Search results for: cell recognition
5170 Study of the Effect of the Continuous Electric Field on the Rd Cancer Cell Line by Response Surface Methodology
Authors: Radia Chemlal, Salim Mehenni, Dahbia Leila Anes-boulahbal, Mohamed Kherat, Nabil Mameri
Abstract:
The application of the electric field is considered to be a very promising method in cancer therapy. Indeed, cancer cells are very sensitive to the electric field, although the cellular response is not entirely clear. The tests carried out consisted in subjecting the RD cell line under the effect of the continuous electric field while varying certain parameters (voltage, exposure time, and cell concentration). The response surface methodology (RSM) was used to assess the effect of the chosen parameters, as well as the existence of interactions between them. The results obtained showed that the voltage, the cell concentration as well as the interaction between voltage and exposure time have an influence on the mortality rate of the RD cell line.Keywords: continuous electric field, RD cancer cell line, RSM, voltage
Procedia PDF Downloads 1135169 Fine Grained Action Recognition of Skateboarding Tricks
Authors: Frederik Calsius, Mirela Popa, Alexia Briassouli
Abstract:
In the field of machine learning, it is common practice to use benchmark datasets to prove the working of a method. The domain of action recognition in videos often uses datasets like Kinet-ics, Something-Something, UCF-101 and HMDB-51 to report results. Considering the properties of the datasets, there are no datasets that focus solely on very short clips (2 to 3 seconds), and on highly-similar fine-grained actions within one specific domain. This paper researches how current state-of-the-art action recognition methods perform on a dataset that consists of highly similar, fine-grained actions. To do so, a dataset of skateboarding tricks was created. The performed analysis highlights both benefits and limitations of state-of-the-art methods, while proposing future research directions in the activity recognition domain. The conducted research shows that the best results are obtained by fusing RGB data with OpenPose data for the Temporal Shift Module.Keywords: activity recognition, fused deep representations, fine-grained dataset, temporal modeling
Procedia PDF Downloads 2315168 Developing an AI-Driven Application for Real-Time Emotion Recognition from Human Vocal Patterns
Authors: Sayor Ajfar Aaron, Mushfiqur Rahman, Sajjat Hossain Abir, Ashif Newaz
Abstract:
This study delves into the development of an artificial intelligence application designed for real-time emotion recognition from human vocal patterns. Utilizing advanced machine learning algorithms, including deep learning and neural networks, the paper highlights both the technical challenges and potential opportunities in accurately interpreting emotional cues from speech. Key findings demonstrate the critical role of diverse training datasets and the impact of ambient noise on recognition accuracy, offering insights into future directions for improving robustness and applicability in real-world scenarios.Keywords: artificial intelligence, convolutional neural network, emotion recognition, vocal patterns
Procedia PDF Downloads 535167 Wireless Backhauling for 5G Small Cell Networks
Authors: Abdullah A. Al Orainy
Abstract:
Small cell backhaul solutions need to be cost-effective, scalable, and easy to install. This paper presents an overview of small cell backhaul technologies. Wireless solutions including TV white space, satellite, sub-6 GHz radio wave, microwave and mmWave with their backhaul characteristics are discussed. Recent research on issues like beamforming, backhaul architecture, precoding and large antenna arrays, and energy efficiency for dense small cell backhaul with mmWave communications is reviewed. Recent trials of 5G technologies are summarized.Keywords: backhaul, small cells, wireless, 5G
Procedia PDF Downloads 5135166 Modeling and Simulation of Organic Solar Cells Based on P3HT:PCBM using SCAPS 1-D (Influence of Defects and Temperature on the Performance of the Solar Cell)
Authors: Souhila Boukli Hacene, Djamila Kherbouche, Abdelhak Chikhaoui
Abstract:
In this work, we elucidate theoretically the effect of defects and temperature on the performance of the organic bulk heterojunction solar cell (BHJ) P3HT: PCBM. We have studied the influence of their parameters on cell characteristics. For this purpose, we used the effective medium model and the solar cell simulator (SCAPS) to model the characteristics of the solar cell. We also explore the transport of charge carriers in the device. It was assumed that the mixture is lightly p-type doped and that the band gap contains acceptor defects near the HOMO level with a Gaussian distribution of energy states at 100 and 50 meV. We varied defects density between 1012-1017 cm-3, from 1016 cm-3, a total decrease of the photovoltaic characteristics due to the increase of the non-radiative recombination can be noticed. Then we studied the effect of variation of the electron and the hole capture cross-section on the cell’s performance, we noticed that the cell obtains a better efficiency of about 3.6% for an electron capture cross section ≤ 10-15 cm2 and a hole capture cross section ≤ 10-19 cm2. On the other hand, we also varied the temperature between 120K and 400K. We observed that the temperature of the solar cell induces a noticeable effect on its voltage. While the effect of temperature on the solar cell current is negligible.Keywords: organic solar cell, P3HT:PCBM, defects, temperature, SCAPS
Procedia PDF Downloads 915165 Myanmar Character Recognition Using Eight Direction Chain Code Frequency Features
Authors: Kyi Pyar Zaw, Zin Mar Kyu
Abstract:
Character recognition is the process of converting a text image file into editable and searchable text file. Feature Extraction is the heart of any character recognition system. The character recognition rate may be low or high depending on the extracted features. In the proposed paper, 25 features for one character are used in character recognition. Basically, there are three steps of character recognition such as character segmentation, feature extraction and classification. In segmentation step, horizontal cropping method is used for line segmentation and vertical cropping method is used for character segmentation. In the Feature extraction step, features are extracted in two ways. The first way is that the 8 features are extracted from the entire input character using eight direction chain code frequency extraction. The second way is that the input character is divided into 16 blocks. For each block, although 8 feature values are obtained through eight-direction chain code frequency extraction method, we define the sum of these 8 feature values as a feature for one block. Therefore, 16 features are extracted from that 16 blocks in the second way. We use the number of holes feature to cluster the similar characters. We can recognize the almost Myanmar common characters with various font sizes by using these features. All these 25 features are used in both training part and testing part. In the classification step, the characters are classified by matching the all features of input character with already trained features of characters.Keywords: chain code frequency, character recognition, feature extraction, features matching, segmentation
Procedia PDF Downloads 3205164 Intelligent Human Pose Recognition Based on EMG Signal Analysis and Machine 3D Model
Authors: Si Chen, Quanhong Jiang
Abstract:
In the increasingly mature posture recognition technology, human movement information is widely used in sports rehabilitation, human-computer interaction, medical health, human posture assessment, and other fields today; this project uses the most original ideas; it is proposed to use the collection equipment for the collection of myoelectric data, reflect the muscle posture change on a degree of freedom through data processing, carry out data-muscle three-dimensional model joint adjustment, and realize basic pose recognition. Based on this, bionic aids or medical rehabilitation equipment can be further developed with the help of robotic arms and cutting-edge technology, which has a bright future and unlimited development space.Keywords: pose recognition, 3D animation, electromyography, machine learning, bionics
Procedia PDF Downloads 795163 Study on the Impact of Power Fluctuation, Hydrogen Utilization, and Fuel Cell Stack Orientation on the Performance Sensitivity of PEM Fuel Cell
Authors: Majid Ali, Xinfang Jin, Victor Eniola, Henning Hoene
Abstract:
The performance of proton exchange membrane (PEM) fuel cells is sensitive to several factors, including power fluctuations, hydrogen utilization, and the quality orientation of the fuel cell stack. In this study, we investigate the impact of these factors on the performance of a PEM fuel cell. We start by analyzing the power fluctuations that are typical in renewable energy systems and their effects on the 50 Watt fuel cell's performance. Next, we examine the hydrogen utilization rate (0-1000 mL/min) and its impact on the cell's efficiency and durability. Finally, we investigate the quality orientation (three different positions) of the fuel cell stack, which can significantly affect the cell's lifetime and overall performance. The basis of our analysis is the utilization of experimental results, which have been further validated by comparing them with simulations and manufacturer results. Our results indicate that power fluctuations can cause significant variations in the fuel cell's voltage and current, leading to a reduction in its performance. Moreover, we show that increasing the hydrogen utilization rate beyond a certain threshold can lead to a decrease in the fuel cell's efficiency. Finally, our analysis demonstrates that the orientation of the fuel cell stack can affect its performance and lifetime due to non-uniform distribution of reactants and products. In summary, our study highlights the importance of considering power fluctuations, hydrogen utilization, and quality orientation in designing and optimizing PEM fuel cell systems. The findings of this study can be useful for researchers and engineers working on the development of fuel cell systems for various applications, including transportation, stationary power generation, and portable devices.Keywords: fuel cell, proton exchange membrane, renewable energy, power fluctuation, experimental
Procedia PDF Downloads 1355162 Smartphone-Based Human Activity Recognition by Machine Learning Methods
Authors: Yanting Cao, Kazumitsu Nawata
Abstract:
As smartphones upgrading, their software and hardware are getting smarter, so the smartphone-based human activity recognition will be described as more refined, complex, and detailed. In this context, we analyzed a set of experimental data obtained by observing and measuring 30 volunteers with six activities of daily living (ADL). Due to the large sample size, especially a 561-feature vector with time and frequency domain variables, cleaning these intractable features and training a proper model becomes extremely challenging. After a series of feature selection and parameters adjustment, a well-performed SVM classifier has been trained.Keywords: smart sensors, human activity recognition, artificial intelligence, SVM
Procedia PDF Downloads 1445161 Passive Heat Exchanger for Proton Exchange Membrane Fuel Cell Cooling
Authors: Ivan Tolj
Abstract:
Water produced during electrochemical reaction in Proton Exchange Membrane (PEM) fuel cell can be used for internal humidification of reactant gases; hydrogen and air. On such a way it is possible to eliminate expensive external humidifiers and simplify fuel cell balance-of-plant (BoP). When fuel cell operates at constant temperature (usually between 60 °C and 80 °C) relatively cold and dry ambient air heats up quickly upon entering channels which cause further drop in relative humidity (below 20%). Low relative humidity of reactant gases dries up polymer membrane and decrease its proton conductivity which results in fuel cell performance drop. It is possible to maintain such temperature profile throughout fuel cell cathode channel which will result in close to 100 % RH. In order to achieve this, passive heat exchanger was designed using commercial CFD software (ANSYS Fluent). Such passive heat exchanger (with variable surface area) is suitable for small scale PEM fuel cells. In this study, passive heat exchanger for single PEM fuel cell segment (with 20 x 1 cm active area) was developed. Results show close to 100 % RH of air throughout cathode channel with increased fuel cell performance (mainly improved polarization curve) and improved durability.Keywords: PEM fuel cell, passive heat exchange, relative humidity, thermal management
Procedia PDF Downloads 2775160 Resistive Switching in TaN/AlNx/TiN Cell
Authors: Hsin-Ping Huang, Shyankay Jou
Abstract:
Resistive switching of aluminum nitride (AlNx) thin film was demonstrated in a TaN/AlNx/TiN memory cell that was prepared by sputter deposition techniques. The memory cell showed bipolar switching of resistance between +3.5 V and –3.5 V. The resistance ratio of high resistance state (HRS) to low resistance state (HRS), RHRS/RLRS, was about 2 over 100 cycles of endurance test. Both the LRS and HRS of the memory cell exhibited ohmic conduction at low voltages and Poole-Frenkel emission at high voltages. The electrical conduction in the TaN/AlNx/TiN memory cell was possibly attributed to the interactions between charges and defects in the AlNx film.Keywords: aluminum nitride, nonvolatile memory, resistive switching, thin films
Procedia PDF Downloads 3995159 Multimodal Employee Attendance Management System
Authors: Khaled Mohammed
Abstract:
This paper presents novel face recognition and identification approaches for the real-time attendance management problem in large companies/factories and government institutions. The proposed uses the Minimum Ratio (MR) approach for employee identification. Capturing the authentic face variability from a sequence of video frames has been considered for the recognition of faces and resulted in system robustness against the variability of facial features. Experimental results indicated an improvement in the performance of the proposed system compared to the Previous approaches at a rate between 2% to 5%. In addition, it decreased the time two times if compared with the Previous techniques, such as Extreme Learning Machine (ELM) & Multi-Scale Structural Similarity index (MS-SSIM). Finally, it achieved an accuracy of 99%.Keywords: attendance management system, face detection and recognition, live face recognition, minimum ratio
Procedia PDF Downloads 1555158 Human Gait Recognition Using Moment with Fuzzy
Authors: Jyoti Bharti, Navneet Manjhi, M. K.Gupta, Bimi Jain
Abstract:
A reliable gait features are required to extract the gait sequences from an images. In this paper suggested a simple method for gait identification which is based on moments. Moment values are extracted on different number of frames of gray scale and silhouette images of CASIA database. These moment values are considered as feature values. Fuzzy logic and nearest neighbour classifier are used for classification. Both achieved higher recognition.Keywords: gait, fuzzy logic, nearest neighbour, recognition rate, moments
Procedia PDF Downloads 7585157 Image Recognition and Anomaly Detection Powered by GANs: A Systematic Review
Authors: Agastya Pratap Singh
Abstract:
Generative Adversarial Networks (GANs) have emerged as powerful tools in the fields of image recognition and anomaly detection due to their ability to model complex data distributions and generate realistic images. This systematic review explores recent advancements and applications of GANs in both image recognition and anomaly detection tasks. We discuss various GAN architectures, such as DCGAN, CycleGAN, and StyleGAN, which have been tailored to improve accuracy, robustness, and efficiency in visual data analysis. In image recognition, GANs have been used to enhance data augmentation, improve classification models, and generate high-quality synthetic images. In anomaly detection, GANs have proven effective in identifying rare and subtle abnormalities across various domains, including medical imaging, cybersecurity, and industrial inspection. The review also highlights the challenges and limitations associated with GAN-based methods, such as instability during training and mode collapse, and suggests future research directions to overcome these issues. Through this review, we aim to provide researchers with a comprehensive understanding of the capabilities and potential of GANs in transforming image recognition and anomaly detection practices.Keywords: generative adversarial networks, image recognition, anomaly detection, DCGAN, CycleGAN, StyleGAN, data augmentation
Procedia PDF Downloads 205156 Recognition of Cursive Arabic Handwritten Text Using Embedded Training Based on Hidden Markov Models (HMMs)
Authors: Rabi Mouhcine, Amrouch Mustapha, Mahani Zouhir, Mammass Driss
Abstract:
In this paper, we present a system for offline recognition cursive Arabic handwritten text based on Hidden Markov Models (HMMs). The system is analytical without explicit segmentation used embedded training to perform and enhance the character models. Extraction features preceded by baseline estimation are statistical and geometric to integrate both the peculiarities of the text and the pixel distribution characteristics in the word image. These features are modelled using hidden Markov models and trained by embedded training. The experiments on images of the benchmark IFN/ENIT database show that the proposed system improves recognition.Keywords: recognition, handwriting, Arabic text, HMMs, embedded training
Procedia PDF Downloads 3545155 Theoretical Analysis of Graded Interface CdS/CIGS Solar Cell
Authors: Hassane Ben Slimane, Dennai Benmoussa, Abderrachid Helmaoui
Abstract:
We have theoretically calculated the photovoltaic conversion efficiency of a graded interface CdS/CIGS solar cell, which can be experimentally fabricated. Because the conduction band discontinuity or spike in an abrupt heterojunction CdS/CIGS solar cell can hinder the separation of hole-electron by electric field, a graded interface layer is uses to eliminate the spike and reduces recombination in space charge region. This paper describes the role of the graded band gap interface layer in decreasing the performance of the heterojunction cell. By optimizing the thickness of the graded region, an improvement of conversion efficiency has been observed in comparison to the conventional CIGS system.Keywords: heterojunction, solar cell, graded interface, CIGS
Procedia PDF Downloads 4025154 Effects of the Ambient Temperature and the Defect Density on the Performance the Solar Cell (HIT)
Authors: Bouzaki Mohammed Moustafa, Benyoucef Boumediene, Benouaz Tayeb, Benhamou Amina
Abstract:
The ambient temperature and the defects density in the Hetero-junction with Intrinsic Thin layers solar cells (HIT) strongly influence their performances. In first part, we presented the bands diagram on the front/back simulated solar cell based on a-Si: H / c-Si (p)/a-Si:h. In another part, we modeled the following layers structure: ZnO/a-Si:H(n)/a-Si:H(i)/c-Si(p)/a-Si:H(p)/Ag where we studied the effect of the ambient temperature and the defects density in the gap of the crystalline silicon layer on the performance of the heterojunction solar cell with intrinsic layer (HIT).Keywords: heterojunction solar cell, solar cell performance, bands diagram, ambient temperature, defect density
Procedia PDF Downloads 5085153 Epigenomic Analysis of Lgr5+ Stem Cells in Gastrointestinal Tract
Authors: Hyo-Min Kim, Seokjin Ham, Mi-Joung Yoo, Minseon Kim, Tae-Young Roh
Abstract:
The gastrointestinal (GI) tract of most animals, including murine, is highly compartmentalized epithelia which also provide distinct different functions of its own tissue. Nevertheless, these epithelia share certain characteristics that enhance immune responses to infections and maintain the barrier function of the intestine. GI tract epithelia also undergo regeneration not only in homeostatic conditions but also in a response to the damage. A full turnover of the murine gastrointestinal epithelium occurs every 4-5 day, a process that is regulated and maintained by a minor population of Lgr5+ adult stem cell that commonly conserved in the bottom of crypts through GI tract. Maintenance of the stem cell is somehow regulated by epigenetic factors according to recent studies. Chromatin vacancy, remodelers, histone variants and histone modifiers could affect adult stem cell fate. In this study, Lgr5-EGFP reporter mouse was used to take advantage of exploring the epigenetic dynamics among Lgr5 positive mutual stem cell in GI tract. Cells were isolated by fluorescence-activated cell sorting (FACS), gene expression levels, chromatin accessibility changes and histone modifications were analyzed. Some notable chromatin structural related epigenetic variants were detected. To identify the overall cell-cell interaction inside the stem cell niche, an extensive genome-wide analysis should be also followed. According to the results, nevertheless, we expected a broader understanding of cellular niche maintaining stem cells and epigenetic barriers through conserved stem cell in GI tract. We expect that our study could provide more evidence of adult stem cell plasticity and more chances to understand each stem cell that takes parts in certain organs.Keywords: adult stem cell, epigenetics, LGR5 stem cell, gastrointestinal tract
Procedia PDF Downloads 2295152 Fitness Action Recognition Based on MediaPipe
Authors: Zixuan Xu, Yichun Lou, Yang Song, Zihuai Lin
Abstract:
MediaPipe is an open-source machine learning computer vision framework that can be ported into a multi-platform environment, which makes it easier to use it to recognize the human activity. Based on this framework, many human recognition systems have been created, but the fundamental issue is the recognition of human behavior and posture. In this paper, two methods are proposed to recognize human gestures based on MediaPipe, the first one uses the Adaptive Boosting algorithm to recognize a series of fitness gestures, and the second one uses the Fast Dynamic Time Warping algorithm to recognize 413 continuous fitness actions. These two methods are also applicable to any human posture movement recognition.Keywords: computer vision, MediaPipe, adaptive boosting, fast dynamic time warping
Procedia PDF Downloads 1195151 Words Spotting in the Images Handwritten Historical Documents
Authors: Issam Ben Jami
Abstract:
Information retrieval in digital libraries is very important because most famous historical documents occupy a significant value. The word spotting in historical documents is a very difficult notion, because automatic recognition of such documents is naturally cursive, it represents a wide variability in the level scale and translation words in the same documents. We first present a system for the automatic recognition, based on the extraction of interest points words from the image model. The extraction phase of the key points is chosen from the representation of the image as a synthetic description of the shape recognition in a multidimensional space. As a result, we use advanced methods that can find and describe interesting points invariant to scale, rotation and lighting which are linked to local configurations of pixels. We test this approach on documents of the 15th century. Our experiments give important results.Keywords: feature matching, historical documents, pattern recognition, word spotting
Procedia PDF Downloads 2745150 Modelling and Optimization Analysis of Silicon/MgZnO-CBTSSe Tandem Solar Cells
Authors: Vallisree Sivathanu, Kumaraswamidhas Lakshmi Annamalai, Trupti Ranjan Lenka
Abstract:
We report a tandem solar cell model with Silicon as the bottom cell absorber material and Cu₂BaSn(S, Se)₄(CBTSSe) as absorber material for the top cell. As a first step, the top and bottom cells were modelled and validated by comparison with the experiment. Once the individual cells are validated, then the tandem structure is modelled with Indium Tin Oxide(ITO) as conducting layer between the top and bottom cells. The tandem structure yielded better open circuit voltage and fill factor; however, the efficiency obtained is 7.01%. The top cell and the bottom cells are investigated with the help of electron-hole current density, photogeneration rate, and external quantum efficiency profiles. In order to minimize the various loss mechanisms in the tandem solar cell, the material parameters are optimized within experimentally achievable limits. Initially, the top cell optimization was carried out; then, the bottom cell is optimized for maximizing the light absorption, and upon minimizing the current and photon losses in the tandem structure, the maximum achievable efficiency is predicted to be 19.52%.Keywords: CBTSSe, silicon, tandem, solar cell, device modeling, current losses, photon losses
Procedia PDF Downloads 1175149 An Improved Circulating Tumor Cells Analysis Method for Identifying Tumorous Blood Cells
Authors: Salvador Garcia Bernal, Chi Zheng, Keqi Zhang, Lei Mao
Abstract:
Circulating Tumor Cells (CTC) is used to detect tumoral cell metastases using blood samples of patients with cancer (lung, breast, etc.). Using an immunofluorescent method a three channel image (Red, Green, and Blue) are obtained. These set of images usually overpass the 11 x 30 M pixels in size. An aided tool is designed for imaging cell analysis to segmented and identify the tumorous cell based on the three markers signals. Our Method, it is cell-based (area and cell shape) considering each channel information and extracting and making decisions if it is a valid CTC. The system also gives information about number and size of tumor cells found in the sample. We present results in real-life samples achieving acceptable performance in identifying CTCs in short time.Keywords: Circulating Tumor Cells (CTC), cell analysis, immunofluorescent, medical image analysis
Procedia PDF Downloads 2145148 Recognition of Tifinagh Characters with Missing Parts Using Neural Network
Authors: El Mahdi Barrah, Said Safi, Abdessamad Malaoui
Abstract:
In this paper, we present an algorithm for reconstruction from incomplete 2D scans for tifinagh characters. This algorithm is based on using correlation between the lost block and its neighbors. This system proposed contains three main parts: pre-processing, features extraction and recognition. In the first step, we construct a database of tifinagh characters. In the second step, we will apply “shape analysis algorithm”. In classification part, we will use Neural Network. The simulation results demonstrate that the proposed method give good results.Keywords: Tifinagh character recognition, neural networks, local cost computation, ANN
Procedia PDF Downloads 3345147 Exploratory Analysis of A Review of Nonexistence Polarity in Native Speech
Authors: Deawan Rakin Ahamed Remal, Sinthia Chowdhury, Sharun Akter Khushbu, Sheak Rashed Haider Noori
Abstract:
Native Speech to text synthesis has its own leverage for the purpose of mankind. The extensive nature of art to speaking different accents is common but the purpose of communication between two different accent types of people is quite difficult. This problem will be motivated by the extraction of the wrong perception of language meaning. Thus, many existing automatic speech recognition has been placed to detect text. Overall study of this paper mentions a review of NSTTR (Native Speech Text to Text Recognition) synthesis compared with Text to Text recognition. Review has exposed many text to text recognition systems that are at a very early stage to comply with the system by native speech recognition. Many discussions started about the progression of chatbots, linguistic theory another is rule based approach. In the Recent years Deep learning is an overwhelming chapter for text to text learning to detect language nature. To the best of our knowledge, In the sub continent a huge number of people speak in Bangla language but they have different accents in different regions therefore study has been elaborate contradictory discussion achievement of existing works and findings of future needs in Bangla language acoustic accent.Keywords: TTR, NSTTR, text to text recognition, deep learning, natural language processing
Procedia PDF Downloads 1325146 Lightweight Hybrid Convolutional and Recurrent Neural Networks for Wearable Sensor Based Human Activity Recognition
Authors: Sonia Perez-Gamboa, Qingquan Sun, Yan Zhang
Abstract:
Non-intrusive sensor-based human activity recognition (HAR) is utilized in a spectrum of applications, including fitness tracking devices, gaming, health care monitoring, and smartphone applications. Deep learning models such as convolutional neural networks (CNNs) and long short term memory (LSTM) recurrent neural networks (RNNs) provide a way to achieve HAR accurately and effectively. In this paper, we design a multi-layer hybrid architecture with CNN and LSTM and explore a variety of multi-layer combinations. Based on the exploration, we present a lightweight, hybrid, and multi-layer model, which can improve the recognition performance by integrating local features and scale-invariant with dependencies of activities. The experimental results demonstrate the efficacy of the proposed model, which can achieve a 94.7% activity recognition rate on a benchmark human activity dataset. This model outperforms traditional machine learning and other deep learning methods. Additionally, our implementation achieves a balance between recognition rate and training time consumption.Keywords: deep learning, LSTM, CNN, human activity recognition, inertial sensor
Procedia PDF Downloads 1505145 Developing a Secure Iris Recognition System by Using Advance Convolutional Neural Network
Authors: Kamyar Fakhr, Roozbeh Salmani
Abstract:
Alphonse Bertillon developed the first biometric security system in the 1800s. Today, many governments and giant companies are considering or have procured biometrically enabled security schemes. Iris is a kaleidoscope of patterns and colors. Each individual holds a set of irises more unique than their thumbprint. Every single day, giant companies like Google and Apple are experimenting with reliable biometric systems. Now, after almost 200 years of improvements, face ID does not work with masks, it gives access to fake 3D images, and there is no global usage of biometric recognition systems as national identity (ID) card. The goal of this paper is to demonstrate the advantages of iris recognition overall biometric recognition systems. It make two extensions: first, we illustrate how a very large amount of internet fraud and cyber abuse is happening due to bugs in face recognition systems and in a very large dataset of 3.4M people; second, we discuss how establishing a secure global network of iris recognition devices connected to authoritative convolutional neural networks could be the safest solution to this dilemma. Another aim of this study is to provide a system that will prevent system infiltration caused by cyber-attacks and will block all wireframes to the data until the main user ceases the procedure.Keywords: biometric system, convolutional neural network, cyber-attack, secure
Procedia PDF Downloads 2195144 An Empirical Dynamic Fuel Cell Model Used for Power System Verification in Aerospace
Authors: Giuliano Raimondo, Jörg Wangemann, Peer Drechsel
Abstract:
In systems development involving Fuel Cells generators, it is important to have from an early stage of the project a dynamic model for the electrical behavior of the stack to be shared between involved development parties. It allows independent and early design and tests of fuel cell related power electronic. This paper presents an empirical Fuel Cell system model derived from characterization tests on a real system. Moreover, it is illustrated how the obtained model is used to build and validate a real-time Fuel Cell system emulator which is used for aerospace electrical integration testing activities.Keywords: fuel cell, modelling, real time emulation, testing
Procedia PDF Downloads 3365143 ANAC-id - Facial Recognition to Detect Fraud
Authors: Giovanna Borges Bottino, Luis Felipe Freitas do Nascimento Alves Teixeira
Abstract:
This article aims to present a case study of the National Civil Aviation Agency (ANAC) in Brazil, ANAC-id. ANAC-id is the artificial intelligence algorithm developed for image analysis that recognizes standard images of unobstructed and uprighted face without sunglasses, allowing to identify potential inconsistencies. It combines YOLO architecture and 3 libraries in python - face recognition, face comparison, and deep face, providing robust analysis with high level of accuracy.Keywords: artificial intelligence, deepface, face compare, face recognition, YOLO, computer vision
Procedia PDF Downloads 1565142 Effects of Recognition of Customer Feedback on Relationships between Emotional Labor and Job Satisfaction: Focusing On Call Centers That Offer Professional Services
Authors: Kiyoko Yoshimura, Yasunobu Kino
Abstract:
Focusing on professional call centers where workers with expertise perform services, this study aims to clarify the relationships between emotional labor and job satisfaction and the effects of recognition of customer feedback. Since the professional call center operators consist of professional license holders (qualification holders) and those who do not (non-holders), the following three points are analyzed in the two groups by using covariance structure analysis and simultaneous multi-population analysis: 1) The relationship between emotional labor and job satisfaction, 2) customer feedback and job satisfaction, and 3) The intermediation effect between the emotional labor of customer feedback and job satisfaction. The following results are obtained: i) no direct effect is found between job satisfaction and emotional labor for qualification holders and non-holders, ii) for qualification holders and non-holders, recognition of positive feedback and recognition of negative feedback had positive and negative effects on job satisfaction, respectively, iii) for qualification and non-holders, "consideration for colleagues" influences job satisfaction by recognizing positive feedback, and iv) only for qualification holders, the factors "customer-oriented emotional expression" and "emotional disharmony" have a positive and negative effect on job satisfaction, respectively, through recognition of positive feedback and recognition of negative feedback.Keywords: call center, emotional labor, professional service, job satisfaction, customer feedback
Procedia PDF Downloads 1135141 Distorted Document Images Dataset for Text Detection and Recognition
Authors: Ilia Zharikov, Philipp Nikitin, Ilia Vasiliev, Vladimir Dokholyan
Abstract:
With the increasing popularity of document analysis and recognition systems, text detection (TD) and optical character recognition (OCR) in document images become challenging tasks. However, according to our best knowledge, no publicly available datasets for these particular problems exist. In this paper, we introduce a Distorted Document Images dataset (DDI-100) and provide a detailed analysis of the DDI-100 in its current state. To create the dataset we collected 7000 unique document pages, and extend it by applying different types of distortions and geometric transformations. In total, DDI-100 contains more than 100,000 document images together with binary text masks, text and character locations in terms of bounding boxes. We also present an analysis of several state-of-the-art TD and OCR approaches on the presented dataset. Lastly, we demonstrate the usefulness of DDI-100 to improve accuracy and stability of the considered TD and OCR models.Keywords: document analysis, open dataset, optical character recognition, text detection
Procedia PDF Downloads 173