Search results for: municipal wastewater treatment
8788 Utilization of Torula Yeast (Zymomonas mobilis) as Main/Reciprocal for Degradation of Municipal Organic Waste as Feed for Goats
Authors: Nkutere Chikezie Kanu, Nnamdi M. Anigbogu, Johnson C. Ezike
Abstract:
The study was carried out to investigate the performance of Red Sokoto goats fed Municipal Oranic Wastes (MOW) subjected to two methods of in vivo degradation by Torula Yeast and Zymomonas mobilis. Two combination, Torula Yeast + Zymomonas mobilis (main degradation), and Zymomonas mobilis + Torula Yeast (Reciprocal degradation) were used to degrade MOW. Eighteen Red Sokoto goats of both sexes (9 males and 9 females) of ages between 6-8 were used for the study. The goats were randomly assigned into 3 treatments groups A, B and C respectively with 6 goats per treatment. The experiment was laid in a Completely Randomized Design and replicated 3 times. Treatment A groups were fed 30% Undegraded MOW base diet +concentrate mixture, Treatment B groups were fed 30% Main degraded MOW base diet +concentrate mixture, Treatment C groups were fed 30% Reciprocal degraded MOW base diet +concentrate mixture. The result of the daily weight gain was significantly (P<0.05) better than on the other Treatments. There was significant improvement (P<0.05) on the daily feed consumption in Treatment B than on the Treatments A and C. The feed conversion ratio revealed no significant (P>0.05) differences among the treatment groups but much better in the treatment B and C, the cost of feed consumed was much higher (P>0.05) in Treatment B followed by Treatment C, while Treatment A had the lowest. The cost/ kg weight gain that was recorded in Treatment A was better (P<0.05) than the Treatment B, followed by Treatment C, while the cost of production was high (P<0.05) in Treatment B than in other treatments. The gross profit was observed best (P<0.05) on the Treatment B, followed by Treatment C while Treatment A had the lowest. The net profit as noted in this study was much better (P<0.05) in Treatment B, and Treatment C, while the least was observed in Treatment A, where the return on investment was high in Treatments B and C, while Treatment A had the lowest.Keywords: reciprocal, torula yeast, Zymomonas mobilis, organic waste
Procedia PDF Downloads 2968787 Determination of the Oxidative Potential of Organic Materials: Method Development
Authors: Jui Afrin, Akhtarul Islam
Abstract:
In this paper, the solution of glucose, yeast and glucose yeast mixture are being used as sample solution for determining the chemical oxygen demand (COD). In general COD determination method used to determine the different rang of oxidative potential. But in this work has shown to determine the definite oxidative potential for different concentration for known COD value and wanted to see the difference between experimental value and the theoretical value for evaluating the method drawbacks. In this study, made the values of oxidative potential like 400 mg/L, 500 mg/L, 600 mg/L, 700 mg/L and 800mg/L for various sample solutions and determined the oxidative potential according to our developed method. Plotting the experimental COD values vs. sample solutions of various concentrations in mg/L to draw the curve. From these curves see that the curves for glucose solution is not linear; its deviate from linearity for the lower concentration and the reason for this deviation is unknown. If these drawback can be removed this method can be effectively used to determine Oxidative Potential of Industrial wastewater (such as: Leather industry wastewater, Municipal wastewater, Food industry wastewater, Textile wastewater, Pharmaceuticals waste water) that’s why more experiment and study required.Keywords: bod (biological oxygen demand), cod (chemical oxygen demand), oxidative potential, titration, waste water, development
Procedia PDF Downloads 2298786 Feasibility Study of Constructed Wetlands for Wastewater Treatment and Reuse in Asmara, Eritrea
Authors: Hagos Gebrehiwet Bahta
Abstract:
Asmara, the capital city of Eritrea, is facing a sanitation challenge because the city discharges its wastewater to the environment without any kind of treatment. The aim of this research is to conduct a pre-feasibility study of using constructed wetlands in the peri-urban areas of Asmara for wastewater treatment and reuse. It was found that around 15,000 m³ of wastewater is used daily for agricultural activities, and products are sold in the city's markets, which are claimed to cause some health effects. In this study, three potential sites were investigated around Mai-Bela and an optimum location was selected on the basis of land availability, topography, and geotechnical information. Some types of local microphytes that can be used in constructed wetlands have been identified and documented for further studies. It was found that subsurface constructed wetlands can provide a sufficient pollutant removal with careful planning and design. Following the feasibility study, a preliminary design of screening, grit chamber and subsurface constructed wetland was prepared and cost estimation was done. In the cost estimation part, the filter media was found to be the most expensive part and consists of around 30% percent of the overall cost. The city wastewater drainage runs in two directions and the selected site is located in the southern sub-system, which only carries sewage (separate system). The wastewater analysis conducted particularly around this area (Sembel) indicates high heavy metal levels and organic concentrations, which reveals that there is a high level of industrial pollution in addition to the domestic sewage.Keywords: agriculture, constructed wetland, Mai-Bela, wastewater reuse
Procedia PDF Downloads 2188785 Groundwater Pollution Models for Hebron/Palestine
Authors: Hassan Jebreen
Abstract:
These models of a conservative pollutant in groundwater do not include representation of processes in soils and in the unsaturated zone, or biogeochemical processes in groundwater, These demonstration models can be used as the basis for more detailed simulations of the impacts of pollution sources at a local scale, but such studies should address processes related to specific pollutant species, and should consider local hydrogeology in more detail, particularly in relation to possible impacts on shallow systems which are likely to respond more quickly to changes in pollutant inputs. The results have demonstrated the interaction between groundwater flow fields and pollution sources in abstraction areas, and help to emphasise that wadi development is one of the key elements of water resources planning. The quality of groundwater in the Hebron area indicates a gradual increase in chloride and nitrate with time. Since the aquifers in Hebron districts are highly vulnerable due to their karstic nature, continued disposal of untreated domestic and industrial wastewater into the wadi will lead to unacceptably poor water quality in drinking water, which may ultimately require expensive treatment if significant health problems are to be avoided. Improvements are required in wastewater treatment at the municipal and domestic levels, the latter requiring increased public awareness of the issues, as well as improved understanding of the hydrogeological behaviour of the aquifers.Keywords: groundwater, models, pollutants, wadis, hebron
Procedia PDF Downloads 4398784 Sustainable Integrated Waste Management System
Authors: Lidia Lombardi
Abstract:
Waste management in Europe and North America is evolving towards sustainable materials management, intended as a systemic approach to using and reusing materials more productively over their entire life cycles. Various waste management strategies are prioritized and ranked from the most to the least environmentally preferred, placing emphasis on reducing, reusing, and recycling as key to sustainable materials management. However, non-recyclable materials must also be appropriately addressed, and waste-to-energy (WtE) offers a solution to manage them, especially when a WtE plant is integrated within a complex system of waste and wastewater treatment plants and potential users of the output flows. To evaluate the environmental effects of such system integration, Life Cycle Assessment (LCA) is a helpful and powerful tool. LCA has been largely applied to the waste management sector, dating back to the late 1990s, producing a large number of theoretical studies and applications to the real world as support to waste management planning. However, LCA still has a fundamental role in helping the development of waste management systems supporting decisions. Thus, LCA was applied to evaluate the environmental performances of a Municipal Solid Waste (MSW) management system, with improved separate material collection and recycling and an integrated network of treatment plants including WtE, anaerobic digestion (AD) and also wastewater treatment plant (WWTP), for a reference study case area. The proposed system was compared to the actual situation, characterized by poor recycling, large landfilling and absence of WtE. The LCA results showed that the increased recycling significantly increases the environmental performances, but there is still room for improvement through the introduction of energy recovery (especially by WtE) and through its use within the system, for instance, by feeding the heat to the AD, to sludge recovery processes and supporting the water reuse practice. WtE offers a solution to manage non-recyclable MSW and allows saving important resources (such as landfill volumes and non-renewable energy), reducing the contribution to global warming, and providing an essential contribution to fulfill the goals of really sustainable waste management.Keywords: anaerobic digestion, life cycle assessment, waste-to-energy, municipal solid waste
Procedia PDF Downloads 618783 Contribution of Electrochemical Treatment in Treating Textile Dye Wastewater
Authors: Usha N. Murthy, H. B. Rekha, Mahaveer Devoor
Abstract:
The introduction of more stringent pollution regulations, in relation to financial and social pressures for sustainable development, has pressed toward limiting the volumes of industrial and domestic effluents discharged into the environment-as well as to increase the efforts within research and development of new or more efficient wastewater treatment technologies. Considering both discharge volume and effluent composition, wastewater generated by the textile industry is rated as the most polluting among all industrial sectors. The pollution load is mainly due to spent dye baths, which are composed of unreacted dyes, dispersing agents, surfactants, salts and organics. In the present investigation, the textile dye wastewater was characterized by high colour, chemical oxygen demand (COD), total dissolved solids (TDS) and pH. Electrochemical oxidation process for four plate electrodes was carried out at five different current intensities, out of which 0.14A has achieved maximum percentage removal of COD with 75% and 83% of colour. The COD removal rate in kg COD/h/m2 decreases with increase in the current intensity. The energy consumption increases with increase in the current intensity. Hence, textile dye wastewater can be effectively pre-treated by electrochemical oxidation method where the process limits objectionable colour while leaving the COD associated with organics left for natural degradation thus causing a sustainable reduction in pollution load.Keywords: electrochemical treatment, COD, colour, environmental engineering
Procedia PDF Downloads 2788782 Performance of Osmotic Microbial Fuel Cell in Wastewater Treatment and Electricity Generation: A Critical Review
Authors: Shubhangi R. Deshmukh, Anupam B. Soni
Abstract:
Clean water and electricity are vital services needed in all communities. Bio-degradation of wastewater contaminants and desalination technologies are the best possible alternatives for the global shortage of fresh water supply. Osmotic microbial fuel cell (OMFC) is a versatile technology that uses microorganism (used for biodegradation of organic waste) and membrane technology (used for water purification) for wastewater treatment and energy generation simultaneously. This technology is the combination of microbial fuel cell (MFC) and forward osmosis (FO) processes. OMFC can give more electricity and clean water than the MFC which has a regular proton exchange membrane. FO gives many improvements such as high contamination removal, lower operating energy, raising high proton flux than other pressure-driven membrane technology. Lower concentration polarization lowers the membrane fouling by giving osmotic water recovery without extra cost. In this review paper, we have discussed the principle, mechanism, limitation, and application of OMFC technology reported to date. Also, we have interpreted the experimental data from various literature on the water recovery and electricity generation assessed by a different component of OMFC. The area of producing electricity using OMFC has further scope for research and seems like a promising route to wastewater treatment.Keywords: forward osmosis, microbial fuel cell, osmotic microbial fuel cell, wastewater treatment
Procedia PDF Downloads 1828781 Preliminary Study on Using of Thermal Energy from Effluent Water for the SBR Process of RO
Authors: Gyeong-Sung Kim, In-soo Ahn, Yong Cho
Abstract:
SBR (Sequencing Batch Reactor) process is usually applied to membrane water treatment plants to treat its concentrated wastewater. The role of SBR process is to remove COD (Chemical Oxygen Demand) and NH3 from wastewater before discharging it outside of the water treatment plant using microorganism. Microorganism’s nitrification capability is influenced by water temperature because the nitrification rate of the concentrated wastewater becomes ‘zero’ as water temperature approach 0℃. Heating system is necessary to operate SBR in winter season even though the operating cost increase sharply. The operating cost of SBR at ‘D’ RO water treatment plant in Korea was 51.8 times higher in winter (October to March) compare to summer (April to September) season in 2014. Otherwise the effluent water temperature maintained around 8℃ constantly in winter. This study focuses on application heat pump system to recover the thermal energy from the effluent water of ‘D’ RO plant so that the operating cost will be reduced.Keywords: water treatment, water thermal energy, energy saving, RO, SBR
Procedia PDF Downloads 5168780 Decentralized Wastewater Treatment in Coastal Touristic Areas Using Standardized Modular Biological Filtration (SMBF)
Authors: Andreas Rüdiger
Abstract:
The selection of appropriate wastewater treatment technology for decentralized coastal tourist areas is an important engineering challenge. The local situation in coastal tourist cities and villages is characterized by important daily and seasonal fluctuations in hydraulic flow and pollution, high annual temperature variations, scarcity of building area and high housing density. At the same time, coastal zones have to meet stringent effluent limits all over the year and need simple and easy technologies to operate. This article presents the innovative technology of standardized modular aerated up-flow biofiltration SMBF as an adapted solution for decentralized wastewater treatment in sensitive touristic coastal areas. As modular technology with several biofiltration units, the system is able to treat low and high loads with low energy consumption and low demands for operators. The article focuses on the climatic and tourist situation in Croatia. Full-scale plants in Eastern Europe and Croatia have presented as well as dimensioning parameters and outlet concentrations. Energy consumption as a function of load is demonstrated.Keywords: wastewater treatment, biofiltration, touristic areas, energy saving
Procedia PDF Downloads 928779 Preparation and Performance Evaluation of Green Chlorine-Free Coagulants
Authors: Huihui Zhang, Zhongzhi Zhang
Abstract:
Coagulation/flocculation is regarded a simple and effective wastewater treatment technology. Chlorine-containing coagulants may release chloride ions into the wastewater, causing corrosion. A green chlorine-free coagulant of polyaluminum ferric silicate (PSAF) was prepared by the copolymerization method to treat oily refractory wastewaters. Results showed that the highest removal efficiency of turbidity and chemical oxygen demand (COD) achieved 97.4% and 93.0% at a dosage of 700 mg/L, respectively. After PSAF coagulation, the chloride ion concentration was also almost the same as that in the raw wastewater. Thus, the chlorine-free coagulant is highly efficient and does not introduce additional chloride ions into the wastewater, avoiding corrosion.Keywords: coagulation, chloride-free coagulant, oily refractory wastewater, coagulation performance
Procedia PDF Downloads 2188778 Application of Response Surface Methodology in Optimizing Chitosan-Argan Nutshell Beads for Radioactive Wastewater Treatment
Authors: F. F. Zahra, E. G. Touria, Y. Samia, M. Ahmed, H. Hasna, B. M. Latifa
Abstract:
The presence of radioactive contaminants in wastewater poses a significant environmental and health risk, necessitating effective treatment solutions. This study investigates the optimization of chitosan-Argan nutshell beads for the removal of radioactive elements from wastewater, utilizing Response Surface Methodology (RSM) to enhance the treatment efficiency. Chitosan, known for its biocompatibility and adsorption properties, was combined with Argan nutshell powder to form composite beads. These beads were then evaluated for their capacity to remove radioactive contaminants from synthetic wastewater. The Box-Behnken design (BBD) under RSM was employed to analyze the influence of key operational parameters, including initial contaminant concentration, pH, bead dosage, and contact time, on the removal efficiency. Experimental results indicated that all tested parameters significantly affected the removal efficiency, with initial contaminant concentration and pH showing the most substantial impact. The optimized conditions, as determined by RSM, were found to be an initial contaminant concentration of 50 mg/L, a pH of 6, a bead dosage of 0.5 g/L, and a contact time of 120 minutes. Under these conditions, the removal efficiency reached up to 95%, demonstrating the potential of chitosan-Argan nutshell beads as a viable solution for radioactive wastewater treatment. Furthermore, the adsorption process was characterized by fitting the experimental data to various isotherm and kinetic models. The adsorption isotherms conformed well to the Langmuir model, indicating monolayer adsorption, while the kinetic data were best described by the pseudo-second-order model, suggesting chemisorption as the primary mechanism. This study highlights the efficacy of chitosan-Argan nutshell beads in removing radioactive contaminants from wastewater and underscores the importance of optimizing treatment parameters using RSM. The findings provide a foundation for developing cost-effective and environmentally friendly treatment technologies for radioactive wastewater.Keywords: adsorption, argan nutshell, beads, chitosan, mechanism, optimization, radioactive wastewater, response surface methodology
Procedia PDF Downloads 328777 Preliminary Treatment in Wastewater Treatment Plants: Operation and Maintenance Aspects
Authors: Priscila M. Lima, Corine A. P. de Almeida, Muriele R. de Lima, Fernando J. C. Magalhães Filho
Abstract:
This work characterized the preliminary treatment in WWTPs in the state of Mato Grosso Do Sul (Brazil) and analyzed aspects of operation and maintenance of solid waste retained, and was evaluated the interference of this step in treatment efficiency beyond the relationship between solid waste generation with rainfall and seasonality in the region of each WTPs. The results shown that the standard setting in the preliminary treatment consists of grid along with Sand Trap, followed by Parshall that is used in 94.12% of WWTPs analyzed, and in 5.88% of WWTPs it was added the air-lift to the Sand Trap. Was concluded that the influence of rainfall, flow and seasonality associated with the rate of waste generation in the preliminary treatment, had little relation to the operation and maintenance of the primary treatment. But in some cases, precipitation data showed increased rainfall converging with increased flow and solid waste generation.Keywords: pretreatment, sewage, solid waste, wastewater
Procedia PDF Downloads 4698776 Agronomic Value of Wastewater and Sugar Beet Lime Sludge Compost on Radish Crop
Authors: S. Rida, O. Saadani Hassani, Q. R’zina, N. Saadaoui, K. Fares
Abstract:
Wastewater treatment stations create large quantities of sludge, whose treatment is poorly underestimated in the draft installation. However, chemical analysis of sludge reveals their important concentration in fertilizer elements including nitrogen and phosphorus. The direct application of sludge can reveal contamination of the food chain because of their chemical and organic micropollutants load. Therefore, there is a need of treatment process before use. The treatment by composting of this sludge mixed with three different proportions of sugar beet lime sludge (0%, 20%,30%) and green waste permits to obtain a stable compost rich in mineral elements, having a pleasant smell and relatively hygienic. In addition, the use of compost in agriculture positively affects the plant-soil system. Thus, this study shows that the supply of compost improves the physical properties of the soil and its agronomic quality, which results in an increase in the biomass of cultivated radish plants and a larger crop.Keywords: agriculture, composting, soil, sugar beet lime, wastewater
Procedia PDF Downloads 3238775 An Information System for Strategic Performance Scoring in Municipal Management
Authors: Emin Gundogar, Aysegul Yilmaz
Abstract:
Strategic performance scoring is a significant procedure in management. There are various methods to improve this procedure. This study introduces an information system that is developed to score performance for municipal management. The application of the system is clarified by exemplifying municipal processes.Keywords: management information system, municipal management, performance scoring
Procedia PDF Downloads 7698774 Organic Matter Removal in Urban and Agroindustry Wastewater by Chemical Precipitation Process
Authors: Karina Santos Silvério, Fátima Carvalho, Maria Adelaide Almeida
Abstract:
The impacts caused by anthropogenic actions on the water environment have been one of the main challenges of modern society. Population growth, added to water scarcity and climate change, points to a need to increase the resilience of production systems to increase efficiency regarding the management of wastewater generated in the different processes. Based on this context, the study developed under the NETA project (New Strategies in Wastewater Treatment) aimed to evaluate the efficiency of the Chemical Precipitation Process (CPP), using the hydrated lime (Ca(OH )₂) as a reagent in wastewater from the agroindustry sector, namely swine wastewater, slaughterhouse and urban wastewater, in order to make the productive means 100% circular, causing a direct positive impact on the environment. The purpose of CPP is to innovate in the field of effluent treatment technologies, as it allows rapid application and is economically profitable. In summary, the study was divided into four main stages: 1) Application of the reagent in a single step, raising the pH to 12.5 2) Obtaining sludge and treated effluent. 3) Natural neutralization of the effluent through Carbonation using atmospheric CO₂. 4) Characterization and evaluation of the feasibility of the chemical precipitation technique in the treatment of different wastewaters through the technique of determining the chemical oxygen demand (COD) and other supporting physical-chemical parameters. The results showed an approximate average removal efficiency above 80% for all effluents, highlighting the swine effluent with 90% removal, followed by urban effluent with 88% and slaughterhouse with 81% on average. Significant improvement was also obtained with regard to color and odor removal after Carbonation to pH 8.00.Keywords: agroindustry wastewater, urban wastewater, natural carbonatation, chemical precipitation technique
Procedia PDF Downloads 828773 Characteristics of Domestic Sewage in Small Urban Communities
Authors: Shohreh Azizi, Memory Tekere, Wag Nel
Abstract:
An evaluation of the characteristics of wastewater generated from small communities was carried out in relation to decentralized approach for domestic sewage treatment plant and design of biological nutrient removal system. The study included the survey of the waste from various individual communities such as a hotel, a residential complex, an office premise, and an educational institute. The results indicate that the concentration of organic pollutant in wastewater from the residential complex is higher than the waste from all the other communities with COD 664 mg/l, BOD 370.2 mg/l and TSS 248.8 mg/l. And the waste water from office premise indicates low organic load with COD428 mg/l, BOD 232mg/l and TSS 157mg/l. The wastewater from residential complex was studied under activated sludge process to evaluate this technology for decentralized wastewater treatment. The Activated sludge process was operated at different 12to 4 hrs hydraulic retention times and the optimum 6 hrs HRT was selected, therefore the average reduction of COD (85.92%) and BOD (91.28 %) was achieved. The issue of sludge recycling, maintenance of biomass concentration and high HRT reactor (10 L) volume are making the system non-practical for smaller communities.Keywords: wastewater, small communities, activated sludge process, decentralized system
Procedia PDF Downloads 3578772 Two-Stage Anaerobic Digester for Biogas Production from Sewage Sludge: A Case Study in One of Kuwait’s Wastewater Treatment Plant
Authors: Abdullah Almatouq, Abdulla Abusam, Hussain Hussain, Mishari Khajah, Hussain Abdullah, Rashed Al-Yaseen, Mariam Al-Jumaa, Farah Al-Ajeel, Mohammad Aljassam
Abstract:
Due to the high demand for energy from unsustainable resources in Kuwait, the Kuwaiti government has focused recently on using sustainable resources for energy, such as solar and wind energy. In addition, sludge which is generated as a by-product of physical, chemical, and biological processes during wastewater treatment, can be used as a substrate to generate energy through anaerobic digestion. Kuwait’s wastewater treatment plants produce more than 1.7 million m3 of sludge per year, and this volume is accumulated in the treatment plants without any treatment. Therefore, a pilot-scale (3 m3) two-stage anaerobic digester was constructed in one of the largest treatment plants in Kuwait. The reactor was operated in batch mode, and the hydraulic retention time varied between 14 – 27 days. The main of this study is to evaluate the technical feasibility of a two-stage anaerobic digester for sludge treatability and energy generation in Kuwait. The anaerobic digester achieved a total biogas production of 37 m3, and the highest value of daily biogas production was 0.4 m3/day. The methane content ranged between 50 % and 66 %, and the other gases were as follows: CO2 20 %, H2S 13 %, and 1 % O2. The generated biogas was used on-site for cooking and lighting. In some batches, low C/N was noticed, and that lead to maintaining the concentration of CH4 between 50%-55%. In conclusion, an anaerobic digester is an environmentally friendly technology that can be applied in Kuwait, and the obtained results support the scale-up of the process in all the treatment plants.Keywords: wastewater, metahne, biogas production potential, anaerobic digestion
Procedia PDF Downloads 1158771 Dynamic Modeling of Advanced Wastewater Treatment Plants Using BioWin
Authors: Komal Rathore, Aydin Sunol, Gita Iranipour, Luke Mulford
Abstract:
Advanced wastewater treatment plants have complex biological kinetics, time variant influent flow rates and long processing times. Due to these factors, the modeling and operational control of advanced wastewater treatment plants become complicated. However, development of a robust model for advanced wastewater treatment plants has become necessary in order to increase the efficiency of the plants, reduce energy costs and meet the discharge limits set by the government. A dynamic model was designed using the Envirosim (Canada) platform software called BioWin for several wastewater treatment plants in Hillsborough County, Florida. Proper control strategies for various parameters such as mixed liquor suspended solids, recycle activated sludge and waste activated sludge were developed for models to match the plant performance. The models were tuned using both the influent and effluent data from the plant and their laboratories. The plant SCADA was used to predict the influent wastewater rates and concentration profiles as a function of time. The kinetic parameters were tuned based on sensitivity analysis and trial and error methods. The dynamic models were validated by using experimental data for influent and effluent parameters. The dissolved oxygen measurements were taken to validate the model by coupling them with Computational Fluid Dynamics (CFD) models. The Biowin models were able to exactly mimic the plant performance and predict effluent behavior for extended periods. The models are useful for plant engineers and operators as they can take decisions beforehand by predicting the plant performance with the use of BioWin models. One of the important findings from the model was the effects of recycle and wastage ratios on the mixed liquor suspended solids. The model was also useful in determining the significant kinetic parameters for biological wastewater treatment systems.Keywords: BioWin, kinetic modeling, flowsheet simulation, dynamic modeling
Procedia PDF Downloads 1548770 Alternatives to the Disposal of Sludge from Water and Wastewater Treatment Plants
Authors: Lima Priscila, Gianotto Raiza, Arruda Leonan, Magalhães Filho Fernando
Abstract:
Industrialization and especially the accentuated population growth in developing countries and the lack of drainage, public cleaning, water and sanitation services has caused concern about the need for expansion of water treatment units and sewage. However, these units have been generating by-products, such as the sludge. This paper aims to investigate aspects of operation and maintenance of sludge from a wastewater treatment plant (WWTP - 90 L.s-1) and two water treatment plants (WTPs; 1.4 m3.s-1 and 0.5 m3.s-1) for the purpose of proper disposal and reuse, evaluating their qualitative and quantitative characteristics, the Brazilian legislation and standards. It was concluded that the sludge from the water treatment plants is directly related to the quality of raw water collected, and it becomes feasible for use in construction materials, and to dispose it in the sewage system, improving the efficiency of the WWTP regarding precipitation of phosphorus (35% of removal). The WTP Lageado had 55,726 kg/month of sludge production, more than WTP Guariroba (29,336 kg/month), even though the flow of WTP Guariroba is 1,400 L.s-1 and the WTP Lagedo 500 L.s-1, being explained by the quality that influences more than the flow. The WWTP sludge have higher concentrations of organic materials due to their origin and could be used to improve the fertility of the soil, crop production and recovery of degraded areas. The volume of sludge generated at the WWTP was 1,760 ton/month, with 5.6% of solid content in the raw sludge and in the dewatered sludge it increased its content to 23%.Keywords: disposal, sludge, water treatment, wastewater treatment
Procedia PDF Downloads 3238769 Kinetic Evaluation of Biodegradability of Paint Shop Wastewater of a Bus Production Factory
Authors: Didem Güven, Oytun Hanhan, Elif Ceren Aksoy, Emine Ubay Çokgör
Abstract:
This paper presents a biological treatability study ofpaintshopwastewaterof a bus factory by an anoxic/aerobic sequencing batch reactor.A lab scale 14L SBR system was implementedto investigate carbon and nitrogen removal performance frompaint shop waste streams combined with domestic and process wastewater of a bus production factory in Istanbul (Turkey).The wastewater collected from decanters of the paint boots and pre-treatmentplant was usedforthefeeding of SBR. The reactor was operated with a total hydraulic retention time of 24 hrs, and a total sludge age of 18.7 days. Initially the efficiency and stability of the reactor were studied when fed with main wastewater stream to simulate the current wastewater treatment plant. Removal efficiency of 57% nitrogen and 90% COD were obtained. Once the paint shop wastewater was introduced to mainstream feeding with a ratio of 1:5, nitrification completely, carbon removal were partially inhibited. SBR system was successful to handle even at very high COD concentrations of paint shop wastewater after feeding of 2 months, with an average effluent COD of 100 mg/L. For the determination of kinetic parameters, respirometric analysis was also conducted with/without paint shop wastewater addition. Model simulation indicated lower maximum specific growth and hydrolysis rates when paint shop wastewater was mixed with the mainstream wastewater of the factory.Keywords: biological treatability, nitrogen removal, paint shop wastewater, sequencing batch reactor
Procedia PDF Downloads 2978768 Trends of Municipal Council Members in Practicing His Role on Municipality's Main Municipal Activities in the Kingdom of Saudi Arabia
Authors: Ameer Alalwan
Abstract:
Summary: The aim of this research is to identify trends of municipal council member in practicing his administrative control, decision-making, and counsultive role on municipalities' main municipal activities in the kingdom of Saudi Arabia. This research is conducted after the implementation of the new municipal system resolution no. (M\61) in 1435 in the work of municipal councils for the third session. To achieve the goal of this research, a questionnaire has been designed to obtain the opinion of municipal councils on this matter. This questionnaire has been tested for reliability and validity. The results of this research show that in general performance of municipal council is moderate after the implementation of the new municipal system resolution no. (M\61) in 1435 in the work of municipal councils for the third session. Also, extend that municipal council member practice his roles on the main municipality activities is moderate and weak. In addition, results show that municipal council member practice big role in decision-making, and moderate role in administrative control, and weaker role in giving opinion on municipality main issues. Furthermore, the results show that there is a significant difference between municipal council member's responses by the change of their Personal characteristics. Educated and appointed municipal council members practicing their role more than others do. In addition, municipal council presidents, and vice presidents, and in regional and sub-regional municipalities practice their role more than others do. Finally, this research in general recommened that muincialty council member must be empowered, so that he can practice his role on muicipality main activities. In addition, research suggest, granting municipal council member the authority, resources needed, training and appointment of qualified members, so that they will be able to practice their roles. Furthermore, this research suggest for the time being maintain certain percent of municipal council's appointed until this experience mature in the kingdom.Keywords: municipal council, municipal council member, municipality, decision-making role
Procedia PDF Downloads 1268767 Power Generation and Treatment potential of Microbial Fuel Cell (MFC) from Landfill Leachate
Authors: Beenish Saba, Ann D. Christy
Abstract:
Modern day municipal solid waste landfills are operated and controlled to protect the environment from contaminants during the biological stabilization and degradation of the solid waste. They are equipped with liners, caps, gas and leachate collection systems. Landfill gas is passively or actively collected and can be used as bio fuel after necessary purification, but leachate treatment is the more difficult challenge. Leachate, if not recirculated in a bioreactor landfill system, is typically transported to a local wastewater treatment plant for treatment. These plants are designed for sewage treatment, and often charge additional fees for higher strength wastewaters such as leachate if they accept them at all. Different biological, chemical, physical and integrated techniques can be used to treat the leachate. Treating that leachate with simultaneous power production using microbial fuel cells (MFC) technology has been a recent innovation, reported its application in its earliest starting phase. High chemical oxygen demand (COD), ionic strength and salt concentration are some of the characteristics which make leachate an excellent substrate for power production in MFCs. Different materials of electrodes, microbial communities, carbon co-substrates and temperature conditions are some factors that can be optimized to achieve simultaneous power production and treatment. The advantage of the MFC is its dual functionality but lower power production and high costs are the hurdles in its commercialization and more widespread application. The studies so far suggest that landfill leachate MFCs can produce 1.8 mW/m2 with 79% COD removal, while amendment with food leachate or domestic wastewater can increase performance up to 18W/m3 with 90% COD removal. The columbic efficiency is reported to vary between 2-60%. However efforts towards biofilm optimization, efficient electron transport system studies and use of genetic tools can increase the efficiency of the MFC and can determine its future potential in treating landfill leachate.Keywords: microbial fuel cell, landfill leachate, power generation, MFC
Procedia PDF Downloads 3178766 Sub-Municipal Government as a Tool for Decentralization
Authors: Mirko Klaric
Abstract:
In different countries, sub-municipal units have different organizational and political positions. In some countries, the role of sub-municipal units is important; in others, it is marginal. That depends on the organization of the local government system in different countries, and the political role of local self-government units, their size, public authorities, and the possibility for managing various local public tasks. This paper attempts to analyze the sub-municipal government as an organizational form of local governance participation of citizens in the local community with a comparative perspective. Secondly, it presents elements that generally format sub-municipal government as a tool for strengthening of democratization processes in local government units. Those elements are crucial for the understanding of the dynamic in relation to local government vs. sub-municipal government. Special focus is put on the sub-municipal government in South-Eastern European countries, which have a common history and institutional framework, with this main question: how can sub-municipal government contribute to strengthening democratic processes in these countries. In centralized countries, the sub-municipal government usually has a reduced role, which relates to managing public tasks connected with local community needs. The purpose of this comparative research methodology is used for analyzing the present organization and role of sub-municipal government in local government systems in Croatia and other significant countries in Europe, with a special focus on the states in South-Eastern Europe and Croatia. Comparative analyses attempt to show that local government systems with bigger local government units have more significant sub-municipal government. On the other hand, local government systems with small local government units don’t have a strong sub-municipal government. Finally, this paper aims to present ideas on how the sub-municipal government can improve decentralization and contribute to better development of the local community and the whole of society.Keywords: public administration, local government, sub-municipal government, decentralization
Procedia PDF Downloads 1598765 Phytoremediation Rates of Water Hyacinth in an Aquaculture Effluent Hydroponic System
Authors: E. A. Kiridi, A. O. Ogunlela
Abstract:
Conventional wastewater treatment plants of activated carbon, electrodialysis, ion exchange, reverse osmosis etc. are expensive to install, operate and maintain especially in developing countries; therefore, the use of aquatic macrophytes for wastewater purification is a viable alternative. On the first day of experimentation, approximately 100g of water hyacinth was introduced into the hydroponic units in four replicates. The water quality parameters measured were total suspended solids (TSS), pH and electrical conductivity (EC). Others were concentration of ammonium–nitrogen (NH4+-N), nitrite-nitrogen (NO2--N), nitrate-nitrogen (NO3--N), phosphate–phosphorus (PO43--P), and biomass value. At phytoremediation intervals of 7, 14, 21 and 28 days, the biomass recorded were 438.2 g, 600.7 g, 688.2 g and 725.7 g. Water hyacinth was able to reduce the pollutant concentration of all the selected parameter. The percentage reduction of pH ranged from 1.9% to 14.7%, EC from 49.8% to 97.0%, TDS from 50.4% to 97.6%, TSS from 34.0% to 78.3%, NH4+-N from 38.9% to 85.2%, NO2--N from 0% to 84.6%, NO3--N from 63.2% to 98.8% and PO43--P from 10% to 88.0%. Paired sample t-test shows that at 95% confidence level, it can be concluded statistically that the inequality between the pre-treatment and post-treatment values are significant. This suggests that the use of water hyacinth is valuable in the design and operation of aquaculture effluent treatment and should therefore be adopted by environmental and wastewater managers.Keywords: aquaculture effluent, phytoremediation, pollutant, water hyacinth
Procedia PDF Downloads 2748764 Electricity Production Enhancement in a Constructed Microbial Fuel Cell MFC Using Iron Nanoparticles
Authors: Khaoula Bensaida, Osama Eljamal
Abstract:
The electrical energy generation through Microbial Fuel Cells (MFCs) using microorganisms is a renewable and sustainable approach. It creates truly an efficient technology for power production and wastewater treatment. MFC is an electrochemical device which turns wastewater into electricity. The most important part of MFC is microbes. Nano zero-valent Iron NZVI technique was successfully applied in degrading the chemical pollutants and cleaning wastewater. However, the use of NZVI for enhancing the current production is still not confirmed yet. This study aims to confirm the effect of these particles on the current generation by using MFC. A constructed microbial fuel cell, which utilizes domestic wastewater, has been considered for wastewater treatment and bio-electricity generation. The two electrodes were connected to an external resistor (200 ohms). Experiments were conducted in two steps. First, the MFC was constructed without adding NZVI particles (Control) while at a second step, nanoparticles were added with a concentration of 50mg/L. After 20 hours, the measured voltage increased to 5 and 8mV, respectively. To conclude, the use of zero-valent iron in an MFC system can increase electricity generation.Keywords: bacterial growth, electricity generation, microbial fuel cell MFC, nano zero-valent iron NZVI.
Procedia PDF Downloads 1448763 Occurrence and Fate of EDCs in Wastewater and Aquatic Environments in the West Bank of Palestine
Authors: Wa`d Odeh, Alon Tal, Alfred Abed Rabbo, Nader Al Khatib, Shai Arnon
Abstract:
The presence of endocrine disrupting compounds (EDCs) in raw sewage and effluents from wastewater treatment plants (WWTPs) has been increasingly studied in the last few decades. Higher risks are said to characterize situations where raw sewage streams are found to be flowing, or where partial and inadequate wastewater treatment exists. Such conditions are prevalent in the West Bank area of Palestine. To our knowledge, no previous data concerning the occurrence and fate of EDCs in the aquatic environment has ever been systematically evaluated in the region. Hence, the main objective of this study was to identify the occurrence and concentrations of major EDCs in raw sewage, wastewater effluents produced by treatment plants and in the receiving environments, including streams and groundwater in the West Bank, Palestine. Water samples were collected and analyzed for four times during the years of 2013 and 2014. Two large-scale conventional activated sludge WWTPs, two wastewater watercourses, one naturally perennial stream, and five groundwater locations close to wastewater sources were sampled and analyzed by GC/MS following EPA methods (525.2). Five EDCs (estriol, estrone, testosterone, bisphenol A, and octylphenol) were detected in trace concentrations (ng/l) in wastewater streams and at inputs to WWTPs. WWTPs were not able to achieve complete removal of all EDCs, and EDCs were still found in the effluents. In this regard, the most significant environmental estrogenic impact was due to estrone concentrations. Nevertheless, no EDCs were detected in groundwater. Yet, in order for effluents to be reused, significant improvement in treatment infrastructure should be a top priority for environmental managers in the region.Keywords: endocrine disrupting compounds, raw sewage streams, conventional activated sludge WWTPs, WWTPs effluents
Procedia PDF Downloads 4028762 Industrial Wastewater from Paper Mills Used for Biofuel Production and Soil Improvement
Authors: Karin M. Granstrom
Abstract:
Paper mills produce wastewater with a high content of organic substances. Treatment usually consists of sedimentation, biological treatment of activated sludge basins, and chemical precipitation. The resulting sludges are currently a waste problem, deposited in landfills or used as low-grade fuels for incineration. There is a growing awareness of the need for energy efficiency and environmentally sound management of sludge. A resource-efficient method would be to digest the wastewater sludges anaerobically to produce biogas, refine the biogas to biomethane for use in the transportation sector, and utilize the resulting digestate for soil improvement. The biomethane yield of pulp and paper wastewater sludge is comparable to that of straw or manure. As a bonus, the digestate has an improved dewaterability compared to the feedstock biosludge. Limitations of this process are predominantly a weak economic viability - necessitating both sufficiently large-scale paper production for the necessary large amounts of produced wastewater sludge, and the resolving of remaining questions on the certifiability of the digestate and thus its sales price. A way to improve the practical and economical feasibility of using paper mill wastewater for biomethane production and soil improvement is to co-digest it with other feedstocks. In this study, pulp and paper sludge were co-digested with (1) silage and manure, (2) municipal sewage sludge, (3) food waste, or (4) microalgae. Biomethane yield analysis was performed in 500 ml batch reactors, using an Automatic Methane Potential Test System at thermophilic temperature, with a 20 days test duration. The results show that (1) the harvesting season of grass silage and manure collection was an important factor for methane production, with spring feedstocks producing much more than autumn feedstock, and pulp mill sludge benefitting the most from co-digestion; (2) pulp and paper mill sludge is a suitable co-substrate to add when a high nitrogen content cause impaired biogas production due to ammonia inhibition; (3) the combination of food waste and paper sludge gave higher methane yield than either of the substrates digested separately; (4) pure microalgae gave the highest methane yield. In conclusion, although pulp and paper mills are an almost untapped resource for biomethane production, their wastewater is a suitable feedstock for such a process. Furthermore, through co-digestion, the pulp and paper mill wastewater and mill sludges can aid biogas production from more nutrient-rich waste streams from other industries. Such co-digestion also enhances the soil improvement properties of the residue digestate.Keywords: anaerobic, biogas, biomethane, paper, sludge, soil
Procedia PDF Downloads 2598761 Treatment of Cutting Oily-Wastewater by Sono-Fenton Process: Experimental Approach and Combined Process
Authors: Pisut Painmanakul, Thawatchai Chintateerachai, Supanid Lertlapwasin, Nusara Rojvilavan, Tanun Chalermsinsuwan, Nattawin Chawaloesphonsiya, Onanong Larpparisudthi
Abstract:
Conventional coagulation, advance oxidation process (AOPs), and the combined process were evaluated and compared for its suitability to treat the stabilized cutting-oil wastewater. The 90% efficiency was obtained from the coagulation at Al2(SO4)3 dosage of 150 mg/L and pH 7. On the other hands, efficiencies of AOPs for 30 minutes oxidation time were 10% for acoustic oxidation, 12% for acoustic oxidation with hydrogen peroxide, 76% for Fenton, and 92% sono-Fenton processes. The highest efficiency for effective oil removal of AOPs required large amount of chemical. Therefore, AOPs were studied as a post-treatment after conventional separation process. The efficiency was considerable as the effluent COD can pass the standard required for industrial wastewater discharge with less chemical and energy consumption.Keywords: cutting oily-wastewater, advance oxidation process, sono-fenton, combined process
Procedia PDF Downloads 3558760 Recirculated Sedimentation Method to Control Contamination for Algal Biomass Production
Authors: Ismail S. Bostanci, Ebru Akkaya
Abstract:
Microalgae-derived biodiesel, fertilizer or industrial chemicals' production with wastewater has great potential. Especially water from a municipal wastewater treatment plant is a very important nutrient source for biofuel production. Microalgae biomass production in open ponds system is lower cost culture systems. There are many hurdles for commercial algal biomass production in large scale. One of the important technical bottlenecks for microalgae production in open system is culture contamination. The algae culture contaminants can generally be described as invading organisms which could cause pond crash. These invading organisms can be competitors, parasites, and predators. Contamination is unavoidable in open systems. Potential contaminant organisms are already inoculated if wastewater is utilized for algal biomass cultivation. Especially, it is important to control contaminants to retain in acceptable level in order to reach true potential of algal biofuel production. There are several contamination management methods in algae industry, ranging from mechanical, chemical, biological and growth condition change applications. However, none of them are accepted as a suitable contamination control method. This experiment describes an innovative contamination control method, 'Recirculated Sedimentation Method', to manage contamination to avoid pond cash. The method can be used for the production of algal biofuel, fertilizer etc. and algal wastewater treatment. To evaluate the performance of the method on algal culture, an experiment was conducted for 90 days at a lab-scale raceway (60 L) reactor with the use of non-sterilized and non-filtered wastewater (secondary effluent and centrate of anaerobic digestion). The application of the method provided the following; removing contaminants (predators and diatoms) and other debris from reactor without discharging the culture (with microscopic evidence), increasing raceway tank’s suspended solids holding capacity (770 mg L-1), increasing ammonium removal rate (29.83 mg L-1 d-1), decreasing algal and microbial biofilm formation on inner walls of reactor, washing out generated nitrifier from reactor to prevent ammonium consumption.Keywords: contamination control, microalgae culture contamination, pond crash, predator control
Procedia PDF Downloads 2078759 Industrial Wastewater Treatment Improvements Using Activated Carbon
Authors: Mamdouh Y. Saleh, Gaber El Enany, Medhat H. Elzahar, Moustafa H. Omran
Abstract:
The discharge limits of industrial waste water effluents are subjected to regulations which are getting more restricted with time. A former research occurred in Port Said city studied the efficiency of treating industrial wastewater using the first stage (A-stage) of the multiple-stage plant (AB-system).From the results of this former research, the effluent treated wastewater has high rates of total dissolved solids (TDS) and chemical oxygen demand (COD). The purpose of this paper is to improve the treatment process in removing TDS and COD. Thus, a pilot plant was constructed at wastewater pump station in the industrial area in the south of Port Said. Experimental work was divided into several groups adding activated carbon with different dosages to waste water, and for each group waste water was filtered after being mixed with activated carbon. pH and TSS as variables were also studied. At the end of this paper, a comparison was made between the efficiency of using activated carbon and the efficiency of using limestone in the same circumstances.Keywords: adsorption, COD removal, filtration, TDS removal
Procedia PDF Downloads 498