Search results for: active front steering system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20927

Search results for: active front steering system

6257 Evaluation of Bearing Capacity of Vertically Loaded Strip Piled-Raft Embedded in Soft Clay

Authors: Seyed Abolhasan Naeini, Mohammad Hosseinzade

Abstract:

Settlement and bearing capacity of a piled raft are the two important issues for the foundations of the structures built on coastal areas from the geotechnical engineering point of view. Strip piled raft as a load carrying system could be used to reduce the possible extensive consolidation settlements and improve bearing capacity of structures in soft ground. The aim of this research was to evaluate the efficiency of strip piled raft embedded in soft clay. The efficiency of bearing capacity of strip piled raft foundation is evaluated numerically in two cases: in first case, the cap is placed directly on the ground surface and in the second, the cap is placed above the ground. Regarding to the fact that the geotechnical parameters of the soft clay are considered at low level, low bearing capacity is expected. The length, diameter and axe-to-axe distance of piles are the parameters which varied in this research to find out how they affect the bearing capacity. Results indicate that increasing the length and the diameter of the piles increase the bearing capacity. The complementary results will be presented in the final version of the paper.

Keywords: soft clay, strip piled raft, bearing capacity, settlement

Procedia PDF Downloads 312
6256 Study on Monitoring Techniques Developed for a City Railway Construction

Authors: Myoung-Jin Lee, Sung-Jin Lee, Young-Kon Park, Jin-Wook Kim, Bo-Kyoung Kim, Song-Hun Chong, Sun-Il Kim

Abstract:

Currently, sinkholes may occur due to natural or unknown causes. When the sinkhole is an instantaneous phenomenon, most accidents occur because of significant damage. Thus, methods of monitoring are being actively researched, such that the impact of the accident can be mitigated. A sinkhole can severely affect and wreak havoc in community-based facilities such as a city railway construction. Therefore, the development of a laser / scanning system and an image-based tunnel is one method of pre-monitoring that it stops the accidents. The laser scanning is being used but this has shortcomings as it involves the development of expensive equipment. A laser / videobased scanning tunnel is being developed at Korea Railroad Research Institute. This is designed to automatically operate the railway. The purpose of the scanning is to obtain an image of the city such as of railway structures (stations, tunnel). At the railway structures, it has developed 3D laser scanning that can find a micro-crack can not be distinguished by the eye. An additional aim is to develop technology to monitor the status of the railway structure without the need for expensive post-processing of 3D laser scanning equipment, by developing corresponding software.

Keywords: 3D laser scanning, sinkhole, tunnel, city railway construction

Procedia PDF Downloads 439
6255 Cost Effective Real-Time Image Processing Based Optical Mark Reader

Authors: Amit Kumar, Himanshu Singal, Arnav Bhavsar

Abstract:

In this modern era of automation, most of the academic exams and competitive exams are Multiple Choice Questions (MCQ). The responses of these MCQ based exams are recorded in the Optical Mark Reader (OMR) sheet. Evaluation of the OMR sheet requires separate specialized machines for scanning and marking. The sheets used by these machines are special and costs more than a normal sheet. Available process is non-economical and dependent on paper thickness, scanning quality, paper orientation, special hardware and customized software. This study tries to tackle the problem of evaluating the OMR sheet without any special hardware and making the whole process economical. We propose an image processing based algorithm which can be used to read and evaluate the scanned OMR sheets with no special hardware required. It will eliminate the use of special OMR sheet. Responses recorded in normal sheet is enough for evaluation. The proposed system takes care of color, brightness, rotation, little imperfections in the OMR sheet images.

Keywords: OMR, image processing, hough circle trans-form, interpolation, detection, binary thresholding

Procedia PDF Downloads 177
6254 Investigating the Influence of L2 Motivational Self-System on Willingness to Communicate in English: A Study of Chinese Non-English Major Students in EFL Classrooms

Authors: Wanghongshu Zhou

Abstract:

This study aims to explore the relationship between the L2MSS and WTC among Chinese non-English major students in order to provide pedagogical implications for English as a Foreign Language (EFL) classrooms in Chinese universities. By employing a mixed methods approach, we involved 103 Chinese non-English major students from a typical university in China, conducted questionnaire survey to measure their levels of L2WTC and L2MSS level, and then analyzed the correlation between the two above mentioned variables. Semi-structured interviews were conducted with eight participants to provide a deeper understanding and explanation of the questionnaire data. Findings show that 1) Chinese non-English major students’ ideal L2 self and L2 learning experience could positively predict their L2 WTC in EFL class; 2) Chinese non-English major students’ ought-to L2 self might have no significant impact on their L2 WTC in EFL class; and 3) self-confidence might be another main factor that will influence Chinese non-English major students’ L2 WTC in EFL class. These findings might shed light on the second language acquisition field and provide pedagogical recommendations for pre-service as well as in-service EFL teachers.

Keywords: L2 willingness to communicate, L2 motivation, self-confidence, Chinese non-English major students

Procedia PDF Downloads 85
6253 Deterministic Random Number Generator Algorithm for Cryptosystem Keys

Authors: Adi A. Maaita, Hamza A. A. Al Sewadi

Abstract:

One of the crucial parameters of digital cryptographic systems is the selection of the keys used and their distribution. The randomness of the keys has a strong impact on the system’s security strength being difficult to be predicted, guessed, reproduced or discovered by a cryptanalyst. Therefore, adequate key randomness generation is still sought for the benefit of stronger cryptosystems. This paper suggests an algorithm designed to generate and test pseudo random number sequences intended for cryptographic applications. This algorithm is based on mathematically manipulating a publically agreed upon information between sender and receiver over a public channel. This information is used as a seed for performing some mathematical functions in order to generate a sequence of pseudorandom numbers that will be used for encryption/decryption purposes. This manipulation involves permutations and substitutions that fulfills Shannon’s principle of “confusion and diffusion”. ASCII code characters wereutilized in the generation process instead of using bit strings initially, which adds more flexibility in testing different seed values. Finally, the obtained results would indicate sound difficulty of guessing keys by attackers.

Keywords: cryptosystems, information security agreement, key distribution, random numbers

Procedia PDF Downloads 272
6252 Spelling Errors in Persian Children with Developmental Dyslexia

Authors: Mohammad Haghighi, Amineh Akhondi, Leila Jahangard, Mohammad Ahmadpanah, Masoud Ansari

Abstract:

Background: According to the recent estimation, approximately 4%-12% percent of Iranians have difficulty in learning to read and spell possibly as a result of developmental dyslexia. The study was planned to investigate spelling error patterns among Persian children with developmental dyslexia and compare that with the errors exhibited by control groups Participants: 90 students participated in this study. 30 students from Grade level five, diagnosed as dyslexics by professionals, 30 normal 5th Grade readers and 30 younger normal readers. There were 15 boys and 15 girls in each of the groups. Qualitative and quantitative methods for analysis of errors were used. Results and conclusion: results of this study indicate similar spelling error profiles among dyslexics and the reading level matched groups, and these profiles were different from age-matched group. However, performances of dyslexic group and reading level matched group were different and inconsistent in some cases.

Keywords: spelling, error types, developmental dyslexia, Persian, writing system, learning disabilities, processing

Procedia PDF Downloads 431
6251 Creativity in Educational Realities: Theoretical Considerations

Authors: Cristina Costa-Lobo, Ana Campina, José Menezes

Abstract:

Creativity implies originality, but originality does not imply the existence of creativity. Today, one of the challenges of the educational context is the development of educated, autonomous, prudent and competent citizens with a critical attitude, a well-founded questioning and a creative search for innovative alternatives and solutions. These supposedly cognitive capacities impose emotional analysis and decision making, and emotion is also considered as a creative act. Authors emphasize the importance of family and school in the creative manifestation of children and young people, and these agents can stimulate or impede creative expression. Thus, children entering the school system are faced with a barrier that blocks the externalization of this competence. This work deals with the implementation of specific strategies and promoters of an educational environment suitable for the development of creativity. The construct of creativity is discussed in a transdisciplinary perspective, and the importance of the construct is enhanced in psychoeducational practices, in challenging and multifaceted environments. It is assumed that the stimulation and early experience of creative thinking in an educational context are conditions that promote the development of problem-solving skills and future challenges.

Keywords: creativity, education, psychology, pedagogy

Procedia PDF Downloads 249
6250 Agglomerative Hierarchical Clustering Based on Morphmetric Parameters of the Populations of Labeo rohita

Authors: Fayyaz Rasool, Naureen Aziz Qureshi, Shakeela Parveen

Abstract:

Labeo rohita populations from five geographical locations from the hatchery and riverine system of Punjab-Pakistan were studied for the clustering on the basis of similarities and differences based on morphometric parameters within the species. Agglomerative Hierarchical Clustering (AHC) was done by using Pearson Correlation Coefficient and Unweighted Pair Group Method with Arithmetic Mean (UPGMA) as Agglomeration method by XLSTAT 2012 version 1.02. A dendrogram with the data on the morphometrics of the representative samples of each site divided the populations of Labeo rohita in to five major clusters or classes. The variance decomposition for the optimal classification values remained as 19.24% for within class variation, while 80.76% for the between class differences. The representative central objects of the each class, the distances between the class centroids and also the distance between the central objects of the classes were generated by the analysis. A measurable distinction between the classes of the populations of the Labeo rohita was indicated in this study which determined the impacts of changing environment and other possible factors influencing the variation level among the populations of the same species.

Keywords: AHC, Labeo rohita, hatchery, riverine, morphometric

Procedia PDF Downloads 458
6249 Hybrid Anomaly Detection Using Decision Tree and Support Vector Machine

Authors: Elham Serkani, Hossein Gharaee Garakani, Naser Mohammadzadeh, Elaheh Vaezpour

Abstract:

Intrusion detection systems (IDS) are the main components of network security. These systems analyze the network events for intrusion detection. The design of an IDS is through the training of normal traffic data or attack. The methods of machine learning are the best ways to design IDSs. In the method presented in this article, the pruning algorithm of C5.0 decision tree is being used to reduce the features of traffic data used and training IDS by the least square vector algorithm (LS-SVM). Then, the remaining features are arranged according to the predictor importance criterion. The least important features are eliminated in the order. The remaining features of this stage, which have created the highest level of accuracy in LS-SVM, are selected as the final features. The features obtained, compared to other similar articles which have examined the selected features in the least squared support vector machine model, are better in the accuracy, true positive rate, and false positive. The results are tested by the UNSW-NB15 dataset.

Keywords: decision tree, feature selection, intrusion detection system, support vector machine

Procedia PDF Downloads 269
6248 Importance of Infrastucture Delivery and Management in South Africa

Authors: Onyeka Nkwonta, Theo Haupt, Karana Padayachee

Abstract:

This study aims primarily to identify potential causes of the bottlenecks in the public sector that affect delivery and formulate evidence-based interventions to improve delivery and management of infrastructure projects. An initial literature review was carried out on infrastructural development and delivery in South Africa, with the aim to formulate evidence-based interventions to improve delivery within the sector. The infrastructure delivery management model was developed to map out best practice delivery processes. These will become the backbone on which improvement initiatives that will be developed within participating stakeholders. The model will, in turn, support a range of methodologies, including the risk system and a knowledge management framework. It will also look at key challenges facing departments with the ability to ensure knowledge and skills transfer at various sectors. The research is limited because the findings were based on existing literature. This study adopted an indirect approach for infrastructure management by focussing on the challenges faced and approaches adopted to overcome these challenges. This may narrow the consideration of some of the viewpoints, thereby limiting the richness of experience available to this research.

Keywords: infrastructure, management, challenges, South Africa

Procedia PDF Downloads 144
6247 Neural Network Approaches for Sea Surface Height Predictability Using Sea Surface Temperature

Authors: Luther Ollier, Sylvie Thiria, Anastase Charantonis, Carlos E. Mejia, Michel Crépon

Abstract:

Sea Surface Height Anomaly (SLA) is a signature of the sub-mesoscale dynamics of the upper ocean. Sea Surface Temperature (SST) is driven by these dynamics and can be used to improve the spatial interpolation of SLA fields. In this study, we focused on the temporal evolution of SLA fields. We explored the capacity of deep learning (DL) methods to predict short-term SLA fields using SST fields. We used simulated daily SLA and SST data from the Mercator Global Analysis and Forecasting System, with a resolution of (1/12)◦ in the North Atlantic Ocean (26.5-44.42◦N, -64.25–41.83◦E), covering the period from 1993 to 2019. Using a slightly modified image-to-image convolutional DL architecture, we demonstrated that SST is a relevant variable for controlling the SLA prediction. With a learning process inspired by the teaching-forcing method, we managed to improve the SLA forecast at five days by using the SST fields as additional information. We obtained predictions of a 12 cm (20 cm) error of SLA evolution for scales smaller than mesoscales and at time scales of 5 days (20 days), respectively. Moreover, the information provided by the SST allows us to limit the SLA error to 16 cm at 20 days when learning the trajectory.

Keywords: deep-learning, altimetry, sea surface temperature, forecast

Procedia PDF Downloads 93
6246 Permissible Horizontal Displacements during the Construction of Vertical Shafts in Soft Soils at the Valley of Mexico: Case History

Authors: Joel M. De La Rosa R.

Abstract:

In this paper, the results obtained when monitoring the horizontal deformations of the soil mass are detailed, during each of the construction stages of several vertical shafts located in the soft soils of the Valley of Mexico, by means of the flotation method. From the analysis of these results, the magnitude and percentage relationship with respect to the diameter and depth of excavation of the horizontal deformations that occurred during the monitoring period is established. Based on the horizontal deformation monitoring system and the information provided by the supervisor's site log, the construction stages that have the greatest impact on deformations are established. Additionally, an analysis of the deformations is carried out, which takes into account the resistance and deformability characteristics of the excavated soils, as well as the prevailing hydraulic conditions. This work will allow construction engineers and institutions in charge of infrastructure works in the Valley of Mexico to establish permissible ranges for horizontal deformations that can occur in very soft and saturated soils, during the different construction stages; improving response protocols to potentially dangerous behaviors.

Keywords: vertical shaft, flotation method, very soft clays, construction supervision

Procedia PDF Downloads 192
6245 The Threshold Values of Soil Water Index for Landslides on Country Road No.89

Authors: Ji-Yuan Lin, Yu-Ming Liou, Yi-Ting Chen, Chen-Syuan Lin

Abstract:

Soil water index obtained by tank model is now commonly used in soil and sand disaster alarm system in Japan. Comparing with the rainfall trigging index in Taiwan, the tank model is easy to predict the slope water content on large-scale landslide. Therefore, this study aims to estimate the threshold value of large-scale landslide using the soil water index Sixteen typhoons and heavy rainfall events, were selected to establish the, to relationship between landslide event and soil water index. Finally, the proposed threshold values for landslides on country road No.89 are suggested in this study. The study results show that 95% landslide cases occurred in soil water index more than 125mm, and 30% of the more serious slope failure occurred in the soil water index is greater than 250mm. Beside, this study speculates when soil water index more than 250mm and the difference value between second tank and third tank less than -25mm, it leads to large-scale landslide more probably.

Keywords: soil water index, tank model, landslide, threshold values

Procedia PDF Downloads 389
6244 Computer-Aided Exudate Diagnosis for the Screening of Diabetic Retinopathy

Authors: Shu-Min Tsao, Chung-Ming Lo, Shao-Chun Chen

Abstract:

Most diabetes patients tend to suffer from its complication of retina diseases. Therefore, early detection and early treatment are important. In clinical examinations, using color fundus image was the most convenient and available examination method. According to the exudates appeared in the retinal image, the status of retina can be confirmed. However, the routine screening of diabetic retinopathy by color fundus images would bring time-consuming tasks to physicians. This study thus proposed a computer-aided exudate diagnosis for the screening of diabetic retinopathy. After removing vessels and optic disc in the retinal image, six quantitative features including region number, region area, and gray-scale values etc… were extracted from the remaining regions for classification. As results, all six features were evaluated to be statistically significant (p-value < 0.001). The accuracy of classifying the retinal images into normal and diabetic retinopathy achieved 82%. Based on this system, the clinical workload could be reduced. The examination procedure may also be improved to be more efficient.

Keywords: computer-aided diagnosis, diabetic retinopathy, exudate, image processing

Procedia PDF Downloads 277
6243 Protective Effect of the Standardized Extract of Holmskioldia sanguinea on Tumor Bearing Mice

Authors: Mahesh Pal, Tripti Mishra, Chandana Rao, Dalip Upreti

Abstract:

Cancer has been considered to be a very dreadful disease. Holmskioldia sanguinea is a large climbing shrub found in the Himalayas at an altitude of 5,000 ft and preliminary investigation showed the excellent yield of andrographolide and subjected for the anticancer activity. Protective effect of Holmskioldia sanguinea leaf ethanolic extract has been investigated against Ehrlich ascites carcinoma (EAC) and Daltons ascites lymphoma (DAL) in Swiss albino mice to evaluate the possible mechanism of action. The enzymatic antioxidant status was studied on tumor bearing mice, which shows the potential of the compound to possess significant free radical scavenging property and revealed significant tumor regression and prolonged survival time. The isolated bioactive molecule andrographolide from Holmskioldia sanguinea yields (2.5%) in subject to HPTLC/HPLC analysis. The cellular defense system constituting the superoxide dismutase, catalyses was enhanced whereby the lipid peroxidation content was restricted to a larger extent. The Holmskioldia sanguinea is a new source of andrographolide and demonstrated the potency in treatment of cancer.

Keywords: Holmskioldia sanguinea, tumor, mice, andrographolide

Procedia PDF Downloads 266
6242 The Cost of Solar-Centric Renewable Portfolio

Authors: Timothy J. Considine, Edward J. M. Manderson

Abstract:

This paper develops an econometric forecasting system of energy demand coupled with engineering-economic models of energy supply. The framework is used to quantify the impact of state-level renewable portfolio standards (RPSs) achieved predominately with solar generation on electricity rates, electricity consumption, and environmental quality. We perform the analysis using Arizona’s RPS as a case study. We forecast energy demand in Arizona out to 2035, and find by this time the state will require an additional 35 million MWh of electricity generation. If Arizona implements its RPS when supplying this electricity demand, we find there will be a substantial increase in electricity rates (relative to a business-as-usual scenario of reliance on gas-fired generation). Extending the current regime of tax credits can greatly reduce this increase, at the taxpayers’ expense. We find that by 2025 Arizona’s RPS will implicitly abate carbon dioxide emissions at a cost between $101 and $135 per metric ton, and by 2035 abatement costs are between $64 and $112 per metric ton (depending on the future evolution of nature gas prices).

Keywords: electricity demand, renewable portfolio standard, solar, carbon dioxide

Procedia PDF Downloads 487
6241 Identifying Degradation Patterns of LI-Ion Batteries from Impedance Spectroscopy Using Machine Learning

Authors: Yunwei Zhang, Qiaochu Tang, Yao Zhang, Jiabin Wang, Ulrich Stimming, Alpha Lee

Abstract:

Forecasting the state of health and remaining useful life of Li-ion batteries is an unsolved challenge that limits technologies such as consumer electronics and electric vehicles. Here we build an accurate battery forecasting system by combining electrochemical impedance spectroscopy (EIS) -- a real-time, non-invasive and information-rich measurement that is hitherto underused in battery diagnosis -- with Gaussian process machine learning. We collect over 20,000 EIS spectra of commercial Li-ion batteries at different states of health, states of charge and temperatures -- the largest dataset to our knowledge of its kind. Our Gaussian process model takes the entire spectrum as input, without further feature engineering, and automatically determines which spectral features predict degradation. Our model accurately predicts the remaining useful life, even without complete knowledge of past operating conditions of the battery. Our results demonstrate the value of EIS signals in battery management systems.

Keywords: battery degradation, machine learning method, electrochemical impedance spectroscopy, battery diagnosis

Procedia PDF Downloads 153
6240 Effect of Inclination Angle on Productivity of a Direct Contact Membrane Distillation (Dcmd) Process

Authors: Adnan Alhathal Alanezi, Alanood A. Alsarayreh

Abstract:

A direct contact membrane distillation (DCMD) system was modeled using various angles for the membrane unit and a Reynolds number range of 500 to 2000 in this numerical analysis. The Navier-Stokes, energy, and species transport equations were used to create a two-dimensional model. The finite volume method was used to solve the governing equations (FVM). The results showed that as the Reynolds number grows up to 1500, the heat transfer coefficient increases for all membrane angles except the 60ᵒ inclination angle. Additionally, increasing the membrane angle to 90ᵒreduces the exit influence while increasing heat transfer. According to these data, a membrane with a 90o inclination angle (also known as a vertical membrane) and a Reynolds number of 2000 might have the smallest temperature differential. Similarly, decreasing the inclination angle of the membrane keeps the temperature difference constant between Reynolds numbers 1000 and 2000; however, between Reynolds numbers 500 and 1000, the temperature difference decreases dramatically.

Keywords: direct contact membrane distillation, membrane inclination angle, heat and mass transfer, reynolds number

Procedia PDF Downloads 123
6239 The Dilemma of Giving Mathematics Homework from the Perspective of Pre-Service Elementary Teachers

Authors: Myla Zenaida Cabrillas-Torio, Von Anthony G. Torio

Abstract:

Homework is defined as an additional task that a student does outside of the school. This added activity is in recognition of the necessity to spend additional time for subjects such as Mathematics. The dilemma comes in the form of the advantages and disadvantages that can be derived from homework. Studies have revealed varying effects to students on academic and non-academic areas. Teachers are at the forefront of the decision towards the giving or not of homework. Pre-service teachers at the elementary level represent the future leaders of the educational system and should be acquainted and involved at the onset of the dilemma. The main objective of this study is to determine the perspective of pre-service elementary teachers towards homework. The anatomy of their belief can be key towards addressing the issue via teacher training. Salient results revealed that the subjects favor the giving homework on the following grounds: it helps add knowledge and confidence. Those who do not favor homework find it as an additional burden. Difficulties in complying with homework are usually associated with lack of references and performance of other household chores. Students usually spend late nights to comply with homework and are unable to perform at the best of their potentials.

Keywords: attitude, homework, pre-service teachers, mathematics education, Philippines

Procedia PDF Downloads 503
6238 A Genetic Algorithm Based Ensemble Method with Pairwise Consensus Score on Malware Cacophonous Labels

Authors: Shih-Yu Wang, Shun-Wen Hsiao

Abstract:

In the field of cybersecurity, there exists many vendors giving malware samples classified results, namely naming after the label that contains some important information which is also called AV label. Lots of researchers relay on AV labels for research. Unfortunately, AV labels are too cluttered. They do not have a fixed format and fixed naming rules because the naming results were based on each classifiers' viewpoints. A way to fix the problem is taking a majority vote. However, voting can sometimes create problems of bias. Thus, we create a novel ensemble approach which does not rely on the cacophonous naming result but depend on group identification to aggregate everyone's opinion. To achieve this purpose, we develop an scoring system called Pairwise Consensus Score (PCS) to calculate result similarity. The entire method architecture combine Genetic Algorithm and PCS to find maximum consensus in the group. Experimental results revealed that our method outperformed the majority voting by 10% in term of the score.

Keywords: genetic algorithm, ensemble learning, malware family, malware labeling, AV labels

Procedia PDF Downloads 91
6237 Numerical and Experimental Investigation of Pulse Combustion for Fabric Drying

Authors: Dan Zhao, Y. W. Sheng

Abstract:

The present work considers a convection-driven T-shaped pulse combustion system. Both experimental and numerical investigations are conducted to study the mechanism of pulse combustion and its potential application in fabric drying. To gain insight on flame-acoustic dynamic interaction and pulsating flow characteristics, 3D numerical simulation of the pulse combustion process of a premixed turbulent flame in a Rijke-type combustor is performed. Two parameters are examined: (1) fuel-air ratio, (2) inlet flow velocity. Their effects on triggering pulsating flow and Nusselt number are studied. As each of the parameters is varied, Nusselt number characterizing the heat transfer rate and the heat-driven pulsating flow signature is found to change. The main nonlinearity is identified in the heat fluxes. To validate our numerical findings, a cylindrical T-shaped Rijke-type combustor made of quartz-glass with a Bunsen burner is designed and tested.

Keywords: pulse combustion, fabric drying, heat transfer, combustion oscillations, pressure oscillations

Procedia PDF Downloads 243
6236 Artificial Neural Network-Based Short-Term Load Forecasting for Mymensingh Area of Bangladesh

Authors: S. M. Anowarul Haque, Md. Asiful Islam

Abstract:

Electrical load forecasting is considered to be one of the most indispensable parts of a modern-day electrical power system. To ensure a reliable and efficient supply of electric energy, special emphasis should have been put on the predictive feature of electricity supply. Artificial Neural Network-based approaches have emerged to be a significant area of interest for electric load forecasting research. This paper proposed an Artificial Neural Network model based on the particle swarm optimization algorithm for improved electric load forecasting for Mymensingh, Bangladesh. The forecasting model is developed and simulated on the MATLAB environment with a large number of training datasets. The model is trained based on eight input parameters including historical load and weather data. The predicted load data are then compared with an available dataset for validation. The proposed neural network model is proved to be more reliable in terms of day-wise load forecasting for Mymensingh, Bangladesh.

Keywords: load forecasting, artificial neural network, particle swarm optimization

Procedia PDF Downloads 175
6235 Optimizing Telehealth Internet of Things Integration: A Sustainable Approach through Fog and Cloud Computing Platforms for Energy Efficiency

Authors: Yunyong Guo, Sudhakar Ganti, Bryan Guo

Abstract:

The swift proliferation of telehealth Internet of Things (IoT) devices has sparked concerns regarding energy consumption and the need for streamlined data processing. This paper presents an energy-efficient model that integrates telehealth IoT devices into a platform based on fog and cloud computing. This integrated system provides a sustainable and robust solution to address the challenges. Our model strategically utilizes fog computing as a localized data processing layer and leverages cloud computing for resource-intensive tasks, resulting in a significant reduction in overall energy consumption. The incorporation of adaptive energy-saving strategies further enhances the efficiency of our approach. Simulation analysis validates the effectiveness of our model in improving energy efficiency for telehealth IoT systems, particularly when integrated with localized fog nodes and both private and public cloud infrastructures. Subsequent research endeavors will concentrate on refining the energy-saving model, exploring additional functional enhancements, and assessing its broader applicability across various healthcare and industry sectors.

Keywords: energy-efficient, fog computing, IoT, telehealth

Procedia PDF Downloads 83
6234 R Data Science for Technology Management

Authors: Sunghae Jun

Abstract:

Technology management (TM) is important issue in a company improving the competitiveness. Among many activities of TM, technology analysis (TA) is important factor, because most decisions for management of technology are decided by the results of TA. TA is to analyze the developed results of target technology using statistics or Delphi. TA based on Delphi is depended on the experts’ domain knowledge, in comparison, TA by statistics and machine learning algorithms use objective data such as patent or paper instead of the experts’ knowledge. Many quantitative TA methods based on statistics and machine learning have been studied, and these have been used for technology forecasting, technological innovation, and management of technology. They applied diverse computing tools and many analytical methods case by case. It is not easy to select the suitable software and statistical method for given TA work. So, in this paper, we propose a methodology for quantitative TA using statistical computing software called R and data science to construct a general framework of TA. From the result of case study, we also show how our methodology is applied to real field. This research contributes to R&D planning and technology valuation in TM areas.

Keywords: technology management, R system, R data science, statistics, machine learning

Procedia PDF Downloads 460
6233 The Study on Life of Valves Evaluation Based on Tests Data

Authors: Binjuan Xu, Qian Zhao, Ping Jiang, Bo Guo, Zhijun Cheng, Xiaoyue Wu

Abstract:

Astronautical valves are key units in engine systems of astronautical products; their reliability will influence results of rocket or missile launching, even lead to damage to staff and devices on the ground. Besides failure in engine system may influence the hitting accuracy and flight shot of missiles. Therefore high reliability is quite essential to astronautical products. There are quite a few literature doing research based on few failure test data to estimate valves’ reliability, thus this paper proposed a new method to estimate valves’ reliability, according to the corresponding tests of different failure modes, this paper takes advantage of tests data which acquired from temperature, vibration, and action tests to estimate reliability in every failure modes, then this paper has regarded these three kinds of tests as three stages in products’ process to integrate these results to acquire valves’ reliability. Through the comparison of results achieving from tests data and simulated data, the results have illustrated how to obtain valves’ reliability based on the few failure data with failure modes and prove that the results are effective and rational.

Keywords: censored data, temperature tests, valves, vibration tests

Procedia PDF Downloads 347
6232 Equity in Public Health: Perception from the Anti-Retroviral Therapy (ART) Program for HIV- Patients in India

Authors: Koko Wangjam, Naresh Kumar Sharma

Abstract:

The concern for most public health policies and decision- makers is the equitable distribution of health care resource of the nation. Also, in public health care system, the primary aim is assuaging the burden of the disease. Objective: This paper captures and evaluates some important theories in equity in health with its relevance with the ART program in India. Methodology: The paper is exploratory and descriptive study based on secondary data. The sources of secondary data are published official reports from NACO (National AIDS Control Organisation), United Nations AIDS Program (UNAIDS), World Health Organisation (WHO) etc. Observation: The roll-out of the ART program in 2004 by the Govt. of India made a paradigm shift in HIV/AIDS scenario in the country. Conclusion: There are many theoretical injunctions in most of the principles and approaches in existing theories of health equity. The enervation of HIV infection by taking ART drugs had helped in curbing the prevalence and the fact that it is provided at free of cost has proven this program to be an epitome in distributive justice in public health.

Keywords: art program, burden of the disease, health equity, hiv/aids

Procedia PDF Downloads 397
6231 Ground State Phases in Two-Mode Quantum Rabi Models

Authors: Suren Chilingaryan

Abstract:

We study two models describing a single two-level system coupled to two boson field modes in either a parallel or orthogonal setup. Both models may be feasible for experimental realization through Raman adiabatic driving in cavity QED. We study their ground state configurations; that is, we find the quantum precursors of the corresponding semi-classical phase transitions. We found that the ground state configurations of both models present the same critical coupling as the quantum Rabi model. Around this critical coupling, the ground state goes from the so-called normal configuration with no excitation, the qubit in the ground state and the fields in the quantum vacuum state, to a ground state with excitations, the qubit in a superposition of ground and excited state, while the fields are not in the vacuum anymore, for the first model. The second model shows a more complex ground state configuration landscape where we find the normal configuration mentioned above, two single-mode configurations, where just one of the fields and the qubit are excited, and a dual-mode configuration, where both fields and the qubit are excited.

Keywords: quantum optics, quantum phase transition, cavity QED, circuit QED

Procedia PDF Downloads 372
6230 Utilizing Street Medicine to Reduce Communicable Disease Prevalence in a Cost-Effective Way

Authors: Bailey Hall, Athena Hoppe, Tevyn Kagele, Anna Nichols, Breeanna Messner

Abstract:

The Spokane Street Medicine (SSM) Program aims to deliver medical care to people experiencing homelessness in Spokane, Washington. Street medicine is designed to function in a non-traditional setting to help deliver healthcare to a largely underserved population. In this analysis, the SSM Program’s medical charts from street and shelter encounters in early 2021 were reviewed in order to identify illness and diseases in people experiencing homelessness in Spokane. More than half of the prescriptions written during these encounters were for either an antibacterial, an antibiotic, or an antifungal. Estimates of the cost to the local healthcare system are included. Initiating treatment for communicable diseases in people experiencing homelessness via street medicine efforts greatly reduces economic costs while improving health outcomes.

Keywords: ethical issues in public health, equity issues in public health, health economics, health disparities, healthcare costs, medical public health, public health ethics, street medicine

Procedia PDF Downloads 194
6229 The Use of Artificial Intelligence to Harmonization in the Lawmaking Process

Authors: Supriyadi, Andi Intan Purnamasari, Aminuddin Kasim, Sulbadana, Mohammad Reza

Abstract:

The development of the Industrial Revolution Era 4.0 brought a significant influence in the administration of countries in all parts of the world, including Indonesia, not only in the administration and economic sectors but the ways and methods of forming laws should also be adjusted. Until now, the process of making laws carried out by the Parliament with the Government still uses the classical method. The law-making process still uses manual methods, such as typing harmonization of regulations, so that it is not uncommon for errors to occur, such as writing errors, copying articles and so on, things that require a high level of accuracy and relying on inventory and harmonization carried out manually by humans. However, this method often creates several problems due to errors and inaccuracies on the part of officers who harmonize laws after discussion and approval; this has a very serious impact on the system of law formation in Indonesia. The use of artificial intelligence in the process of forming laws seems to be justified and becomes the answer in order to minimize the disharmony of various laws and regulations. This research is normative research using the Legislative Approach and the Conceptual Approach. This research focuses on the question of how to use Artificial Intelligence for Harmonization in the Lawmaking Process.

Keywords: artificial intelligence, harmonization, laws, intelligence

Procedia PDF Downloads 167
6228 The Impact of COVID-19 Pandemic on the Issue and Ideological Congruence of Trump and Bolsonaro Administrations

Authors: Flavio Contrera, Paulo Cesar Gregorio

Abstract:

Recent political developments and government control actions in the face of the COVID-19 pandemic draw attention to the contrast between the duties of government and the demands of democratic representation. Elected by mobilizing far-right issues, Trump and Bolsonaro moved away from the WHO guidelines but had to accommodate demands on the health and on the social protection system on the one hand and demands from the economic sector on the other. This study used the MARPOR Project method to assess the impact of the COVID-19 pandemic on the issue and ideological congruence between the electoral and governmental arena in both the Trump and Bolsonaro Administrations. Findings reveal issue congruence between arenas in "National Way of Life: Positive", "Law and Order," and "Technology and Infrastructure" for Donald Trump, and "Welfare State Expansion" for Bolsonaro. Ideological estimation results show that Trump and Bolsonaro positioned to the right in their presidential elections, initially moved to the center-right. However, welfare policies actions at high frequency during the COVID-19 pandemic moved the ideological estimations of both governments to the center-left, despite their denial rhetoric.

Keywords: congruence, COVID-19, Donald Trump, Jair Bolsonaro

Procedia PDF Downloads 235