Performance Evaluation of 3D Printed ZrO₂ Ceramic Components by Nanoparticle Jetting™

Authors : Shengping Zhong, Qimin Shi, Yaling Deng, Shoufeng Yang

Abstract : Additive manufacturing has exerted a tremendous fascination on the development of the manufacturing and materials industry in the past three decades. Zirconia-based advanced ceramic has been poured substantial attention in the interest of structural and functional ceramics. As a novel material jetting process for selectively depositing nanoparticles, NanoParticle JettingTM is capable of fabricating dense zirconia components with a high-detail surface, precisely controllable shrinkage, and remarkable mechanical properties. The presence of NPJTM gave rise to a higher elevation regarding the printing process and printing accuracy. Emphasis is placed on the performance evaluation of NPJTM printed ceramic components by which the physical, chemical, and mechanical properties are evaluated. The experimental results suggest the Y_2O_3 -stabilized ZrO₂ boxes exhibit a high relative density of 99.5%, glossy surface of minimum 0.33 µm, general linear shrinkage factor of 17.47%, outstanding hardness and fracture toughness of 12.43±0.09 GPa and 7.52±0.34 MPa·m^{1/2}, comparable flexural strength of 699±104 MPa, and dense and homogeneous grain distribution of microstructure. This innovative NanoParticle Jetting system manifests an overwhelming potential in dental, medical, and electronic applications.

1

 $\label{eq:constraint} \textbf{Keywords:} nanoparticle jetting, ZrO_2 \ ceramic, \ materials jetting, \ performance \ evaluation$

Conference Title : ICAMMP 2021 : International Conference on Additive Manufacturing Materials for Production

Conference Location : Barcelona, Spain

Conference Dates : December 16-17, 2021