing, inception point, optical flow, turbulence, residual energy

Procedia PDF Downloads 90
3937 Controlled Mobile Platform for Service Based Humanoid Robot System

Authors: Shrikant V. Sangludkar, Dilip I. Sangotra, Sachin T. Bagde, Abhijeet A. Khandagale

Abstract:

The paper discloses a controlled tracked humanoid robot moving platform. A driving and driven wheel are controlled by a control module to drive a robot body to move according to data signals of a monitoring module, in addition, remote transmission can be achieved, and a certain remote control function can be realized. A power management module circuit board looks after in used for providing electric drive for moving of the robot body and distribution of separate power source to be used in internal of robot system. An external port circuit board is arranged, the tracked robot moving platform can be used immediately for any data acquisition. The moving platform is simple and compact in structure, strong in adaptation performance, stable in operation and suitable for being operated in severe environments. Meanwhile, a layered modular installation structure is adopted, and therefore the moving platform is convenient to assemble and disassemble.

Keywords: moving platform, humanoid robot, embedded controlled drive, mobile robot, museum robots, self-localization, obstacle avoidance, communication

Procedia PDF Downloads 424
3936 Optimization of Monitoring Networks for Air Quality Management in Urban Hotspots

Authors: Vethathirri Ramanujam Srinivasan, S. M. Shiva Nagendra

Abstract:

Air quality management in urban areas is a serious concern in both developed and developing countries. In this regard, more number of air quality monitoring stations are planned to mitigate air pollution in urban areas. In India, Central Pollution Control Board has set up 574 air quality monitoring stations across the country and proposed to set up another 500 stations in the next few years. The number of monitoring stations for each city has been decided based on population data. The setting up of ambient air quality monitoring stations and their operation and maintenance are highly expensive. Therefore, there is a need to optimize monitoring networks for air quality management. The present paper discusses the various methods such as Indian Standards (IS) method, US EPA method and European Union (EU) method to arrive at the minimum number of air quality monitoring stations. In addition, optimization of rain-gauge method and Inverse Distance Weighted (IDW) method using Geographical Information System (GIS) are also explored in the present work for the design of air quality network in Chennai city. In summary, additionally 18 stations are required for Chennai city, and the potential monitoring locations with their corresponding land use patterns are ranked and identified from the 1km x 1km sized grids.

Keywords: air quality monitoring network, inverse distance weighted method, population based method, spatial variation

Procedia PDF Downloads 188
3935 Quantification Model for Capability Evaluation of Optical-Based in-Situ Monitoring System for Laser Powder Bed Fusion (LPBF) Process

Authors: Song Zhang, Hui Wang, Johannes Henrich Schleifenbaum

Abstract:

Due to the increasing demand for quality assurance and reliability for additive manufacturing, the development of an advanced in-situ monitoring system is required to monitor the process anomalies as input for further process control. Optical-based monitoring systems, such as CMOS cameras and NIR cameras, are proved as effective ways to monitor the geometrical distortion and exceptional thermal distribution. Therefore, many studies and applications are focusing on the availability of the optical-based monitoring system for detecting varied types of defects. However, the capability of the monitoring setup is not quantified. In this study, a quantification model to evaluate the capability of the monitoring setups for the LPBF machine based on acquired monitoring data of a designed test artifact is presented, while the design of the relevant test artifacts is discussed. The monitoring setup is evaluated based on its hardware properties, location of the integration, and light condition. Methodology of data processing to quantify the capacity for each aspect is discussed. The minimal capability of the detectable size of the monitoring set up in the application is estimated by quantifying its resolution and accuracy. The quantification model is validated using a CCD camera-based monitoring system for LPBF machines in the laboratory with different setups. The result shows the model to quantify the monitoring system's performance, which makes the evaluation of monitoring systems with the same concept but different setups possible for the LPBF process and provides the direction to improve the setups.

Keywords: data processing, in-situ monitoring, LPBF process, optical system, quantization model, test artifact

Procedia PDF Downloads 196
3934 The Monitoring of Surface Water Bodies from Tisa Catchment Area, Maramureş County in 2014

Authors: Gabriela-Andreea Despescu, Mădălina Mavrodin, Gheorghe Lăzăroiu, S. Nacu, R. Băstinaş

Abstract:

The Monitoring of Surface Water Bodies (Rivers) from Tisa Catchment Area - Maramureş County in 2014. This study is focused on the monitoring and evaluation of river’s water bodies from Maramureş County, using the methodology associated with the EU Water Framework Directive 60/2000. Thus, in the first part are defined the theoretical terms of monitoring activities related to the water bodies’ quality and the specific features of those we can find in the studied area. There are presented the water bodies’ features, quality indicators and the monitoring frequencies for the rivers situated in the Tisa catchment area. The results have shown the actual ecological and chemical state of those water bodies, in relation with the standard values mentioned through the Water Framework Directive.

Keywords: monitoring, surveillance, water bodies, quality

Procedia PDF Downloads 261
3933 The Strategy of Orbit Avoidance for Optical Remote Sensing Satellite

Authors: Dianxun Zheng, Wuxing Jing, Lin Hetong

Abstract:

Optical remote sensing satellite, always running on the Sun-synchronous orbit, equipped laser warning equipment to alert CCD camera from laser attack. There have three ways to protect the CCD camera, closing the camera cover satellite attitude maneuver and satellite orbit avoidance. In order to enhance the safety of optical remote sensing satellite in orbit, this paper explores the strategy of satellite avoidance. The avoidance strategy is expressed as the evasion of pre-determined target points in the orbital coordinates of virtual satellite. The so-called virtual satellite is a passive vehicle which superposes a satellite at the initial stage of avoidance. The target points share the consistent cycle time and the same semi-major axis with the virtual satellite, which ensures the properties of the Sun-synchronous orbit remain unchanged. Moreover, to further strengthen the avoidance capability of satellite, it can perform multi-object avoid maneuvers. On occasions of fulfilling the orbit tasks of the satellite, the orbit can be restored back to virtual satellite through orbit maneuvers. There into, the avoid maneuvers adopts pulse guidance. and the fuel consumption is also optimized. The avoidance strategy discussed in this article is applicable to avoidance for optical remote sensing satellite when encounter the laser hostile attacks.

Keywords: optical remote sensing satellite, always running on the sun-synchronous

Procedia PDF Downloads 399
3932 A West Coast Estuarine Case Study: A Predictive Approach to Monitor Estuarine Eutrophication

Authors: Vedant Janapaty

Abstract:

Estuaries are wetlands where fresh water from streams mixes with salt water from the sea. Also known as “kidneys of our planet”- they are extremely productive environments that filter pollutants, absorb floods from sea level rise, and shelter a unique ecosystem. However, eutrophication and loss of native species are ailing our wetlands. There is a lack of uniform data collection and sparse research on correlations between satellite data and in situ measurements. Remote sensing (RS) has shown great promise in environmental monitoring. This project attempts to use satellite data and correlate metrics with in situ observations collected at five estuaries. Images for satellite data were processed to calculate 7 bands (SIs) using Python. Average SI values were calculated per month for 23 years. Publicly available data from 6 sites at ELK was used to obtain 10 parameters (OPs). Average OP values were calculated per month for 23 years. Linear correlations between the 7 SIs and 10 OPs were made and found to be inadequate (correlation = 1 to 64%). Fourier transform analysis on 7 SIs was performed. Dominant frequencies and amplitudes were extracted for 7 SIs, and a machine learning(ML) model was trained, validated, and tested for 10 OPs. Better correlations were observed between SIs and OPs, with certain time delays (0, 3, 4, 6 month delay), and ML was again performed. The OPs saw improved R² values in the range of 0.2 to 0.93. This approach can be used to get periodic analyses of overall wetland health with satellite indices. It proves that remote sensing can be used to develop correlations with critical parameters that measure eutrophication in situ data and can be used by practitioners to easily monitor wetland health.

Keywords: estuary, remote sensing, machine learning, Fourier transform

Procedia PDF Downloads 104
3931 Concept for Determining the Focus of Technology Monitoring Activities

Authors: Guenther Schuh, Christina Koenig, Nico Schoen, Markus Wellensiek

Abstract:

Identification and selection of appropriate product and manufacturing technologies are key factors for competitiveness and market success of technology-based companies. Therefore many companies perform technology intelligence (TI) activities to ensure the identification of evolving technologies at the right time. Technology monitoring is one of the three base activities of TI, besides scanning and scouting. As the technological progress is accelerating, more and more technologies are being developed. Against the background of limited resources it is therefore necessary to focus TI activities. In this paper, we propose a concept for defining appropriate search fields for technology monitoring. This limitation of search space leads to more concentrated monitoring activities. The concept will be introduced and demonstrated through an anonymized case study conducted within an industry project at the Fraunhofer Institute for Production Technology. The described concept provides a customized monitoring approach, which is suitable for use in technology-oriented companies especially those that have not yet defined an explicit technology strategy. It is shown in this paper that the definition of search fields and search tasks are suitable methods to define topics of interest and thus to direct monitoring activities. Current as well as planned product, production and material technologies as well as existing skills, capabilities and resources form the basis of the described derivation of relevant search areas. To further improve the concept of technology monitoring the proposed concept should be extended during future research e.g. by the definition of relevant monitoring parameters.

Keywords: monitoring radar, search field, technology intelligence, technology monitoring

Procedia PDF Downloads 472
3930 Development of a Fire Analysis Drone for Smoke Toxicity Measurement for Fire Prediction and Management

Authors: Gabrielle Peck, Ryan Hayes

Abstract:

This research presents the design and creation of a drone gas analyser, aimed at addressing the need for independent data collection and analysis of gas emissions during large-scale fires, particularly wasteland fires. The analyser drone, comprising a lightweight gas analysis system attached to a remote-controlled drone, enables the real-time assessment of smoke toxicity and the monitoring of gases released into the atmosphere during such incidents. The key components of the analyser unit included two gas line inlets connected to glass wool filters, a pump with regulated flow controlled by a mass flow controller, and electrochemical cells for detecting nitrogen oxides, hydrogen cyanide, and oxygen levels. Additionally, a non-dispersive infrared (NDIR) analyser is employed to monitor carbon monoxide (CO), carbon dioxide (CO₂), and hydrocarbon concentrations. Thermocouples can be attached to the analyser to monitor temperature, as well as McCaffrey probes combined with pressure transducers to monitor air velocity and wind direction. These additions allow for monitoring of the large fire and can be used for predictions of fire spread. The innovative system not only provides crucial data for assessing smoke toxicity but also contributes to fire prediction and management. The remote-controlled drone's mobility allows for safe and efficient data collection in proximity to the fire source, reducing the need for human exposure to hazardous conditions. The data obtained from the gas analyser unit facilitates informed decision-making by emergency responders, aiding in the protection of both human health and the environment. This abstract highlights the successful development of a drone gas analyser, illustrating its potential for enhancing smoke toxicity analysis and fire prediction capabilities. The integration of this technology into fire management strategies offers a promising solution for addressing the challenges associated with wildfires and other large-scale fire incidents. The project's methodology and results contribute to the growing body of knowledge in the field of environmental monitoring and safety, emphasizing the practical utility of drones for critical applications.

Keywords: fire prediction, drone, smoke toxicity, analyser, fire management

Procedia PDF Downloads 89
3929 Low-Cost IoT System for Monitoring Ground Propagation Waves due to Construction and Traffic Activities to Nearby Construction

Authors: Lan Nguyen, Kien Le Tan, Bao Nguyen Pham Gia

Abstract:

Due to the high cost, specialized dynamic measurement devices for industrial lands are difficult for many colleges to equip for hands-on teaching. This study connects a dynamic measurement sensor and receiver utilizing an inexpensive Raspberry Pi 4 board, some 24-bit ADC circuits, a geophone vibration sensor, and embedded Python open-source programming. Gather and analyze signals for dynamic measuring, ground vibration monitoring, and structure vibration monitoring. The system may wirelessly communicate data to the computer and is set up as a communication node network, enabling real-time monitoring of background vibrations at various locations. The device can be utilized for a variety of dynamic measurement and monitoring tasks, including monitoring earthquake vibrations, ground vibrations from construction operations, traffic, and vibrations of building structures.

Keywords: sensors, FFT, signal processing, real-time data monitoring, ground propagation wave, python, raspberry Pi 4

Procedia PDF Downloads 102
3928 Development of a Serial Signal Monitoring Program for Educational Purposes

Authors: Jungho Moon, Lae-Jeong Park

Abstract:

This paper introduces a signal monitoring program developed with a view to helping electrical engineering students get familiar with sensors with digital output. Because the output of digital sensors cannot be simply monitored by a measuring instrument such as an oscilloscope, students tend to have a hard time dealing with digital sensors. The monitoring program runs on a PC and communicates with an MCU that reads the output of digital sensors via an asynchronous communication interface. Receiving the sensor data from the MCU, the monitoring program shows time and/or frequency domain plots of the data in real time. In addition, the monitoring program provides a serial terminal that enables the user to exchange text information with the MCU while the received data is plotted. The user can easily observe the output of digital sensors and configure the digital sensors in real time, which helps students who do not have enough experiences with digital sensors. Though the monitoring program was programmed in the Matlab programming language, it runs without the Matlab since it was compiled as a standalone executable.

Keywords: digital sensor, MATLAB, MCU, signal monitoring program

Procedia PDF Downloads 495
3927 Design of a Drift Assist Control System Applied to Remote Control Car

Authors: Sheng-Tse Wu, Wu-Sung Yao

Abstract:

In this paper, a drift assist control system is proposed for remote control (RC) cars to get the perfect drift angle. A steering servo control scheme is given powerfully to assist the drift driving. A gyroscope sensor is included to detect the machine's tail sliding and to achieve a better automatic counter-steering to prevent RC car from spinning. To analysis tire traction and vehicle dynamics is used to obtain the dynamic track of RC cars. It comes with a control gain to adjust counter-steering amount according to the sensor condition. An illustrated example of 1:10 RC drift car is given and the real-time control algorithm is realized by Arduino Uno.

Keywords: drift assist control system, remote control cars, gyroscope, vehicle dynamics

Procedia PDF Downloads 396
3926 Health Monitoring of Concrete Assets in Refinery

Authors: Girish M. Bhatia

Abstract:

Most of the important structures in refinery complex are RCC Structures for which in-depth structural monitoring and inspection is required for incessant service. Reinforced concrete structures can be under threat from a combination of insidious challenges due to environmental conditions, including temperature and humidity that lead to accelerated deterioration mechanisms like carbonation, as well as marine exposure, above and below ground structures can experience ingress from aggressive ground waters carrying chlorides and sulphates leading to unexpected deterioration that threaten the integrity of a vital structural asset. By application of health monitoring techniques like corrosion monitoring with help of sensor probes, visual inspection of high rise structures with help of drones, it is possible to establish an early warning at the onset of these destructive processes.

Keywords: concrete structures, corrosion sensors, drones, health monitoring

Procedia PDF Downloads 397
3925 An Industrial Scada System Remote Control Using Mobile Phones

Authors: Ahmidah Elgali

Abstract:

SCADA is the abbreviation for "Administrative Control And Data Acquisition." SCADA frameworks are generally utilized in industry for administrative control and information securing of modern cycles. Regular SCADA frameworks use PC, journal, slim client, and PDA as a client. In this paper, a Java-empowered cell phone has been utilized as a client in an example SCADA application to show and regulate the place of an example model crane. The paper presents a genuine execution of the online controlling of the model crane through a cell phone. The remote correspondence between the cell phone and the SCADA server is performed through a base station by means of general parcel radio assistance GPRS and remote application convention WAP. This application can be used in industrial sites in areas that are likely to be exposed to a security emergency (like terrorist attacks) which causes the sudden exit of the operators; however, no time to perform the shutdown procedures for the plant. Hence this application allows shutting down units and equipment remotely by mobile and so avoids damage and losses.

Keywords: control, industrial, mobile, network, remote, SCADA

Procedia PDF Downloads 77
3924 Corrosion Monitoring Techniques Impact on Concrete Durability: A Review

Authors: Victor A. Okenyi, Kehinde A. Alawode

Abstract:

Corrosion of reinforcement in concrete structures remains a durability issue in structural engineering with the increasing cost of repair and maintenance. The mechanism and factors influencing reinforcement corrosion in concrete with various electrochemical monitoring techniques including non-destructive, destructive techniques and the roles of sensors have been reviewed with the aim of determining the monitoring technique that proved most effective in determining corrosion parameters and more practicable for the assessment of concrete durability. Electrochemical impedance spectroscopy (EIS) and linear polarization resistance (LPR) techniques showed great performance in evaluating corrosion kinetics and corrosion rate, respectively, while the gravimetric weight loss (GWL) technique provided accurate measurements. However, no single monitoring technique showed to be the ultimate technique, and this calls for more research work in the development of more dynamic monitoring tools capable of considering all possible corrosion factors in the corrosion monitoring process.

Keywords: corrosion, concrete structures, durability, non-destructive technique, sensor

Procedia PDF Downloads 180
3923 Static and Dynamic Tailings Dam Monitoring with Accelerometers

Authors: Cristiana Ortigão, Antonio Couto, Thiago Gabriel

Abstract:

In the wake of Samarco Fundão’s failure in 2015 followed by Vale’s Brumadinho disaster in 2019, the Brazilian National Mining Agency started a comprehensive dam safety programmed to rank dam safety risks and establish monitoring and analysis procedures. This paper focuses on the use of accelerometers for static and dynamic applications. Static applications may employ tiltmeters, as an example shown later in this paper. Dynamic monitoring of a structure with accelerometers yields its dynamic signature and this technique has also been successfully used in Brazil and this paper gives an example of tailings dam.

Keywords: instrumentation, dynamic, monitoring, tailings, dams, tiltmeters, automation

Procedia PDF Downloads 144
3922 Monitoring a Membrane Structure Using Non-Destructive Testing

Authors: Gokhan Kilic, Pelin Celik

Abstract:

Structural health monitoring (SHM) is widely used in evaluating the state and health of membrane structures. In the past, in order to collect data and send it to a data collection unit on membrane structures, wire sensors had to be put as part of the SHM process. However, this study recommends using wireless sensors instead of traditional wire ones to construct an economical, useful, and easy-to-install membrane structure health monitoring system. Every wireless sensor uses a software translation program that is connected to the monitoring server. Operational neural networks (ONNs) have recently been developed to solve the shortcomings of convolutional neural networks (CNNs), such as the network's resemblance to the linear neuron model. The results of using ONNs for monitoring to evaluate the structural health of a membrane are presented in this work.

Keywords: wireless sensor network, non-destructive testing, operational neural networks, membrane structures, dynamic monitoring

Procedia PDF Downloads 91
3921 Factors Influencing Soil Organic Carbon Storage Estimation in Agricultural Soils: A Machine Learning Approach Using Remote Sensing Data Integration

Authors: O. Sunantha, S. Zhenfeng, S. Phattraporn, A. Zeeshan

Abstract:

The decline of soil organic carbon (SOC) in global agriculture is a critical issue requiring rapid and accurate estimation for informed policymaking. While it is recognized that SOC predictors vary significantly when derived from remote sensing data and environmental variables, identifying the specific parameters most suitable for accurately estimating SOC in diverse agricultural areas remains a challenge. This study utilizes remote sensing data to precisely estimate SOC and identify influential factors in diverse agricultural areas, such as paddy, corn, sugarcane, cassava, and perennial crops. Extreme gradient boosting (XGBoost), random forest (RF), and support vector regression (SVR) models are employed to analyze these factors' impact on SOC estimation. The results show key factors influencing SOC estimation include slope, vegetation indices (EVI), spectral reflectance indices (red index, red edge2), temperature, land use, and surface soil moisture, as indicated by their averaged importance scores across XGBoost, RF, and SVR models. Therefore, using different machine learning algorithms for SOC estimation reveals varying influential factors from remote sensing data and environmental variables. This approach emphasizes feature selection, as different machine learning algorithms identify various key factors from remote sensing data and environmental variables for accurate SOC estimation.

Keywords: factors influencing SOC estimation, remote sensing data, environmental variables, machine learning

Procedia PDF Downloads 33
3920 Development of Monitoring Blood Bank Center Based PIC Microcontroller Using CAN Communication

Authors: Kaiwan S. Ismael, Ergun Ercelebi, Majeed Nader

Abstract:

This paper describes the design and implementation of a hardware setup for online monitoring of 24 refrigerators inside blood bank center using the microcontroller and CAN bus for communications between each node. Due to the security of locations in the blood bank hall and difficulty of monitoring of each refrigerator separately, this work proposes a solution to monitor all the blood bank refrigerators in one location. CAN-bus system is used because it has many applications and advantages, especially for this system due to easy in use, low cost, providing a reduction in wiring, fast to repair and easily expanding the project without a problem.

Keywords: control area network (CAN), monitoring blood bank center, PIC microcontroller, MPLAB IDE

Procedia PDF Downloads 482
3919 Design and Implement a Remote Control Robot Controlled by Zigbee Wireless Network

Authors: Sinan Alsaadi, Mustafa Merdan

Abstract:

Communication and access systems can be made with many methods in today’s world. These systems are such standards as Wifi, Wimax, Bluetooth, GPS and GPRS. Devices which use these standards also use system resources excessively in direct proportion to their transmission speed. However, large-scale data communication is not always needed. In such cases, a technology which will use system resources as little as possible and support smart network topologies has been needed in order to enable the transmissions of such small packet data and provide the control for this kind of devices. IEEE issued 802.15.4 standard upon this necessity and enabled the production of Zigbee protocol which takes these standards as its basis and devices which support this protocol. In our project, this communication protocol was preferred. The aim of this study is to provide the immediate data transmission of our robot from the field within the scope of the project. In addition, making the communication with the robot through Zigbee Protocol has also been aimed. While sitting on the computer, obtaining the desired data from the region where the robot is located has been taken as the basis. Arduino Uno R3 microcontroller which provides the control mechanism, 1298 shield as the motor driver.

Keywords: ZigBee, wireless network, remote monitoring, smart home, agricultural industry

Procedia PDF Downloads 278