Search results for: colorimetric gold nanoparticle assay
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2102

Search results for: colorimetric gold nanoparticle assay

1982 Development of Cationic Gelatin Nanoparticles as an Antigen-Carrier for Mucosal Immunization

Authors: Ping-Lun Jiang, Hung-Jun Lin, Shen-Fu Lin, Mei-Yin Chien, Ting-Wei Li, Chun-Han Lin, Der-Zen Liu

Abstract:

Mucosal vaccine induces both mucosal (secretory IgA) and systemic immune responses and it is considered an ideal vaccination strategy for prevention of infectious diseases. One important point to be considered in mucosal vaccination is effective antigen delivery system which can manage effective delivery of antigen to antigen-presenting cells (APCs) of mucosal. In the present study, cationic gelatin nanoparticles were prepared as ideal carriers for more efficient antigen delivery. The average diameter of cationic gelatin nanoparticle was approximate 190 nm, and the zeta potential was about +45 mV, then ovalbumin (OVA) was physically absorbed onto cationic gelatin nanoparticle. The OVA absorption rate was near 95% the zeta potential was about +20 mV. We show that cationic gelatin nanoparticle effectively facilitated antigen uptake by mice bone marrow-derived dendritic cells (mBMDCs) and RAW264.7 cells and induced higher levels of pro-inflammatory cytokines. C57BL/6 mice twice immunized intranasally with OVA-absorbed cationic gelatin nanoparticle induced high levels of OVA-specific IgG in the serum and IgA in their in the nasal and lung wash fluid. These results indicate that nasal administration of cationic gelatin nanoparticles induced both mucosal and systemic immune responses and cationic gelatin nanoparticles might be a potential antigen delivery carrier for further clinical applications.

Keywords: antigen delivery, antigen-presenting cells, gelatin nanoparticle, mucosal vaccine

Procedia PDF Downloads 335
1981 Fe₃O₄/SiO₂/TiO₂ Nanoparticles as Catalyst for Recovery of Gold from the Mixture of Au(III) and Cu(II) Ions

Authors: Eko S. Kunarti, Akhmad Syoufian, Indriana Kartini, Agnes

Abstract:

Fe₃O₄/SiO₂/TiO₂ nanoparticles have been synthesized and applied as a photocatalyst for the recovery of gold from the mixture of Au(III) and Cu(II) ions. The synthesis was started by the preparation of magnetite (Fe₃O₄) using coprecipitation and sonication methods, followed by SiO₂ coating on magnetite using sol-gel reactions, and then TiO₂ coating using sol-gel process. Characterization was performed by using infrared spectroscopy, X-ray diffraction, transmission electron microscopy methods. Activity of Fe₃O₄/SiO₂/TiO₂ nanoparticles was evaluated as a photocatalyst for recovery of gold through photoreduction of Au(III) ions in Au(III) and Cu(II) ions mixture with a ratio of 1:1, in a closed reactor equipped with UV lamp. The photoreduction yield was represented as a percentage (%) of reduced Au(III) which was calculated by substraction of initial Au(III) concentration by the unreduced one. The unreduced Au(III) was determined by atomic absorption spectrometry. Results showed that the Fe₃O₄/SiO₂/TiO₂ nanoparticles were successfully synthesised with excellent magnetic and photocatalytic properties. The nanoparticles present optimum activity at a pH of 5 under UV irradiation for 120 minutes. At the optimum condition, the Fe₃O₄/SiO₂/TiO₂ nanoparticles could reduce Au³⁺ to Au⁰ 97.24%. In the mixture of Au(III) and Cu(II) ions, the Au(III) ions are more easily reducible than Cu(II) ions with the reduction results of 96.9% and 45.80% for Au(III) and Cu(II) ions, respectively. In addition, the presence of Cu(II) ions has no significant effect on the amount of gold recovered and its reduction reaction rate.

Keywords: Fe₃O₄/SiO₂/TiO₂, photocatalyst, recovery, gold, Au(III) and Cu(II) mixture

Procedia PDF Downloads 258
1980 Comparison of the Cyclic Fatigue Resistance of Endoart Gold, Endoart Blue, Protaper Universal, and Protaper Gold Files at Body Temperature

Authors: Ayhan Eymirli, Sila N. Usta

Abstract:

The aim of this study is the comparison of the cyclic fatigue resistance of EndoArt Gold (EAG, Inci Dental, Istanbul, Turkey), EndoArt Blue (EAB, Inci Dental, Istanbul, Turkey), ProTaper Universal (PTU, Dentsply Tulsa Dental Specialties), and ProTaper Gold (PTG, Dentsply Tulsa Dental Specialties) files at body temperature. Twelve instruments of each EAG, EAB, PTU, PTG file system were included in this study. All selected files were rotated in the artificial canals, which have a 60° angle and a 5-mm radius of curvature until fracture occurred. The time to fracture (Ttf) was measured in seconds by a chronometer in the control panel that presents in the cyclic fatigue testing device when a fracture was detected visually and/or audibly. The lengths of the fractured fragments (FL) were also measured with a digital microcaliper. The data of Ttf and FL were analyzed using Kruskal-Wallis, one-way ANOVA and post hoc Bonferroni tests at the 5% significance level. There was a statistically significant difference among the file systems (p < 0.05). EAB had the statistically highest fatigue resistance, and PTU had the statistically lowest fatigue resistance (p < 0.05). PTG system had a statistically higher FL means than EAB and PTU file systems (p < 0.05). EAB had the greatest cyclic fatigue resistance amongst the other file systems. It can be stated that heat treatments may be a factor that increases fatigue resistance.

Keywords: cyclic fatigue resistance, Endo art blue, Endo art gold, pro taper gold, pro taper universal

Procedia PDF Downloads 109
1979 A Review on Bone Grafting, Artificial Bone Substitutes and Bone Tissue Engineering

Authors: Kasun Gayashan Samarawickrama

Abstract:

Bone diseases, defects, and fractions are commonly seen in modern life. Since bone is regenerating dynamic living tissue, it will undergo healing process naturally, it cannot recover from major bone injuries, diseases and defects. In order to overcome them, bone grafting technique was introduced. Gold standard was the best method for bone grafting for the past decades. Due to limitations of gold standard, alternative methods have been implemented. Apart from them artificial bone substitutes and bone tissue engineering have become the emerging methods with technology for bone grafting. Many bone diseases and defects will be healed permanently with these promising techniques in future.

Keywords: bone grafting, gold standard, bone substitutes, bone tissue engineering

Procedia PDF Downloads 279
1978 Systematic Exploration and Modulation of Nano-Bio Interactions

Authors: Bing Yan

Abstract:

Nanomaterials are widely used in various industrial sectors, biomedicine, and more than 1300 consumer products. Although there is still no standard safety regulation, their potential toxicity is a major concern worldwide. We discovered that nanoparticles target and enter human cells1, perturb cellular signaling pathways2, affect various cell functions3, and cause malfunctions in animals4,5. Because the majority of atoms in nanoparticles are on the surface, chemistry modification on their surface may change their biological properties significantly. We modified nanoparticle surface using nano-combinatorial chemistry library approach6. Novel nanoparticles were discovered to exhibit significantly reduced toxicity6,7, enhance cancer targeting ability8, or re-program cellular signaling machineries7. Using computational chemistry, quantitative nanostructure-activity relationship (QNAR) is established and predictive models have been built to predict biocompatible nanoparticles.

Keywords: nanoparticle, nanotoxicity, nano-bio, nano-combinatorial chemistry, nanoparticle library

Procedia PDF Downloads 382
1977 Circular Bio-economy of Copper and Gold from Electronic Wastes

Authors: Sadia Ilyas, Hyunjung Kim, Rajiv R. Srivastava

Abstract:

Current work has attempted to establish the linkages between circular bio-economy and recycling of copper and gold from urban mine by applying microbial activities instead of the smelter and chemical technologies. Thereafter, based on the potential of microbial approaches and research hypothesis, the structural model has been tested for a significance level of 99%, which is supported by the corresponding standardization co-efficient values. A prediction model applied to determine the recycling impact on circular bio-economy indicates to re-circulate 51,833 tons of copper and 58 tons of gold by 2030 for the production of virgin metals/raw-materials, while recycling rate of the accumulated e-waste remains to be 20%. This restoration volume of copper and gold through the microbial activities corresponds to mitigate 174 million kg CO₂ emissions and 24 million m³ water consumption if compared with the primary production activities. The study potentially opens a new window for environmentally-friendly biotechnological recycling of e-waste urban mine under the umbrella concept of circular bio-economy.

Keywords: urban mining, biobleaching, circular bio-economy, environmental impact

Procedia PDF Downloads 133
1976 Fluorometric Aptasensor: Evaluation of Stability and Comparison to Standard Enzyme-Linked Immunosorbent Assay

Authors: J. Carlos Kuri, Varun Vij, Raymond J. Turner, Orly Yadid-Pecht

Abstract:

Celiac disease (CD) is an immune system disorder that is triggered by ingesting gluten. As a gluten-free (GF) diet has become a concern of many people for health reasons, a gold standard had to be nominated. Enzyme-linked immunosorbent assay (ELISA) has taken the seat of this role. However, multiple limitations were discovered, and with that, the desire for an alternative method now exists. Nucleic acid-based aptamers have become of great interest due to their selectivity, specificity, simplicity, and rapid-testing advantages. However, fluorescence-based aptasensors have been tagged as unstable, but lifespan details are rarely stated. In this work, the lifespan stability of a fluorescence-based aptasensor is shown over an 8-week-long study displaying the accuracy of the sensor and false negatives. This study follows 22 different samples, including GF and gluten-rich (GR) and soy sauce products, off-the-shelf products, and reference material from laboratories, giving a total of 836 tests. The analysis shows an accuracy of correctly classifying GF and GR products of 96.30% and 100%, respectively when the protocol is augmented with molecular sieves. The overall accuracy remains around 94% within the first four weeks and then decays to 63%.

Keywords: aptasensor, PEG, rGO, FAM, RM, ELISA

Procedia PDF Downloads 107
1975 Modeling Electrical Properties of Hetero-Junction-Graphene/Pentacene and Gold/Pentacene

Authors: V. K. Lamba, Abhinandan Bharti

Abstract:

We investigate the electronic transport properties across the graphene/ pentacene and gold/pentacene interface. Further, we studied the effect of ripples/bends in pentacene using NEGF-DFT approach. Current transport across the pentacene/graphene interface is found to be remarkably different from transport across pentacene/Gold interfaces. We found that current across these interfaces could be accurately modeled by a combination of thermionic and Poole–Frenkel emission. Further, the degree of bend or degrees of the curve formed during ripple formation strongly change the optimized geometric structures, charge distributions, energy bands, and DOS. The misorientation and hybridization of carbon orbitals are associated with a variation in bond lengths and carrier densities, and are the causes of the dramatic changes in the electronic structure during ripple formation. The electrical conductivity decreases with increase in curvature during ripple formation or due to bending of pentacene molecule and a decrease in conductivity is directly proportional to the increase in curvature angle and given by quadratic relation.

Keywords: hetero-junction, grapheme, NEGF-DFT, pentacene, gold/pentacene

Procedia PDF Downloads 215
1974 Curative Role of Bromoenol Lactone, an Inhibitor of Phospholipase A2 Enzyme, during Cigarette Smoke Condensate Induced Anomalies in Lung Epithelium

Authors: Subodh Kumar, Sanjeev Kumar Sharma, Gaurav Kaushik, Pramod Avti, Phulen Sarma, Bikash Medhi, Krishan Lal Khanduja

Abstract:

Background: It is well known that cigarette smoke is one of the causative factors in various lung diseases especially cancer. Carcinogens and oxidant molecules present in cigarette smoke not only damage the cellular constituents (lipids, proteins, DNA) but may also regulate the molecular pathways involved in inflammation and cancer. Continuous oxidative stress caused by the constituents of cigarette smoke leads to higher PhospholipaseA₂ (PLA₂) activity, resulting in elevated levels of secondary metabolites whose role is well defined in cancer. To reduce the burden of chronic inflammation as well as oxidative stress, and higher levels of secondary metabolites, we checked the curative potential of PLA₂ inhibitor Bromoenol Lactone (BEL) during continuous exposure of cigarette smoke condensate (CSC). Aim: To check the therapeutic potential of Bromoenol Lactone (BEL), an inhibitor of PhospholipaseA₂s, in pathways of CSC-induced changes in type I and type II alveolar epithelial cells. Methods: Effect of BEL on CSC-induced PLA2 activity were checked using colorimetric assay, cellular toxicity using cell viability assay, membrane integrity using fluorescein di-acetate (FDA) uptake assay, reactive oxygen species (ROS) levels and apoptosis markers through flow cytometry, and cellular regulation using MAPKinases levels, in lung epithelium. Results: BEL significantly mimicked CSC-induced PLA₂ activity, ROS levels, apoptosis, and kinases level whereas improved cellular viability and membrane integrity. Conclusions: Current observations revealed that BEL may be a potential therapeutic agent during Cigarette smoke-induced anomalies in lung epithelium.

Keywords: cigarette smoke condensate, phospholipase A₂, oxidative stress, alveolar epithelium, bromoenol lactone

Procedia PDF Downloads 160
1973 Surface Enhanced Raman Substrate Detection on the Structure of γ-Aminobutyric Acid(GABA) Connected with Modified Gold-Chitosan Nanoparticles by Mercaptopropionic Acid (MPA)

Authors: Bingjie Wang, Su-Yeon Kwon, Ik-Joong Kang

Abstract:

A Surface-enhanced Raman Scattering (SERS) as the principle for enhancing Raman scattering by molecules adsorbed on rough metal surfaces or by nanostructures is used to detect the concentration change of γ-Aminobutyric Acid (GABA). As for the gold-chitosan nanoshell, it is made by using chitosan nanoparticles crosslinking with sodium tripolyphosphate(TPP) for the first step to form the chitosan nanoparticles, which would be covered with the gold sequentially. The size of the fabricated product was around 100nm. Based on the method that the sulfur end of the MPA linked to gold can form the very strong S–Au bond, and the carboxyl group, the other end of the MPA, can easily absorb the GABA. GABA is the mainly inhibitory neurotransmitter in the mammalian central nervous system in the human body. It plays such significant role in reducing neuronal excitability throughout the nervous system. When the system formed, it generated SERS, which made a clear difference in the intensity of Raman scattering within the range of GABA concentration. So it is obtained from the experiment that the calibration curve according to the GABA concentration relevant with the SERS scattering. In this study, DLS, SEM, FT-IR, UV, SERS were used to analyze the products to obtain the conclusion.

Keywords: chitosan-gold nanoshell, mercaptopropionic acid, γ-aminobutyric acid, surface-enhanced Raman scattering

Procedia PDF Downloads 244
1972 Preparation of Indium Tin Oxide Nanoparticle-Modified 3-Aminopropyltrimethoxysilane-Functionalized Indium Tin Oxide Electrode for Electrochemical Sulfide Detection

Authors: Md. Abdul Aziz

Abstract:

Sulfide ion is water soluble, highly corrosive, toxic and harmful to the human beings. As a result, knowing the exact concentration of sulfide in water is very important. However, the existing detection and quantification methods have several shortcomings, such as high cost, low sensitivity, and massive instrumentation. Consequently, the development of novel sulfide sensor is relevant. Nevertheless, electrochemical methods gained enormous popularity due to a vast improvement in the technique and instrumentation, portability, low cost, rapid analysis and simplicity of design. Successful field application of electrochemical devices still requires vast improvement, which depends on the physical, chemical and electrochemical aspects of the working electrode. The working electrode made of bulk gold (Au) and platinum (Pt) are quite common, being very robust and endowed with good electrocatalytic properties. High cost, and electrode poisoning, however, have so far hindered their practical application in many industries. To overcome these obstacles, we developed a sulfide sensor based on an indium tin oxide nanoparticle (ITONP)-modified ITO electrode. To prepare ITONP-modified ITO, various methods were tested. Drop-drying of ITONPs (aq.) on aminopropyltrimethoxysilane-functionalized ITO (APTMS/ITO) was found to be the best method on the basis of voltammetric analysis of the sulfide ion. ITONP-modified APTMS/ITO (ITONP/APTMS/ITO) yielded much better electrocatalytic properties toward sulfide electro-οxidation than did bare or APTMS/ITO electrodes. The ITONPs and ITONP-modified ITO were also characterized using transmission electron microscopy and field emission scanning electron microscopy, respectively. Optimization of the type of inert electrolyte and pH yielded an ITONP/APTMS/ITO detector whose amperometrically and chronocoulοmetrically determined limits of detection for sulfide in aqueous solution were 3.0 µM and 0.90 µM, respectively. ITONP/APTMS/ITO electrodes which displayed reproducible performances were highly stable and were not susceptible to interference by common contaminants. Thus, the developed electrode can be considered as a promising tool for sensing sulfide.

Keywords: amperometry, chronocoulometry, electrocatalytic properties, ITO-nanoparticle-modified ITO, sulfide sensor

Procedia PDF Downloads 110
1971 Impact of Macroeconomic Variables on Indian Mutual Funds: A Time Series Analysis

Authors: Sonali Agarwal

Abstract:

The investor perception about investment avenues is affected to a great degree by the current happenings, within the country, and on the global stage. The influencing events can range from government policies, bilateral trade agreements, election agendas, to changing exchange rates, appreciation and depreciation of currency, recessions, meltdowns, bankruptcies etc. The current research attempts to discover and unravel the effect of various macroeconomic variables (crude oil price, gold price, silver price and USD exchange rate) on the Indian mutual fund industry in general and the chosen funds (Axis Gold Fund, BSL Gold Fund, Kotak Gold Fund & SBI gold fund) in particular. Cointegration tests and Vector error correction equations prove that the chosen variables have strong effect on the NAVs (net asset values) of the mutual funds. However, the greatest influence is felt from the fund’s own past and current information and it is found that when an innovation of fund’s own lagged NAVs is given, variance caused is high that changes the current NAVs markedly. The study helps to highlight the interplay of macroeconomic variables and their repercussion on mutual fund industry.

Keywords: cointegration, Granger causality, impulse response, macroeconomic variables, mutual funds, stationarity, unit root test, variance decomposition, VECM

Procedia PDF Downloads 224
1970 Optimization of Assay Parameters of L-Glutaminase from Bacillus cereus MTCC1305 Using Artificial Neural Network

Authors: P. Singh, R. M. Banik

Abstract:

Artificial neural network (ANN) was employed to optimize assay parameters viz., time, temperature, pH of reaction mixture, enzyme volume and substrate concentration of L-glutaminase from Bacillus cereus MTCC 1305. ANN model showed high value of coefficient of determination (0.9999), low value of root mean square error (0.6697) and low value of absolute average deviation. A multilayer perceptron neural network trained with an error back-propagation algorithm was incorporated for developing a predictive model and its topology was obtained as 5-3-1 after applying Levenberg Marquardt (LM) training algorithm. The predicted activity of L-glutaminase was obtained as 633.7349 U/l by considering optimum assay parameters, viz., pH of reaction mixture (7.5), reaction time (20 minutes), incubation temperature (35˚C), substrate concentration (40mM), and enzyme volume (0.5ml). The predicted data was verified by running experiment at simulated optimum assay condition and activity was obtained as 634.00 U/l. The application of ANN model for optimization of assay conditions improved the activity of L-glutaminase by 1.499 fold.

Keywords: Bacillus cereus, L-glutaminase, assay parameters, artificial neural network

Procedia PDF Downloads 410
1969 Comparison of Acetylcholinesterase Reactivators Cytotoxicity with Their Structure

Authors: Lubica Muckova, Petr Jost, Jaroslav Pejchal, Daniel Jun

Abstract:

The development of acetylcholinesterase reactivators, i.e. antidotes against organophosphorus poisoning, is an important goal of defence research. The aim of this study was to compare cytotoxicity and chemical structure of 5 currently available (pralidoxime, trimedoxime, obidoxime, methoxime, and asoxime) and 4 newly developed compounds (K027, K074, K075, and K203). In oximes, there could be at least four important structural factors affecting their toxicity, including the number of oxime groups in the molecule, the position of oxime group(s) on pyridinium ring, the length of carbon linker, and the substitution by oxygen or insertion of the double bond into the connection chain. The cytotoxicity of tested substances was measured using colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay (MTT assay) in SH-SY5Y cell line. Toxicity was expressed as toxicological index IC₅₀. The tested compounds showed different cytotoxicity ranging from 1.5 to 27 mM. K027 was the least, and methoxime was the most toxic reactivator. The lowest toxicity was found in a monopyridinium reactivator and bispyridinium reactivators with simple 3C carbon linker. Shortening of connection chain length to 1C, incorporation of oxygen moiety into 3C compounds, elongation of carbon linker to 4C and insertion of a double bond into 4C substances increase AChE reactivators' cytotoxicity. Acknowledgements: This work was supported by a long-term organization development plan Medical Aspects of Weapons of Mass Destruction of the Faculty of Military Health Sciences, University of Defence.

Keywords: acetylcholinesterase, cytotoxicity, organophosphorus poisoning, reactivators of acetylcholinesterase

Procedia PDF Downloads 291
1968 Multifunctional Coating of Nylon Using Nano-Si, Nano-Ti and SiO2-TiO2 Nancomposite :Properties of Colorimetric and Flammability

Authors: E. Fereydouni, Laleh Maleknia , M. E. Olya

Abstract:

The present research, nylon fabric dyed by pressure method with nano-Si, nano-Ti particles and SiO2-TiO2 nancomposite. The influence of the amount of Si, Ti and SiO2-TiO2 on the performance of nylon fabric was investigated by the use of Fourier transform infrared spectrophotometer (FTIR), horizontal flammability apparatus (HFA), scanning electron microscope (SEM), electron dispersive X-ray spectroscope (EDX), water contact angle tester (WCA) and CIE LAB colorimetric system. The possible interactions between particles and nylon fiber were elucidated by the FTIR spectroscopy. Results indicated that the stabilized nanoparticles and nanocomposite enhances flame retardancy of nylon fabrics. Also, the prominet features of nanoparticles and nanocomposite treatment can note increase of adsorption and fixation of dye.

Keywords: nano-Si, nano- Ti, SiO2-TiO2 nancomposite, nylon fabric, flame retardant nylon

Procedia PDF Downloads 338
1967 Study of TiO2 Nanoparticles as Lubricant Additive in Two-Axial Groove Journal Bearing

Authors: K. Yathish, K. G. Binu, B. S. Shenoy, D. S. Rao, R. Pai

Abstract:

Load carrying capacity of an oil lubricated two-axial groove journal bearing is simulated by taking into account the viscosity variations in lubricant due to the addition of TiO2 nanoparticles as lubricant additive. Shear viscosities of TiO2 nanoparticle dispersions in oil are measured for various nanoparticle additive concentrations. The viscosity model derived from the experimental viscosities is employed in a modified Reynolds equation to obtain the pressure profiles and load carrying capacity of two-axial groove journal bearing. Results reveal an increase in load carrying capacity of bearings operating on nanoparticle dispersions as compared to plain oil

Keywords: journal bearing, TiO2 nanoparticles, viscosity model, Reynold's equation, load carrying capacity

Procedia PDF Downloads 505
1966 Protein Crystallization Induced by Surface Plasmon Resonance

Authors: Tetsuo Okutsu

Abstract:

We have developed a crystallization plate with the function of promoting protein crystallization. A gold thin film is deposited on the crystallization plate. A protein solution is dropped thereon, and crystallization is promoted when the protein is irradiated with light of a wavelength that protein does not absorb. Protein is densely adsorbed on the gold thin film surface. The light excites the surface plasmon resonance of the gold thin film, the protein is excited by the generated enhanced electric field induced by surface plasmon resonance, and the amino acid residues are radicalized to produce protein dimers. The dimers function as templates for protein crystals, crystallization is promoted.

Keywords: lysozyme, plasmon, protein, crystallization, RNaseA

Procedia PDF Downloads 196
1965 Mercaptopropionic Acid (MPA) Modifying Chitosan-Gold Nano Composite for γ-Aminobutyric Acid Analysis Using Raman Scattering

Authors: Bingjie Wang, Su-Yeon Kwon, Ik-Joong Kang

Abstract:

The goal of this experiment is to develop a sensor that can quickly check the concentration by using the nanoparticles made by chitosan and gold. Using chitosan nanoparticles crosslinking with sodium tripolyphosphate(TPP) is the first step to form the chitosan nanoparticles, which would be covered with the gold sequentially. The size of the fabricated product was around 100nm. Based on the method that the sulfur end of the MPA linked to gold can form the very strong S–Au bond, and the carboxyl group, the other end of the MPA, can easily absorb the GABA. As for the GABA, what is the primary inhibitory neurotransmitter in the mammalian central nervous system in the human body. It plays such significant role in reducing neuronal excitability pass through the nervous system. A Surface-enhanced Raman Scattering (SERS) as the principle for enhancing Raman scattering by molecules adsorbed on rough metal surfaces or by nanostructures is used to detect the concentration change of γ-Aminobutyric Acid (GABA). When the system is formed, it generated SERS, which made a clear difference in the intensity of Raman scattering within the range of GABA concentration. So it is obtained from the experiment that the calibration curve according to the GABA concentration relevant with the SERS scattering. In this study, DLS, SEM, FT-IR, UV, SERS were used to analyze the products to obtain the conclusion.

Keywords: mercaptopropionic acid, chitosan-gold nanoshell, γ-aminobutyric acid, surface-enhanced raman scattering

Procedia PDF Downloads 258
1964 Concentration Conditions of Industrially Valuable Accumulations of Gold Ore Mineralization of the Tulallar Ore-Bearing Structure

Authors: Narmina Ismayilova, Shamil Zabitov, Fuad Askerzadeh, Raqif Seyfullayev

Abstract:

Tulallar volcano-tectonic structure is located in the conjugation zone of the Gekgel horst-uplift, Dashkesan, and Agzhakend synclinorium. Regionally, these geological structures are an integral part of the Lok-Karabakh island arc system. Tulallar field is represented by three areas (Central, East, West). The area of the ore field is located within a partially eroded oblong volcano-tectonic depression. In the central part, the core is divided by the deep Tulallar-Chiragdara-Toganalinsky fault with arcuate fragments of the ring structure into three blocks -East, Central, and West, within which the same areas of the Tulallar field are located. In general, for the deposit, the position of both ore-bearing vein zones and ore-bearing blocks is controlled by fractures of two systems - sub-latitudinal and near-meridional orientations. Mineralization of gold-sulfide ores is confined to these zones of disturbances. The zones have a northwestern and northeastern (near-meridian) strike with a steep dip (70-85◦) to the southwest and southeast. The average thickness of the zones is 35 m; they are traced for 2.5 km along the strike and 500 m along with the dip. In general, for the indicated thickness, the zones contain an average of 1.56 ppm Au; however, areas enriched in noble metal are distinguished within them. The zones are complicated by postore fault tectonics. Gold mineralization is localized in the Kimmeridgian volcanics of andesi-basalt-porphyritic composition and their vitrolithoclastic, agglomerate tuffs, and tuff breccias. For the central part of the Tulallar ore field, a map of geochemical anomalies was built on the basis of analysis data carried out in an international laboratory. The total gold content ranges from 0.1-5 g/t, and in some places, even more than 5 g/t. The highest gold content is observed in the monoquartz facies among the secondary quartzites with quartz veins. The smallest amount of gold content appeared in the quartz-kaolin facies. And also, anomalous values of gold content are located in the upper part of the quartz vein. As a result, an en-echelon arrangement of anomalous values of gold along the strike and dip was revealed.

Keywords: geochemical anomaly, gold deposit, mineralization, Tulallar

Procedia PDF Downloads 170
1963 Titanium Nitride Nanoparticles for Biological Applications

Authors: Nicole Nazario Bayon, Prathima Prabhu Tumkur, Nithin Krisshna Gunasekaran, Krishnan Prabhakaran, Joseph C. Hall, Govindarajan T. Ramesh

Abstract:

Titanium nitride (TiN) nanoparticles have sparked interest over the past decade due to their characteristics such as thermal stability, extreme hardness, low production cost, and similar optical properties to gold. In this study, TiN nanoparticles were synthesized via a thermal benzene route to obtain a black powder of nanoparticles. The final product was drop cast onto conductive carbon tape and sputter coated with gold/palladium at a thickness of 4 nm for characterization by field emission scanning electron microscopy (FE-SEM) with energy dispersive X-Ray spectroscopy (EDX) that revealed they were spherical. ImageJ software determined the average size of the TiN nanoparticles was 79 nm in diameter. EDX revealed the elements present in the sample and showed no impurities. Further characterization by X-ray diffraction (XRD) revealed characteristic peaks of cubic phase titanium nitride, and crystallite size was calculated to be 14 nm using the Debye-Scherrer method. Dynamic light scattering (DLS) analysis revealed the size and size distribution of the TiN nanoparticles, with average size being 154 nm. Zeta potential concluded the surface of the TiN nanoparticles is negatively charged. Biocompatibility studies using MTT(3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay showed TiN nanoparticles are not cytotoxic at low concentrations (2, 5, 10, 25, 50, 75 mcg/well), and cell viability began to decrease at a concentration of 100 mcg/well.

Keywords: biocompatibility, characterization, cytotoxicity, nanoparticles, synthesis, titanium nitride

Procedia PDF Downloads 152
1962 Litho-Structural Variations and Gold Mineralization around Wonaka Schist Belt, North West Nigeria

Authors: Umar Sambo Umar, Ahmad Isah Haruna, Abubakar Sadik Maigari, Muhammad Bello Abubakar

Abstract:

Schist belts in Nigeria occur prominently west of longitude 80 E and sporadic to the east, they are upper Proterozioc low-medium grade deformed metasediments and metavolcanics that were intruded by Pan-African granitoids. The Wonaka schist belt, though reportedly distinctive in composition and metamorphism, is the least understood; the host for primary gold were not defined, structures which may control primary enrichment have not been delineated. The aim of this work is to determine the relationship between litho-structures and the gold around Wonaka schist belt through geological field mapping, petrographic studies and structural data analysis via ArcGis 10.2, Surfer 11.0 and Stereopro 2.0. The results show that the major rock types are mica schist and migmatites, muscovites detected during microstructural analysis suggests low-grade metamorphism in the metapelites. The shear zones identified were trending North Northeast – South Southwest (NNE-SSW), fractures trend mostly Northeast-Southwest (NE-SW) perpendicular to planes of gneissic foliations, these conform to the late Pan-African deformational episode. Pegmatite lodes, net self-cross cutting quartz veins as well as the quartz stringers hosted by both migmatites and schist are delineated as targets for primary gold mineralization, while major confluences of the streams serve as zones for secondary (placer) gold targets since the streams are dendritic and intermittent.

Keywords: gold mineralization, Nigeria, migmatites, Wonaka schist belt

Procedia PDF Downloads 172
1961 Radiosensitization Properties of Gold Nanoparticles in Brachytherapy of Uterus Cancer by High Dose Rate I-125 Seed: A Simulation Study by MCNPX and MCNP6 Codes

Authors: Elham Mansouri, Asghar Mesbahi

Abstract:

Purpose: In the current study, we aimed to investigate the macroscopic and microscopic dose enhancement effect of metallic nanoparticles in interstitial brachytherapy of uterus cancer by Iodin-125 source using a nano-lattice model in MCNPX (5) and MCNP6.1 codes. Materials and methods: Based on a nano-lattice simulation model containing a radiation source and a tumor tissue with cellular compartments loaded with 7mg/g spherical nanoparticles (bismuth, gold, and gadolinium), the energy deposited by the secondary electrons in microscopic and macroscopic level was estimated. Results: The results show that the values of macroscopic DEF is higher than microscopic DEF values and the macroscopic DEF values decreases as a function of distance from the brachytherapy source surface. Also, the results revealed a remarkable discrepancy between the DEF and secondary electron spectra calculated by MCNPX (5) and MCNP6.1 codes, which could be justified by the difference in energy cut-off and electron transport algorithms of two codes. Conclusion: According to the both MCNPX (5) and MCNP6.1 outputs, it could be concluded that the presence of metallic nanoparticles in the tumor tissue of uteruscancer increases the physical effectiveness of brachytherapy by I-125 source. The results presented herein give a physical view of radiosensitization potential of different metallic nanoparticles and could be considered in design of analytical and experimental radiosensitization studies in tumor regions using various radiotherapy modalities in the presence of heavy nanomaterials.

Keywords: MCNPX, MCNP6, nanoparticle, brachytherapy

Procedia PDF Downloads 81
1960 Anticancer Activity of Gnidia glauca Extracts in Human Breast Cancer Cells

Authors: Vandana Gawande, Chandani Satija

Abstract:

Gnidia glauca is a semi-woody herb of thymelaeaceae family traditionally used as fish poison in India. It is also found in Sri lanka and Africa. In the present study, potential anticancer effect of n-hexane and ethanolic extracts of Gnidia glauca in human breast cancer cells was investigated. Human breast cancer cells (MCF-7) were cultured as monolayers in RPMI 1640 medium. The cells were cultured for 48 hours to allow growth and achieve about 80% confluence in 96-well culture plates. The cells were treated with various concentrations of Gnidia glauca (0.1-100 mg/mL) for 72 hours. Percentage of viable cells after treatment was assessed using a sulforhodamine B colorimetric assay. Both n-hexane and ethanolic extract showed significant cytotoxic activity on MCF-7 cancer cells. This study supports the notion of using Gnidia glauca as a novel anticancer agent for breast cancer.

Keywords: 96 well plate, anticancer activity, Gnidia glauca, MCF-7

Procedia PDF Downloads 269
1959 Performance Evaluation of 3D Printed ZrO₂ Ceramic Components by Nanoparticle Jetting™

Authors: Shengping Zhong, Qimin Shi, Yaling Deng, Shoufeng Yang

Abstract:

Additive manufacturing has exerted a tremendous fascination on the development of the manufacturing and materials industry in the past three decades. Zirconia-based advanced ceramic has been poured substantial attention in the interest of structural and functional ceramics. As a novel material jetting process for selectively depositing nanoparticles, NanoParticle Jetting™ is capable of fabricating dense zirconia components with a high-detail surface, precisely controllable shrinkage, and remarkable mechanical properties. The presence of NPJ™ gave rise to a higher elevation regarding the printing process and printing accuracy. Emphasis is placed on the performance evaluation of NPJ™ printed ceramic components by which the physical, chemical, and mechanical properties are evaluated. The experimental results suggest the Y₂O₃-stabilized ZrO₂ boxes exhibit a high relative density of 99.5%, glossy surface of minimum 0.33 µm, general linear shrinkage factor of 17.47%, outstanding hardness and fracture toughness of 12.43±0.09 GPa and 7.52±0.34 MPa·m¹/², comparable flexural strength of 699±104 MPa, and dense and homogeneous grain distribution of microstructure. This innovative NanoParticle Jetting system manifests an overwhelming potential in dental, medical, and electronic applications.

Keywords: nanoparticle jetting, ZrO₂ ceramic, materials jetting, performance evaluation

Procedia PDF Downloads 158
1958 Synthesis of Bismuth-Hyaluronic Acid Nanoparticles Containing Melittin Coated with Chitosan for Treating Eye Cancer Cells with Radiotherapy

Authors: Akbar Esmaeili, Fateme Dadashi

Abstract:

Bismuth can increase radiation and reduce the dose of radiotherapy. On the other hand, hyaluronic acid plays a role in healing damaged cells, and melittin has been used to destroy cancer cells. This research aims to destroy eye cancer cells and accelerate the recovery of damaged healthy cells during treatment. In this research, we used this nanoparticle, the sol-gel method. According to the optimization process that was carried out, we obtained the optimal value of the desired variables for the manufacture of nanoparticles. The advantage of doing this is reducing the amount of medicine used, as a result of reducing the number of side effects during the treatment and using melittin as an anti-eye cancer drug and the presence of hyaluronic acid to accelerate the recovery of cells, as well as coating the bismuth nanoparticle with chitosan to increase the half-life of the nanoparticle and prevent its adhesion.

Keywords: synthesis, nanoparticles, coated, cancer

Procedia PDF Downloads 19
1957 Modeling of the Cellular Uptake of Rigid Nanoparticles: Investigating the Influence of the Adaptation of the Cell’s Mechanical Properties during Endocytosis

Authors: Sarah Iaquinta, Christophe Blanquart, Elena Ishow, Sylvain Freour, Frederic Jacquemin, Shahram Khazaie

Abstract:

Nanoparticles have recently emerged as a possible cancer treatment tool. Several formulations have been used to enhance the uptake of these nanoparticles by cancer cells and avoid their immediate clearance when administrated in vivo. Most of the previous studies focus on the investigation of the influence of the mechanical properties of the cell membrane and the particle. However, these studies do not account for the variation of adhesion and tension during the wrapping of the nanoparticle by the membrane. These couplings should be considered since the cell adapts to the interaction with the nanoparticle by, e.g., increasing the number of interactions (consequently leading to an increase of the cell membrane/nanoparticle adhesion) and by reorganizing its cytoskeleton, leading to the releasing of the tension of the cell membrane. The main contribution of this work is the proposal of a novel model for representing the cellular uptake of rigid circular nanoparticles based on an energetic model tailored to take into account the adaptation of the nanoparticle/cell membrane adhesion and of the membrane stress during wrapping. Several coupling models using sigmoidal functions are considered and compared. The study calculations revealed that the results considering constant parameters underestimated the final wrapping degree of the particle by up to 50%.

Keywords: adhesion, cellular adaptation, cellular uptake, mechanical properties, tension

Procedia PDF Downloads 192
1956 Metal Nanoparticles Caused Death of Metastatic MDA-MB-231 Cells

Authors: O. S. Adeyemi, C. G. Whiteley

Abstract:

The present study determined the toxic potential of metal nanoparticles in cell culture system. Silver and gold nanoparticles were synthesized and characterized following established "green" protocols. The synthesized nanoparticles, in varying concentrations ranging from 0.1–100 µM were evaluated for toxicity in metastatic MDA-MB-231 cells. The nanoparticles promoted a generation of reactive oxygen species and reduced cell viability to less than 50% in the demonstration of cellular toxicity. The nanoparticles; gold and the silver-gold mixture had IC50 values of 56.65 and 18.44 µM respectively. The IC50 concentration for silver nanoparticles could not be determined. Furthermore, the probe of the cell death using flow cytometry and confocal microscopy revealed the partial involvement of apoptosis as well as necrosis. Our results revealed cellular toxicity caused by the nanoparticles but the mechanism remains yet undefined.

Keywords: cell death, nanomedicine, nanotoxicology, toxicity

Procedia PDF Downloads 366
1955 The Effect of Different Concentrations of Extracting Solvent on the Polyphenolic Content and Antioxidant Activity of Gynura procumbens Leaves

Authors: Kam Wen Hang, Tan Kee Teng, Huang Poh Ching, Chia Kai Xiang, H. V. Annegowda, H. S. Naveen Kumar

Abstract:

Gynura procumbens (G. procumbens) leaves, commonly known as ‘sambung nyawa’ in Malaysia is a well-known medicinal plant commonly used as folk medicines in controlling blood glucose, cholesterol level as well as treating cancer. These medicinal properties were believed to be related to the polyphenolic content present in G. procumbens extract, therefore optimization of its extraction process is vital to obtain highest possible antioxidant activities. The current study was conducted to investigate the effect of different concentrations of extracting solvent (ethanol) on the amount of polyphenolic content and antioxidant activities of G. procumbens leaf extract. The concentrations of ethanol used were 30-70%, with the temperature and time kept constant at 50°C and 30 minutes, respectively using ultrasound-assisted extraction. The polyphenolic content of these extracts were quantified by Folin-Ciocalteu colorimetric method and results were expressed as milligram gallic acid equivalent (mg GAE)/g. Phosphomolybdenum method and 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assays were used to investigate the antioxidant properties of the extract and the results were expressed as milligram ascorbic acid equivalent (mg AAE)/g and effective concentration (EC50) respectively. Among the three different (30%, 50% and 70%) concentrations of ethanol studied, the 50% ethanolic extract showed total phenolic content of 31.565 ± 0.344 mg GAE/g and total antioxidant activity of 78.839 ± 0.199 mg AAE/g while 30% ethanolic extract showed 29.214 ± 0.645 mg GAE/g and 70.701 ± 1.394 mg AAE/g, respectively. With respect to DPPH radical scavenging assay, 50% ethanolic extract had exhibited slightly lower EC50 (314.3 ± 4.0 μg/ml) values compared to 30% ethanol extract (340.4 ± 5.3 μg/ml). Out of all the tested extracts, 70% ethanolic extract exhibited significantly (p< 0.05) highest total phenolic content (38.000 ± 1.009 mg GAE/g), total antioxidant capacity (95.874 ± 2.422 mg AAE/g) and demonstrated the lowest EC50 in DPPH assay (244.2 ± 5.9 μg/ml). An excellent correlations were drawn between total phenolic content, total antioxidant capacity and DPPH radical scavenging activity (R2 = 0.949 and R2 = 0.978, respectively). It was concluded from this study that, 70% ethanol should be used as the optimal polarity solvent to obtain G. procumbens leaf extract with maximum polyphenolic content with antioxidant properties.

Keywords: antioxidant activity, DPPH assay, Gynura procumbens, phenolic compounds

Procedia PDF Downloads 382
1954 A Mathematical Investigation of the Turkevich Organizer Theory in the Citrate Method for the Synthesis of Gold Nanoparticles

Authors: Emmanuel Agunloye, Asterios Gavriilidis, Luca Mazzei

Abstract:

Gold nanoparticles are commonly synthesized by reducing chloroauric acid with sodium citrate. This method, referred to as the citrate method, can produce spherical gold nanoparticles (NPs) in the size range 10-150 nm. Gold NPs of this size are useful in many applications. However, the NPs are usually polydisperse and irreproducible. A better understanding of the synthesis mechanisms is thus required. This work thoroughly investigated the only model that describes the synthesis. This model combines mass and population balance equations, describing the NPs synthesis through a sequence of chemical reactions. Chloroauric acid reacts with sodium citrate to form aurous chloride and dicarboxy acetone. The latter organizes aurous chloride in a nucleation step and concurrently degrades into acetone. The unconsumed precursor then grows the formed nuclei. However, depending on the pH, both the precursor and the reducing agent react differently thus affecting the synthesis. In this work, we investigated the model for different conditions of pH, temperature and initial reactant concentrations. To solve the model, we used Parsival, a commercial numerical code, whilst to test it, we considered various conditions studied experimentally by different researchers, for which results are available in the literature. The model poorly predicted the experimental data. We believe that this is because the model does not account for the acid-base properties of both chloroauric acid and sodium citrate.

Keywords: citrate method, gold nanoparticles, Parsival, population balance equations, Turkevich organizer theory

Procedia PDF Downloads 174
1953 The Effect of Temperature, Contact Time and Agitation Speed During Pre-Treatment on Elution of Gold

Authors: T. P. Oladele, C. A. Snyders, S. M. Bradshaw, G. Akdogan

Abstract:

The effect of temperature, contact time and agitation during pre-treatment was investigated on the elution of gold from granular activated carbon at fixed caustic-cyanide concentration and elution conditions. It was shown that there are interactions between parameters during pre-treatment. At 80oC, recovery is independent of the contact time while the maximum recovery is obtained in the absence of agitation (0rpm). Increase in agitation speed from 0 rev/min to 1200 rev/min showed a decrease in recovery of approximately 20 percent at 80°C. Recovery with increased time from 15 minutes to 45 minutes is only pronounced at 25°C with approximately 4 percent increase at all agitation speeds. The results from elution recovery are aimed to give insight into the mechanisms of pre-treatment under the combinations of the chosen parameters.

Keywords: gold, temperature, contact time, agitation speed, recovery

Procedia PDF Downloads 454