Search results for: dual water distribution systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21279

Search results for: dual water distribution systems

21159 Ageing Deterioration of High-Density Polyethylene Cable Spacer under Salt Water Dip Wheel Test

Authors: P. Kaewchanthuek, R. Rawonghad, B. Marungsri

Abstract:

This paper presents the experimental results of high-density polyethylene cable spacers for 22 kV distribution systems under salt water dip wheel test based on IEC 62217. The strength of anti-tracking and anti-erosion of cable spacer surface was studied in this study. During the test, dry band arc and corona discharge were observed on cable spacer surface. After 30,000 cycles of salt water dip wheel test, obviously surface erosion and tracking were observed especially on the ground end. Chemical analysis results by fourier transforms infrared spectroscopy showed chemical changed from oxidation and carbonization reaction on tested cable spacer. Increasing of C=O and C=C bonds confirmed occurrence of these reactions.

Keywords: cable spacer, HDPE, ageing of cable spacer, salt water dip wheel test

Procedia PDF Downloads 379
21158 Graphene Based Materials as Novel Membranes for Water Desalination and Boron Separation

Authors: Francesca Risplendi, Li-Chiang Lin, Jeffrey C. Grossman, Giancarlo Cicero

Abstract:

Desalination is one of the most employed approaches to supply water in the context of a rapidly growing global water shortage. However, the most popular water filtration method available is the reverse osmosis (RO) technique, still suffers from important drawbacks, such as a large energy demands and high process costs. In addition some serious limitations have been recently discovered, among them, the boron problem seems to have a critical meaning. Boron has been found to have a dual effect on the living systems on Earth and the difference between boron deficiency and boron toxicity levels is quite small. The aim of this project is to develop a new generation of RO membranes based on porous graphene or reduced graphene oxide (rGO) able to remove salts from seawater and to reduce boron concentrations in the permeate to the level that meets the drinking or process water requirements, by means of a theoretical approach based on density functional theory and classical molecular dynamics. Computer simulations have been employed to investigate the relationship between the atomic structure of nanoporous graphene or rGO monolayer and its membrane properties in RO applications (i.e. water permeability and resilience at RO pressures). In addition, an emphasis has been given to multilayer nanoporous rGO and rGO flakes based membranes. By means of non-equilibrium MD simulations, we investigated the water transport mechanism permeating through such multilayer membrane focusing on the effect of slit widths and sheet geometries. These simulations allowed us to establish the implications of these graphene based materials as promising membrane properties for desalination plants and as boron filtration.

Keywords: boron filtration, desalination, graphene membrane, reduced graphene oxide membrane

Procedia PDF Downloads 299
21157 Pump-as-Turbine: Testing and Characterization as an Energy Recovery Device, for Use within the Water Distribution Network

Authors: T. Lydon, A. McNabola, P. Coughlan

Abstract:

Energy consumption in the water distribution network (WDN) is a well established problem equating to the industry contributing heavily to carbon emissions, with 0.9 kg CO2 emitted per m3 of water supplied. It is indicated that 85% of energy wasted in the WDN can be recovered by installing turbines. Existing potential in networks is present at small capacity sites (5-10 kW), numerous and dispersed across networks. However, traditional turbine technology cannot be scaled down to this size in an economically viable fashion, thus alternative approaches are needed. This research aims to enable energy recovery potential within the WDN by exploring the potential of pumps-as-turbines (PATs), to realise this potential. PATs are estimated to be ten times cheaper than traditional micro-hydro turbines, presenting potential to contribute to an economically viable solution. However, a number of technical constraints currently prohibit their widespread use, including the inability of a PAT to control pressure, difficulty in the selection of PATs due to lack of performance data and a lack of understanding on how PATs can cater for fluctuations as extreme as +/- 50% of the average daily flow, characteristic of the WDN. A PAT prototype is undergoing testing in order to identify the capabilities of the technology. Results of preliminary testing, which involved testing the efficiency and power potential of the PAT for varying flow and pressure conditions, in order to develop characteristic and efficiency curves for the PAT and a baseline understanding of the technologies capabilities, are presented here: •The limitations of existing selection methods which convert BEP from pump operation to BEP in turbine operation was highlighted by the failure of such methods to reflect the conditions of maximum efficiency of the PAT. A generalised selection method for the WDN may need to be informed by an understanding of impact of flow variations and pressure control on system power potential capital cost, maintenance costs, payback period. •A clear relationship between flow and efficiency rate of the PAT has been established. The rate of efficiency reductions for flows +/- 50% BEP is significant and more extreme for deviations in flow above the BEP than below, but not dissimilar to the reaction of efficiency of other turbines. •PAT alone is not sufficient to regulate pressure, yet the relationship of pressure across the PAT is foundational in exploring ways which PAT energy recovery systems can maintain required pressure level within the WDN. Efficiencies of systems of PAT energy recovery systems operating conditions of pressure regulation, which have been conceptualise in current literature, need to be established. Initial results guide the focus of forthcoming testing and exploration of PAT technology towards how PATs can form part of an efficiency energy recovery system.

Keywords: energy recovery, pump-as-turbine, water distribution network, water distribution network

Procedia PDF Downloads 260
21156 An Approach to Spatial Planning for Water Conservation: The Case of Kovada Sub-Watershed (Turkey)

Authors: Aybike Ayfer Karadağ

Abstract:

Today, the amount of water available is decreasing day by day due to global warming, environmental problems and population increase. To protect water resources, it is necessary to take a lot of measures from the global scale to the local scale. Some of these measures are related to spatial planning studies. In this study, the impact of water process analysis was assessed in the development of spatial planning for water conservation. The study was conducted in the Kovada sub-watershed (Isparta, Turkey). By means of water process analysis, the way to reach underground water of surface water in the study area is mapped. In this context, plant cover, soil and rock permeability were evaluated holistically with geographic information systems technologies. Then, on the map, water permeability is classified and this is spatially expressed. The findings show that the permeability of the water is different in the study case. As a result, the water permeability map needs to be included in the planning for water conservation planning.

Keywords: water, conservation, spatial planning, water process analysis

Procedia PDF Downloads 217
21155 Compact Dual-Band Bandpass Filter Based on Quarter Wavelength Stepped Impedance Resonators

Authors: Yu-Fu Chen, Zih-Jyun Dai, Chen-Te Chiu, Shiue-Chen Chiou, Yung-Wei Chen, Yu-Ming Lin, Kuan-Yu Chen, Hung-Wei Wu, Hsin-Ying Lee, Yan-Kuin Su, Shoou-Jinn Chang

Abstract:

This paper presents a compact dual-band bandpass filter that involves using the quarter wavelength stepped impedance resonators (SIRs) for achieving simultaneously compact circuit size and good dual-band performance. The filter is designed at 2.4 / 3.5 GHz and constructed by two pairs of quarter wavelength SIRs and source-load lines. By properly tuning the impedance ratio, length ratio and radius of via hole of the SIRs, dual-passbands performance can be easily determined. To improve the passband selectivity, the use of source-load lines is to increase coupling energy between the resonators. The filter is showing simple configuration, effective design method and small circuit size. The measured results are in good agreement with the simulation results.

Keywords: dual-band, bandpass filter, stepped impedance resonators, SIR

Procedia PDF Downloads 516
21154 Application of Compressed Sensing Method for Compression of Quantum Data

Authors: M. Kowalski, M. Życzkowski, M. Karol

Abstract:

Current quantum key distribution systems (QKD) offer low bit rate of up to single MHz. Compared to conventional optical fiber links with multiple GHz bitrates, parameters of recent QKD systems are significantly lower. In the article we present the conception of application of the Compressed Sensing method for compression of quantum information. The compression methodology as well as the signal reconstruction method and initial results of improving the throughput of quantum information link are presented.

Keywords: quantum key distribution systems, fiber optic system, compressed sensing

Procedia PDF Downloads 693
21153 Composite Distributed Generation and Transmission Expansion Planning Considering Security

Authors: Amir Lotfi, Seyed Hamid Hosseini

Abstract:

During the recent past, due to the increase of electrical energy demand and governmental resources constraints in creating additional capacity in the generation, transmission, and distribution, privatization, and restructuring in electrical industry have been considered. So, in most of the countries, different parts of electrical industry like generation, transmission, and distribution have been separated in order to create competition. Considering these changes, environmental issues, energy growth, investment of private equity in energy generation units and difficulties of transmission lines expansion, distributed generation (DG) units have been used in power systems. Moreover, reduction in the need for transmission and distribution, the increase of reliability, improvement of power quality, and reduction of power loss have caused DG to be placed in power systems. On the other hand, considering low liquidity need, private investors tend to spend their money for DGs. In this project, the main goal is to offer an algorithm for planning and placing DGs in order to reduce the need for transmission and distribution network.

Keywords: planning, transmission, distributed generation, power security, power systems

Procedia PDF Downloads 480
21152 Comparison between Hardy-Cross Method and Water Software to Solve a Pipe Networking Design Problem for a Small Town

Authors: Ahmed Emad Ahmed, Zeyad Ahmed Hussein, Mohamed Salama Afifi, Ahmed Mohammed Eid

Abstract:

Water has a great importance in life. In order to deliver water from resources to the users, many procedures should be taken by the water engineers. One of the main procedures to deliver water to the community is by designing pressurizer pipe networks for water. The main aim of this work is to calculate the water demand of a small town and then design a simple water network to distribute water resources among the town with the smallest losses. Literature has been mentioned to cover the main point related to water distribution. Moreover, the methodology has introduced two approaches to solve the research problem, one by the iterative method of Hardy-cross and the other by water software Pipe Flow. The results have introduced two main designs to satisfy the same research requirements. Finally, the researchers have concluded that the use of water software provides more abilities and options for water engineers.

Keywords: looping pipe networks, hardy cross networks accuracy, relative error of hardy cross method

Procedia PDF Downloads 165
21151 Dual-Task–Immersion in the Interactions of Simultaneously Performed Tasks

Authors: M. Liebherr, P. Schubert, S. Kersten, C. Dietz, L. Franz, C. T. Haas

Abstract:

With a long history, dual-task has become one of the most intriguing research fields regarding human brain functioning and cognition. However, findings considering effects of task-interrelations are limited (especially, in combined motor and cognitive tasks). Therefore, we aimed at developing a measurement system in order to analyse interrelation effects of cognitive and motor tasks. On the one hand, the present study demonstrates the applicability of the measurement system and on the other hand first results regarding a systematization of different task combinations are shown. Future investigations should combine imagine technologies and this developed measurement system.

Keywords: dual-task, interference, cognition, measurement

Procedia PDF Downloads 534
21150 Dual Language Immersion Models in Theory and Practice

Authors: S. Gordon

Abstract:

Dual language immersion is growing fast in language teaching today. This study provides an overview and evaluation of the different models of Dual language immersion programs in US K-12 schools. First, the paper provides a brief current literature review on the theory of Dual Language Immersion (DLI) in Second Language Acquisition (SLA) studies. Second, examples of several types of DLI language teaching models in US K-12 public schools are presented (including 50/50 models, 90/10 models, etc.). Third, we focus on the unique example of DLI education in the state of Utah, a successful, growing program in K-12 schools that includes: French, Chinese, Spanish, and Portuguese. The project investigates the theory and practice particularly of the case of public elementary and secondary school children that study half their school day in the L1 and the other half in the chosen L2, from kindergarten (age 5-6) through high school (age 17-18). Finally, the project takes the observations of Utah French DLI elementary through secondary programs as a case study. To conclude, we look at the principal challenges, pedagogical objectives and outcomes, and important implications for other US states and other countries (such as France currently) that are in the process of developing similar language learning programs.

Keywords: dual language immersion, second language acquisition, language teaching, pedagogy, teaching, French

Procedia PDF Downloads 175
21149 Water Quality Assessment Based on Operational Indicator in West Coastal Water of Malaysia

Authors: Seyedeh Belin Tavakoly Sany, H. Rosli, R. Majid, S. Aishah

Abstract:

In this study, water monitoring was performed from Nov. 2012 to Oct. 2013 to assess water quality and evaluate the spatial and temporal distribution of physicochemical and biological variables in water. Water samples were collected from 10 coastal water stations of West Port. In the case of water-quality assessment, multi-metric indices and operational indicators have been proposed to classify the trophic status at different stations. The trophic level of West Port coastal water ranges from eutrophic to hypertrophic. Chl-a concentration was used to estimate the biological response of phytoplankton biomass and indicated eutrophic conditions in West Port and mesotrophic conditions at the control site. During the study period, no eutrophication events or secondary symptoms occurred, which may be related to hydrodynamic turbulence and water exchange, which prevent the development of eutrophic conditions in the West Port.

Keywords: water quality, multi-metric indices, operational indicator, Malaysia, West Port

Procedia PDF Downloads 296
21148 The Effect of Water Droplets Size in Fire Fighting Systems

Authors: Tassadit Tabouche

Abstract:

Water sprays pattern, and water droplets size (different droplets diameter) are a key factors in the success of the suppression by water spray. The effects of the two important factors are investigated in this study. However, the fire extinguishing mechanism in such devices is not well understood due to the complexity of the physical and chemical interactions between water spray and fire plume. in this study, 3D, unsteady, two phase flow CFD simulation approach is introduced to provide a quantitative analysis of the complex interactions occurring between water spray and fire plume. Lagrangian Discrete Phase Model (DPM) was used for water droplets and a global one-step reaction mechanism in combustion model was used for fire plume.

Keywords: droplets, water spray, water droplets size, 3D

Procedia PDF Downloads 534
21147 Structural and Ion Exchange Studies of Terpolymer Resin Derived from 4, 4'-Biphenol-4,4'-Oxydianiline-Formaldehyde

Authors: Pawan P. Kalbende, Anil B. Zade

Abstract:

A novel terpolymer resin has been synthesized by condensation polymerization reaction of 4,4’-biphenol and 4,4’-oxydianiline with formaldehyde in presence of 2M hydrochloric acid as catalyst. Composition of resin was determined on the basis of their elemental analysis and further characterized by UV-Visible, infra-red and nuclear magnetic resonance spectroscopy to confine the most probable structure of synthesized terpolymer. Newly synthesized terpolymer was proved to be a selective chelating ion-exchanger for certain metal ions and were studied for Fe3+, Cu2+, Ni2+, Co2+, Zn2+, Cd2+, Hg2+ and Pb2+ ions using their metal nitrate solutions. A batch equilibrium method was employed to study the selectivity of metal ions uptake involving the measurements of the distribution of a given metal ion between the terpolymer sample and a solution containing the metal ion. The study was carried out over a wide pH range, shaking time and in media of different electrolytes at different ionic strengths. Distribution ratios of metal ions were found to be increased by rising pH of the solutions. Hence, it can be used to recover certain metal ions from waste water for the purpose of purification of water and removal of iron from boiler water.

Keywords: terpolymers, ion-exchangers, distribution ratio, metal ion uptake

Procedia PDF Downloads 296
21146 Bacteriological Characterization of Drinking Water Distribution Network Biofilms by Gene Sequencing Using Different Pipe Materials

Authors: M. Zafar, S. Rasheed, Imran Hashmi

Abstract:

Very little is concerned about the bacterial contamination in drinking water biofilm which provide a potential source for bacteria to grow and increase rapidly. So as to understand the microbial density in DWDs, a three-month study was carried out. The aim of this study was to examine biofilm in three different pipe materials including PVC, PPR and GI. A set of all these pipe materials was installed in DWDs at nine different locations and assessed on monthly basis. Drinking water quality was evaluated by different parameters and characterization of biofilm. Among various parameters are Temperature, pH, turbidity, TDS, electrical conductivity, BOD, COD, total phosphates, total nitrates, total organic carbon (TOC) free chlorine and total chlorine, coliforms and spread plate counts (SPC) according to standard methods. Predominant species were Bacillus thuringiensis, Pseudomonas fluorescens , Staphylococcus haemolyticus, Bacillus safensis and significant increase in bacterial population was observed in PVC pipes while least in cement pipes. The quantity of DWDs bacteria was directly depended on biofilm bacteria and its increase was correlated with growth and detachment of bacteria from biofilms. Pipe material also affected the microbial community in drinking water distribution network biofilm while Similarity in bacterial species was observed between systems due to same disinfectant dose, time period and plumbing pipes.

Keywords: biofilm, DWDs, pipe material, bacterial population

Procedia PDF Downloads 347
21145 Voltage Profile Enhancement in the Unbalanced Distribution Systems during Fault Conditions

Authors: K. Jithendra Gowd, Ch. Sai Babu, S. Sivanagaraju

Abstract:

Electric power systems are daily exposed to service interruption mainly due to faults and human accidental interference. Short circuit currents are responsible for several types of disturbances in power systems. The fault currents are high and the voltages are reduced at the time of fault. This paper presents two suitable methods, consideration of fault resistance and Distributed Generator are implemented and analyzed for the enhancement of voltage profile during fault conditions. Fault resistance is a critical parameter of electric power systems operation due to its stochastic nature. If not considered, this parameter may interfere in fault analysis studies and protection scheme efficiency. The effect of Distributed Generator is also considered. The proposed methods are tested on the IEEE 37 bus test systems and the results are compared.

Keywords: distributed generation, electrical distribution systems, fault resistance

Procedia PDF Downloads 515
21144 Developing New Algorithm and Its Application on Optimal Control of Pumps in Water Distribution Network

Authors: R. Rajabpour, N. Talebbeydokhti, M. H. Ahmadi

Abstract:

In recent years, new techniques for solving complex problems in engineering are proposed. One of these techniques is JPSO algorithm. With innovative changes in the nature of the jump algorithm JPSO, it is possible to construct a graph-based solution with a new algorithm called G-JPSO. In this paper, a new algorithm to solve the optimal control problem Fletcher-Powell and optimal control of pumps in water distribution network was evaluated. Optimal control of pumps comprise of optimum timetable operation (status on and off) for each of the pumps at the desired time interval. Maximum number of status on and off for each pumps imposed to the objective function as another constraint. To determine the optimal operation of pumps, a model-based optimization-simulation algorithm was developed based on G-JPSO and JPSO algorithms. The proposed algorithm results were compared well with the ant colony algorithm, genetic and JPSO results. This shows the robustness of proposed algorithm in finding near optimum solutions with reasonable computational cost.

Keywords: G-JPSO, operation, optimization, pumping station, water distribution networks

Procedia PDF Downloads 401
21143 A Short-Baseline Dual-Antenna BDS/MEMS-IMU Integrated Navigation System

Authors: Tijing Cai, Qimeng Xu, Daijin Zhou

Abstract:

This paper puts forward a short-baseline dual-antenna BDS/MEMS-IMU integrated navigation, constructs the carrier phase double difference model of BDS (BeiDou Navigation Satellite System), and presents a 2-position initial orientation method on BDS. The Extended Kalman-filter has been introduced for the integrated navigation system. The differences between MEMS-IMU and BDS position, velocity and carrier phase indications are used as measurements. To show the performance of the short-baseline dual-antenna BDS/MEMS-IMU integrated navigation system, the experiment results show that the position error is less than 1m, the pitch angle error and roll angle error are less than 0.1°, and the heading angle error is about 1°.

Keywords: MEMS-IMU (Micro-Electro-Mechanical System Inertial Measurement Unit), BDS (BeiDou Navigation Satellite System), dual-antenna, integrated navigation

Procedia PDF Downloads 193
21142 Technical and Economical Feasibility Analysis of Solar Water Pumping System - Case Study in Iran

Authors: A. Gharib, M. Moradi

Abstract:

The technical analysis of using solar energy and electricity for water pumping in the Khuzestan province in Iran is investigated. For this purpose, the ecological conditions such as the weather data, air clearness and sunshine hours are analyzed. The nature of groundwater in the region was examined in terms of depth, static and dynamic head, water pumping rate. Three configurations for solar water pumping system were studied in this thesis; AC solar water pumping with a storage battery, AC solar water pumping with a storage tank, and DC direct solar water pumping.

Keywords: technical and economic feasibility, solar energy, photovoltaic systems, solar water pumping system

Procedia PDF Downloads 571
21141 Real-Time Observation of Concentration Distribution for Mix Liquids including Water in Micro Fluid Channel with Near-Infrared Spectroscopic Imaging Method

Authors: Hiroki Takiguchi, Masahiro Furuya, Takahiro Arai

Abstract:

In order to quantitatively comprehend thermal flow for some industrial applications such as nuclear and chemical reactors, detailed measurements for temperature and abundance (concentration) of materials at high temporal and spatial resolution are required. Additionally, rigorous evaluation of the size effect is also important for practical realization. This paper introduces a real-time spectroscopic imaging method in micro scale field, which visualizes temperature and concentration distribution of a liquid or mix liquids with near-infrared (NIR) wavelength region. This imaging principle is based on absorption of pre-selected narrow band from absorption spectrum peak or its dependence property of target liquid in NIR region. For example, water has a positive temperature sensitivity in the wavelength at 1905 nm, therefore the temperature of water can be measured using the wavelength band. In the experiment, the real-time imaging observation of concentration distribution in micro channel was demonstrated to investigate the applicability of micro-scale diffusion coefficient and temperature measurement technique using this proposed method. The effect of thermal diffusion and binary mutual diffusion was evaluated with the time-series visualizations of concentration distribution.

Keywords: near-infrared spectroscopic imaging, micro fluid channel, concentration distribution, diffusion phenomenon

Procedia PDF Downloads 161
21140 Characterization and Geochemical Modeling of Cu and Zn Sorption Using Mixed Mineral Systems Injected with Iron Sulfide under Sulfidic-Anoxic Conditions I: Case Study of Cwmheidol Mine Waste Water, Wales, United Kingdom

Authors: D. E. Egirani, J. E. Andrews, A. R. Baker

Abstract:

This study investigates sorption of Cu and Zn contained in natural mine wastewater, using mixed mineral systems in sulfidic-anoxic condition. The mine wastewater was obtained from disused mine workings at Cwmheidol in Wales, United Kingdom. These contaminants flow into water courses. These water courses include River Rheidol. In this River fishing activities exist. In an attempt to reduce Cu-Zn levels of fish intake in the watercourses, single mineral systems and 1:1 mixed mineral systems of clay and goethite were tested with the mine waste water for copper and zinc removal at variable pH. Modelling of hydroxyl complexes was carried out using phreeqc method. Reactions using batch mode technique was conducted at room temperature. There was significant differences in the behaviour of copper and zinc removal using mixed mineral systems when compared  to single mineral systems. All mixed mineral systems sorb more Cu than Zn when tested with mine wastewater.

Keywords: Cu- Zn, hydroxyl complexes, kinetics, mixed mineral systems, reactivity

Procedia PDF Downloads 499
21139 Investigating English Dominance in a Chinese-English Dual Language Program: Teachers' Language Use and Investment

Authors: Peizhu Liu

Abstract:

Dual language education, also known as immersion education, differs from traditional language programs that teach a second or foreign language as a subject. Instead, dual language programs adopt a content-based approach, using both a majority language (e.g., English, in the case of the United States) and a minority language (e.g., Spanish or Chinese) as a medium of instruction to teach math, science, and social studies. By granting each language of instruction equal status, dual language education seeks to educate not only meaningfully but equitably and to foster tolerance and appreciation of diversity, making it essential for immigrants, refugees, indigenous peoples, and other marginalized students. Despite the cognitive and academic benefits of dual language education, recent literature has revealed that English is disproportionately privileged across dual language programs. Scholars have expressed concerns about the unbalanced status of majority and minority languages in dual language education, as favoring English in this context may inadvertently reaffirm its dominance and moreover fail to serve the needs of children whose primary language is not English. Through a year-long study of a Chinese-English dual language program, the extensively disproportionate use of English has also been observed by the researcher. However, despite the fact that Chinese-English dual language programs are the second-most popular program type after Spanish in the United States, this issue remains underexplored in the existing literature on Chinese-English dual language education. In fact, the number of Chinese-English dual language programs being offered in the U.S. has grown rapidly, from 8 in 1988 to 331 as of 2023. Using Norton and Darvin's investment model theory, the current study investigates teachers' language use and investment in teaching Chinese and English in a Chinese-English dual language program at an urban public school in New York City. The program caters to a significant number of minority children from working-class families. Adopting an ethnographic and discourse analytic approach, this study seeks to understand language use dynamics in the program and how micro- and macro-factors, such as students' identity construction, parents' and teachers' language ideologies, and the capital associated with each language, influence teachers' investment in teaching Chinese and English. The research will help educators and policymakers understand the obstacles that stand in the way of the goal of dual language education—that is, the creation of a more inclusive classroom, which is achieved by regarding both languages of instruction as equally valuable resources. The implications for how to balance the use of the majority and minority languages will also be discussed.

Keywords: dual language education, bilingual education, language immersion education, content-based language teaching

Procedia PDF Downloads 84
21138 Cross Attention Fusion for Dual-Stream Speech Emotion Recognition

Authors: Shaode Yu, Jiajian Meng, Bing Zhu, Hang Yu, Qiurui Sun

Abstract:

Speech emotion recognition (SER) is for recognizing human subjective emotions through audio data in-depth analysis. From speech audios, how to comprehensively extract emotional information and how to effectively fuse extracted features remain challenging. This paper presents a dual-stream SER framework that embraces both full training and transfer learning of different networks for thorough feature encoding. Besides, a plug-and-play cross-attention fusion (CAF) module is implemented for the valid integration of the dual-stream encoder output. The effectiveness of the proposed CAF module is compared to the other three fusion modules (feature summation, feature concatenation, and feature-wise linear modulation) on two databases (RAVDESS and IEMO-CAP) using different dual-stream encoders (full training network, DPCNN or TextRCNN; transfer learning network, HuBERT or Wav2Vec2). Experimental results suggest that the CAF module can effectively reconcile conflicts between features from different encoders and outperform the other three feature fusion modules on the SER task. In the future, the plug-and-play CAF module can be extended for multi-branch feature fusion, and the dual-stream SER framework can be widened for multi-stream data representation to improve the recognition performance and generalization capacity.

Keywords: speech emotion recognition, cross-attention fusion, dual-stream, pre-trained

Procedia PDF Downloads 75
21137 Presentation of HVA Faults in SONELGAZ Underground Network and Methods of Faults Diagnostic and Faults Location

Authors: I. Touaїbia, E. Azzag, O. Narjes

Abstract:

Power supply networks are growing continuously and their reliability is getting more important than ever. The complexity of the whole network comprises numerous components that can fail and interrupt the power supply for the end user. Underground distribution systems are normally exposed to permanent faults, due to specific construction characteristics. In these systems, visual inspection cannot be performed. In order to enhance service restoration, accurate fault location techniques must be applied. This paper describes the different faults that affect the underground distribution system of SONELGAZ (National Society of Electricity and Gas of Algeria), and cable fault location procedure with impulse reflection method (TDR), based in the analyses of the cable response of the electromagnetic impulse, allows cable fault prelocation. The results are obtained from real test in the underground distribution feeder from electrical network of energy distribution company of Souk-Ahras, in order to know the influence of cable characteristics in the types and frequency of faults.

Keywords: distribution networks, fault location, TDR, underground cable

Procedia PDF Downloads 533
21136 Dual Band LoRa/GPS Dipole Antenna with Harmonic Suppression Capability

Authors: Amar Danial Abd Azis, Shipun Anuar Hamzah, Mohd Noh Dalimin, Khairun Nidzam Ramli, Mohd Sani Yahya, Fauziahanim Che Seman

Abstract:

This paper discusses the design, simulation results, and testing of a compact dual-band printed dipole antenna operating at frequencies of 916 MHz and 1.57 GHz for LoRa and GPS applications, respectively. The basic design of this antenna uses a linear dipole that operates at 916 MHz and 2.7 GHz. A small triangular-shaped linear balun has been developed as the matching network. Parasitic elements are employed to tune the second frequency to 1.57 GHz through a parametric study. Meanwhile, a stub is used to suppress the undesired 2.6 GHz frequency. This antenna is capable of operating on dual-frequency bands simultaneously with high efficiency in suppressing the unwanted frequency. The antenna exhibits the following parameters: return loss of -18.5 dB at 916 MHz and -14 dB at 1.57 GHz, VSWR of 1.25 at 868 MHz and 1.5 at 1.57 GHz, and gain of 2 dBi at 916 MHz and 2.75 dBi at 1.57 GHz. The radiation pattern of the antenna shows a directional E-plane and an omnidirectional H-plane at both frequencies. With its compact size and dual-band capability, this antenna demonstrates great potential for use in IoT applications that require both LoRa and GPS communication, particularly in applications where a small yet efficient form factor is essential.

Keywords: dual band, dipole antenna, parasitic elements, harmonic suppression, LoRa and Gps

Procedia PDF Downloads 6
21135 Water Management Scheme: Panacea to Development Using Nigeria’s University of Ibadan Water Supply Scheme as a Case Study

Authors: Sunday Olufemi Adesogan

Abstract:

The supply of potable water at least is a very important index in national development. Water tariffs depend on the treatment cost which carries the highest percentage of the total operation cost in any water supply scheme. In order to keep water tariffs as low as possible, treatment costs have to be minimized. The University of Ibadan, Nigeria, water supply scheme consists of a treatment plant with three distribution stations (Amina way, Kurumi and Lander) and two raw water supply sources (Awba dam and Eleyele dam). An operational study of the scheme was carried out to ascertain the efficiency of the supply of potable water on the campus to justify the need for water supply schemes in tertiary institutions. The study involved regular collection, processing and analysis of periodic operational data. Data collected include supply reading (water production on daily basis) and consumers metered reading for a period of 22 months (October 2013 - July 2015), and also collected, were the operating hours of both plants and human beings. Applying the required mathematical equations, total loss was determined for the distribution system, which was translated into monetary terms. Adequacies of the operational functions were also determined. The study revealed that water supply scheme is justified in tertiary institutions. It was also found that approximately 10.7 million Nigerian naira (N) is lost to leakages during the 22-month study period; the system’s storage capacity is no longer adequate, especially for peak water production. The capacity of the system as a whole is insufficient for the present university population and that the existing water supply system is not being operated in an optimal manner especially due to personnel, power and system ageing constraints.

Keywords: development, panacea, supply, water

Procedia PDF Downloads 209
21134 Evaluating the Water Balance of Sokoto Basement Complex to Address Water Security Challenges

Authors: Murtala Gada Abubakar, Aliyu T. Umar

Abstract:

A substantial part of Nigeria is part of semi-arid areas of the world, underlain by basement complex (hard) rocks which are very poor in both transmission and storage of appreciable quantity of water. Recently, a growing attention is being paid on the need to develop water resources in these areas largely due to concerns about increasing droughts and the need to maintain water security challenges. While there is ample body of knowledge that captures the hydrological behaviours of the sedimentary part, reported research which unambiguously illustrates water distribution in the basement complex of the Sokoto basin remains sparse. Considering the growing need to meet the water requirements of those living in this region necessitated the call for accurate water balance estimations that can inform a sustainable planning and development to address water security challenges for the area. To meet this task, a one-dimensional soil water balance model was developed and utilised to assess the state of water distribution within the Sokoto basin basement complex using measured meteorological variables and information about different landscapes within the complex. The model simulated the soil water storage and rates of input and output of water in response to climate and irrigation where applicable using data from 2001 to 2010 inclusive. The results revealed areas within the Sokoto basin basement complex that are rich and deficient in groundwater resource. The high potential areas identified includes the fadama, the fractured rocks and the cultivated lands, while the low potential areas are the sealed surfaces and non-fractured rocks. This study concludes that the modelling approach is a useful tool for assessing the hydrological behaviour and for better understanding the water resource availability within a basement complex.

Keywords: basement complex, hydrological processes, Sokoto Basin, water security

Procedia PDF Downloads 319
21133 Estimating Multidimensional Water Poverty Index in India: The Alkire Foster Approach

Authors: Rida Wanbha Nongbri, Sabuj Kumar Mandal

Abstract:

The Sustainable Development Goals (SDGs) for 2016-2030 were adopted in response to Millennium Development Goals (MDGs) which focused on access to sustainable water and sanitations. For over a decade, water has been a significant subject that is explored in various facets of life. Our day-to-day life is significantly impacted by water poverty at the socio-economic level. Reducing water poverty is an important policy challenge, particularly in emerging economies like India, owing to its population growth, huge variation in topology and climatic factors. To design appropriate water policies and its effectiveness, a proper measurement of water poverty is essential. In this backdrop, this study uses the Alkire Foster (AF) methodology to estimate a multidimensional water poverty index for India at the household level. The methodology captures several attributes to understand the complex issues related to households’ water deprivation. The study employs two rounds of Indian Human Development Survey data (IHDS 2005 and 2012) which focuses on 4 dimensions of water poverty including water access, water quantity, water quality, and water capacity, and seven indicators capturing these four dimensions. In order to quantify water deprivation at the household level, an AF dual cut-off counting method is applied and Multidimensional Water Poverty Index (MWPI) is calculated as the product of Headcount Ratio (Incidence) and average share of weighted dimension (Intensity). The results identify deprivation across all dimensions at the country level and show that a large proportion of household in India is deprived of quality water and suffers from water access in both 2005 and 2012 survey rounds. The comparison between the rural and urban households shows that higher ratio of the rural households are multidimensionally water poor as compared to their urban counterparts. Among the four dimensions of water poverty, water quality is found to be the most significant one for both rural and urban households. In 2005 round, almost 99.3% of households are water poor for at least one of the four dimensions, and among the water poor households, the intensity of water poverty is 54.7%. These values do not change significantly in 2012 round, but we could observe significance differences across the dimensions. States like Bihar, Tamil Nadu, and Andhra Pradesh are ranked the most in terms of MWPI, whereas Sikkim, Arunachal Pradesh and Chandigarh are ranked the lowest in 2005 round. Similarly, in 2012 round, Bihar, Uttar Pradesh and Orissa rank the highest in terms of MWPI, whereas Goa, Nagaland and Arunachal Pradesh rank the lowest. The policy implications of this study can be multifaceted. It can urge the policy makers to focus either on the impoverished households with lower intensity levels of water poverty to minimize total number of water poor households or can focus on those household with high intensity of water poverty to achieve an overall reduction in MWPI.

Keywords: .alkire-foster (AF) methodology, deprivation, dual cut-off, multidimensional water poverty index (MWPI)

Procedia PDF Downloads 70
21132 A Microwave and Millimeter-Wave Transmit/Receive Switch Subsystem for Communication Systems

Authors: Donghyun Lee, Cam Nguyen

Abstract:

Multi-band systems offer a great deal of benefit in modern communication and radar systems. In particular, multi-band antenna-array radar systems with their extended frequency diversity provide numerous advantages in detection, identification, locating and tracking a wide range of targets, including enhanced detection coverage, accurate target location, reduced survey time and cost, increased resolution, improved reliability and target information. An accurate calibration is a critical issue in antenna array systems. The amplitude and phase errors in multi-band and multi-polarization antenna array transceivers result in inaccurate target detection, deteriorated resolution and reduced reliability. Furthermore, the digital beam former without the RF domain phase-shifting is less immune to unfiltered interference signals, which can lead to receiver saturation in array systems. Therefore, implementing integrated front-end architecture, which can support calibration function with low insertion and filtering function from the farthest end of an array transceiver is of great interest. We report a dual K/Ka-band T/R/Calibration switch module with quasi-elliptic dual-bandpass filtering function implementing a Q-enhanced metamaterial transmission line. A unique dual-band frequency response is incorporated in the reception and calibration path of the proposed switch module utilizing the composite right/left-handed meta material transmission line coupled with a Colpitts-style negative generation circuit. The fabricated fully integrated T/R/Calibration switch module in 0.18-μm BiCMOS technology exhibits insertion loss of 4.9-12.3 dB and isolation of more than 45 dB in the reception, transmission and calibration mode of operation. In the reception and calibration mode, the dual-band frequency response centered at 24.5 and 35 GHz exhibits out-of-band rejection of more than 30 dB compared to the pass bands below 10.5 GHz and above 59.5 GHz. The rejection between the pass bands reaches more than 50 dB. In all modes of operation, the IP1-dB is between 4 and 11 dBm. Acknowledgement: This paper was made possible by NPRP grant # 6-241-2-102 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Keywords: microwaves, millimeter waves, T/R switch, wireless communications, wireless communications

Procedia PDF Downloads 160
21131 Novel Hybrid Ceramic Nanocomposites Fabricated by Rapid Sintering Technology

Authors: Iftikhar Ahmad, Abulhakim Almajid

Abstract:

Alumina (Al2O3) is an attractive structural ceramic however; brittleness turns Al2O3 down for advanced applications. Development of multi-phase phase ceramics systems is promising to curtail the brittleness and the incorporation of strong/elastic graphene, as third phase, into dual phase (Al2O3-SiC) is striking for mechanical upgrading purpose. Thin graphene nanosheets (GNS) were prepared by thermal exfoliation process and reinforced into dual phase ceramic system. The hybrid nanocomposite was consolidated by novel HF-IH (high-frequency induction heating) sintering furnace at 1500 °C under 50 MPa in vacuum conditions. Structural features and grain size of the resulting nanocomposite were analyzed by SEM and TEM whilst the mechanical properties were assessed by microhardness and nanoindentation techniques. The fracture toughness of the hybrid nanocomposites was appraised by direct crack measurement method. Electron microscopic investigations confirmed the preparation of thin (< 10 nm) graphene nanosheets (GNS). HF-IH sintering route condensed the three-phase (GNS-Al2O3-SiC) hybrid nanocomposite system to > 99% relative densities. SEM of the hybrid nanocomposites fractured surfaces revealed even distribution of the nanocomposite constituents and changed in fracture-mode. Structurally, 88% grain reduction into hybrid nanocomposite was also obtained. Mechanically, enhanced fracture toughness (50%) and hardness (53%) were also achieved for hybrid nanocomposites were attained against bench marked monolithic Al2O3.

Keywords: alumina, graphene, hybrid nanocomposites, rapid sintering

Procedia PDF Downloads 378
21130 A Source Point Distribution Scheme for Wave-Body Interaction Problem

Authors: Aichun Feng, Zhi-Min Chen, Jing Tang Xing

Abstract:

A two-dimensional linear wave-body interaction problem can be solved using a desingularized integral method by placing free surface Rankine sources over calm water surface and satisfying boundary conditions at prescribed collocation points on the calm water surface. A new free-surface Rankine source distribution scheme, determined by the intersection points of free surface and body surface, is developed to reduce numerical computation cost. Associated with this, a new treatment is given to the intersection point. The present scheme results are in good agreement with traditional numerical results and measurements.

Keywords: source point distribution, panel method, Rankine source, desingularized algorithm

Procedia PDF Downloads 365