Search results for: thin film transistor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1988

Search results for: thin film transistor

548 Elaboration of Polymethylene Blue on Conducting Glassy Substrate and Study of Its Optical, Electrical and Photoelectrochemical Characterization

Authors: Abdi Djamila, Haffar Hichem

Abstract:

The poly methylene bleu (PMB) has been successfully electro deposited on fluorine doped tin oxide (FTO) conducting glass as substrate. Its optical, electrical and photoelectrochemical characterizations have been carried out in order to show the performances of such polymer. The deposited film shows a good electric conductivity which is well confirmed by the low gap value determinated optically by UV–vis spectroscopy. Like all polymers the PMB presents an absorption difference in the visible range function of the polarization potential, it is expressed by the strong conjugation at oxidized state but is weakened with leucoform formation at reduced state. The electrochemical analysis of the films permit to show the cyclic voltamperogram with the anodic oxidation and cathodic reduction states of the polymer and to locate the corresponding energy levels HOMO and LUMO of this later. The electrochemical impedance spectroscopy permit to see the conductive character of such film and to calculate important parameters as Rtc and CPE. The study of the photoelectro activity of our polymer shows that under exposure to intermittent light source this later exhibit important photocurrents which enables it to be used in photo organic ells.

Keywords: polymethylene blue, electropolymerization, homo-lumo, photocurrents

Procedia PDF Downloads 258
547 Corrosion Inhibition of AA2024 Alloy with Graphene Oxide Derivative: Electrochemical and Surface Analysis

Authors: Nisrine Benzbiria, Abderrahmane Thoume, Mustapha Zertoubi

Abstract:

The goal of this research is to investigate the corrosion inhibition potential of functionalized graphene oxide (GO) with oxime derivative on AA2024-T3 surface in synthetic seawater. The utilization of functionalized graphene oxide is creating a category of corrosion inhibitors known as organically modified nanomaterials. In our work, the functionalization of GO by chalcone oxime enables graphene oxide to have enhanced water solubility and a good corrosion mitigation capacity. Fourier-transform infrared (FT-IR) spectroscopy was utilized to evaluate the main functional groups of the inhibitor. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves (PDP) showed that the inhibitor acts as a mixed-type inhibitor. The inhibitory efficiency (IE) improved as the concentration increased to a value of 96% after one hour of exposure to a medium containing 60 mg/L ppm of the inhibitor. According to thermodynamic calculations, the adsorption of the inhibitor on the AA2024-T3 surface in 3% NaCl followed the Langmuir isotherm. The formation of a barrier layer was further confirmed by surface analysis. The protective film prevented the alloy dissolution and limited the accessibility of attacking ions, as evinced by solution analysis techniques.

Keywords: AA2024-T3, NaCl, electrochemical methods, FT-IR, SEM/AFM, DFT, MC simulation

Procedia PDF Downloads 40
546 Behaviour of Hollow Tubes Filled with Sand Slag Concrete

Authors: Meriem Senani, Noureedine Ferhoune

Abstract:

This paper presents the axial bearing capacity of thin welded rectangular steel stubs filled with concrete sand. A series of tests was conducted to study the behavior of short composite columns under axial compressive load, the cross section dimensions were: 100x70x2 mm. A total of 16 stubs have been tested, as follows: 4 filled with ordinary concrete appointed by BO columns, 6 filled with concrete witch natural sand was completely substitute a crystallized sand slag designated in this paper by BSI, and 6 others were tucked in concrete whose natural sand was partially replace by a crystallized sand slag called by BSII. The main objectives of these tests were to clarify the steel specimen's performance filled by concrete sand compared to those filled with ordinary concrete. The main parameters studied are: The height of the specimen (300mm-500mm), eccentricity of load and type of filling concrete. Based on test results obtained, it is confirmed that the length of the tubes, has a considerable effect on the bearing capacity and the failure mode. In all test tubes, fracture occurred by the convex warping of the largest, followed by the smallest due to the outward thrust of the concrete, it was observed that the sand concrete improves the bearing capacity of tubes compounds compared to those filled with ordinary concrete.

Keywords: concrete sand, crystallized slag, failure mode, buckling

Procedia PDF Downloads 399
545 The Design and Implementation of a Calorimeter for Evaluation of the Thermal Performance of Materials: The Case of Phase Change Materials

Authors: Ebrahim Solgi, Zahra Hamedani, Behrouz Mohammad Kari, Ruwan Fernando, Henry Skates

Abstract:

The use of thermal energy storage (TES) as part of a passive design strategy can reduce a building’s energy demand. TES materials do this by increasing the lag between energy consumption and energy supply by absorbing, storing and releasing energy in a controlled manner. The increase of lightweight construction in the building industry has made it harder to utilize thermal mass. Consequently, Phase Change Materials (PCMs) are a promising alternative as they can be manufactured in thin layers and used with lightweight construction to store latent heat. This research investigates utilizing PCMs, with the first step being measuring their performance under experimental conditions. To do this requires three components. The first is a calorimeter for measuring indoor thermal conditions, the second is a pyranometer for recording the solar conditions: global, diffuse and direct radiation and the third is a data-logger for recording temperature and humidity for the studied period. This paper reports on the design and implementation of an experimental setup used to measure the thermal characteristics of PCMs as part of a wall construction. The experimental model has been simulated with the software EnergyPlus to create a reliable simulation model that warrants further investigation.

Keywords: phase change materials, EnergyPlus, experimental evaluation, night ventilation

Procedia PDF Downloads 237
544 Biomimetic Luminescent Textile Using Biobased Products

Authors: Sweta Iyer, Nemeshwaree Behary, Vincent Nierstrasz

Abstract:

Various organisms involve bioluminescence for their particular biological function. The bio-based molecules responsible for bioluminescence vary from one species to another, research has been done to identify the chemistry and different mechanisms involved in light production in living organisms. The light emitting chemical systems such as firefly and bacterial luminous mostly involves enzyme-catalyzed reactions and is widely used for ATP measurement, bioluminescence imaging, environmental biosensors etc. Our strategy is to design bioluminescent textiles using such bioluminescent systems. Hence, a detailed literature work was carried out to study on how to mimic bioluminescence effect seen in nature. Reaction mechanisms in various bioluminescent living organisms were studied and the components or molecules responsible for luminescence were identified. However, the challenge is to obtain the same effect on textiles by immobilizing enzymes responsible for light creation. Another challenge is also to regenerate substrates involved in the reaction system to create a longer lasting illumination in bioluminescent textiles. Natural film-forming polymers were used to immobilize the reactive components including enzymes on textile materials to design a biomimetic luminescent textile.

Keywords: bioluminescence, biomimetic, immobilize, luminescent textile

Procedia PDF Downloads 240
543 Gas Condensing Unit with Inner Heat Exchanger

Authors: Dagnija Blumberga, Toms Prodanuks, Ivars Veidenbergs, Andra Blumberga

Abstract:

Gas condensing units with inner tubes heat exchangers represent third generation technology and differ from second generation heat and mass transfer units, which are fulfilled by passive filling material layer. The first one improves heat and mass transfer by increasing cooled contact surface of gas and condensate drops and film formed in inner tubes heat exchanger. This paper presents a selection of significant factors which influence the heat and mass transfer. Experimental planning is based on the research and analysis of main three independent variables; velocity of water and gas as well as density of spraying. Empirical mathematical models show that the coefficient of heat transfer is used as dependent parameter which depends on two independent variables; water and gas velocity. Empirical model is proved by the use of experimental data of two independent gas condensing units in Lithuania and Russia. Experimental data are processed by the use of heat transfer criteria-Kirpichov number. Results allow drawing the graphical nomogram for the calculation of heat and mass transfer conditions in the innovative and energy efficient gas cooling unit.

Keywords: gas condensing unit, filling, inner heat exchanger, package, spraying, tunes

Procedia PDF Downloads 277
542 Surface Modified Polyvinylidene Fluoride Membranes for Potential Use in Membrane Distillation

Authors: Lebea Nthunya, Arne Verliefde, Bhekie Mamba, Sabelo Mhlanga

Abstract:

A study aimed at developing membrane distillation (MD) processes that can be used for brackish/saline water purification will be presented. MD is a membrane-based technology that presents a possibility to counteract challenges associated with pressure driven membranes at high separation efficiencies. Membrane distillation membranes (MDM) are affected by wettability and fouling. Wetting inside the pores of the membrane is elevated by the hydrophilic characteristic of the membrane, while fouling is mostly induced by the hydrophobic-hydrophobic interaction of pollutants and the surface of the hydrophobic membranes, hence block the pores of the membranes. These properties are not desirable. As such, a carefully designed polyvinylidene fluoride (PVDF) MDM composed of a super-hydrophobic modified backbone and a super-hydrophilic thin layer has been developed to concurrently overcome these challenges. The membranes were characterized using contact angle measurements to confirm their hydrophobicity/hydrophilicity. SEM and SAXS were used to study the morphology and pore distribution on the surface of the membrane. The contact angles of the active surface ≤ 30º and that of the backbone ≥ 140º has thus revealed that the active surface was highly hydrophilic while the backbone was highly hydrophobic. The SEM and the SAXS results have also confirmed that the membranes are highly porous. These materials demonstrated a potential to remove salts from water at high efficiencies.

Keywords: membrane distillation, modification, energy efficiency, desalination

Procedia PDF Downloads 238
541 Regenerated Cotton/Feather Keratin Composite Materials Prepared Using Ionic Liquids

Authors: Rasike De Silva, Xungai Wang, Nolene Byrne

Abstract:

We report on the blending of cotton and duck feather towards developing a new textile fibre. The cotton and duck feather were blended together by dissolving both components in an ionic liquid. Ionic liquids are designer solvents consisting entirely of ions with a melting point below 100˚C. Ionic liquids can be designed to have numerous and varied properties which include the ability to dissolve bio polymers. The dissolution of bio polymers such as cotton or wool generally requires very harsh acid or alkaline conditions and high temperatures. The ionic liquids which can dissolve bio polymers can be considered environmentally benign since they have negligible vapor pressure and can be recycled and reused. We have selected the cellulose dissolving and recyclable ionic liquid 1-allyl-3-methylimidazolium chloride (AMIMCl) as the dissolving and blending solvent for the cotton and duck feather materials. We have casted films and wet spun fibres at varying cotton and duck feather compositions and characterized the material properties of these. We find that the addition of duck feather enhances the elasticity of regenerated cotton. The strain% at breakage of the regenerated film was increased from 4.2% to 11.63% with a 10% duck feather loading, while the corresponding stress at breakage reduced from 54.89 MPa to 47.16 MPa.

Keywords: textile materials, bio polymers, ionic liquids, duck feather

Procedia PDF Downloads 460
540 Susanne Bier, Lone Scherfig: Transnationalization Strategies

Authors: Ebru Thwaites Diken

Abstract:

This article analyzes the works of certain directors in Danish cinema, namely Susanne Bier and Lone Sherfig, in the context of transnationalisation of Danish cinema. It looks at how the films' narratives negotiate and reconstruct the local / national / regional and the global. Scholars such as Nestingen & Elkington (2005), Hjort (2010), Higbee and Lim (2010), Bondebjerg and Redvall (2011) address transnationalism of Danish cinema in terms of production and distribution processes and how film making trascends national boundaries. This paper employs a particular understanding of transnationalism - in terms of how ideas and characters travel - to analyze how the storytelling and style has evolved to connect the national, the regional and the global on the basis of the works of these two directors. Strategies such as Hollywoodization - i.e. focus on stardom and classical narration, adhering to conventional European genre formulas, producing Danish films in English language have been identifiable strategies in Danish cinema in the period after the 2000s. Susanne Bier and Lone Scherfig are significant for employing some of these strategies simultaneously. For this reason, this article will look at how these two directors have employed these strategies and negotiated the cultural boundaries and exchanges.

Keywords: transnational cinema, danish cinema, susanne bier, lone scherfig

Procedia PDF Downloads 57
539 Radial Distortion Correction Based on the Concept of Verifying the Planarity of a Specimen

Authors: Shih-Heng Tung, Ming-Hsiang Shih, Wen-Pei Sung

Abstract:

Because of the rapid development of digital camera and computer, digital image correlation method has drawn lots of attention recently and has been applied to a variety of fields. However, the image distortion is inevitable when the image is captured through a lens. This image distortion problem can result in an innegligible error while using digital image correlation method. There are already many different ways to correct the image distortion, and most of them require specific image patterns or precise control points. A new distortion correction method is proposed in this study. The proposed method is based on the fact that a flat surface should keep flat when it is measured using three-dimensional (3D) digital image measurement technique. Lens distortion can be divided into radial distortion, decentering distortion and thin prism distortion. Because radial distortion has a more noticeable influence than the other types of distortions, this method deals only with radial distortion. The simplified 3D digital image measurement technique is adopted to measure the surface coordinates of a flat specimen. Then the gradient method is applied to find the best correction parameters. A few experiments are carried out in this study to verify the correctness of this method. The results show that this method can achieve a good accuracy and it is suitable for both large and small distortion conditions. The most important advantage is that it requires neither mark with specific pattern nor precise control points.

Keywords: 3D DIC, radial distortion, distortion correction, planarity

Procedia PDF Downloads 537
538 Facile Hydrothermal Synthesis of Hierarchical NiO/ZnCo₂O₄ Nanocomposite for High-Energy Supercapacitor Applications

Authors: Fayssal Ynineb, Toufik Hadjersi, Fatsah Moulai, Wafa Achour

Abstract:

Currently, tremendous attention has been paid to the rational design and synthesis of core/shell heterostructures for high-performance supercapacitors. In this study, the hierarchical NiO/ZnCo₂O₄ Core-Shell Nanorods Arrays were successfully deposited onto ITO substrate via a two-step hydrothermal and electrodeposition methods. The effect of the thin carbon layer between NiO and ZnCo₂O₄ in this multi-scale hierarchical structure was investigated. The selection of this structure was based on: (i) a high specific area of pseudo-capacitive NiO to maximize specific capacitance; (ii) an effective NiO-electrolyte interface to facilitate fast charging/discharging; and (iii) conducting carbon layer between ZnCo₂O₄ and NiO enhance the electric conductivity which reduces energy loss, and the corrosion protection of ZnCo₂O₄ in alkaline electrolyte. The obtained results indicate that hierarchical NiO/ZnCo₂O₄ present a high specific capacitance of 63 mF.cm⁻² at a current density of 0.05 mA.cm⁻² higher than that of pristine NiO and ZnCo₂O₄ of 6 and 3 mF.cm⁻², respectively. The carbon layer improves the electrical conductivity among NiO and ZnCo₂O₄ in the hierarchical NiO/C/ZnCo₂O₄ electrode. As well, the specific capacitance drastically increased to reach 125 mF.cm⁻². Moreover, this multi-scale hierarchical structure exhibits superior cycling stability with ~ 95.7 % capacitance retention after 65k cycles. These results indicate that the NiO/C/ZnCo₂O₄ nanocomposite material is an outstanding electrode material for supercapacitors.

Keywords: NiO/C/ZnCo₂O₄, specific capacitance, hydrothermal, supercapacitors

Procedia PDF Downloads 83
537 An Image Stitching Approach for Scoliosis Analysis

Authors: Siti Salbiah Samsudin, Hamzah Arof, Ainuddin Wahid Abdul Wahab, Mohd Yamani Idna Idris

Abstract:

Standard X-ray spine images produced by conventional screen-film technique have a limited field of view. This limitation may obstruct a complete inspection of the spine unless images of different parts of the spine are placed next to each other contiguously to form a complete structure. Another solution to producing a whole spine image is by assembling the digitized x-ray images of its parts automatically using image stitching. This paper presents a new Medical Image Stitching (MIS) method that utilizes Minimum Average Correlation Energy (MACE) filters to identify and merge pairs of x-ray medical images. The effectiveness of the proposed method is demonstrated in two sets of experiments involving two databases which contain a total of 40 pairs of overlapping and non-overlapping spine images. The experimental results are compared to those produced by the Normalized Cross Correlation (NCC) and Phase Only Correlation (POC) methods for comparison. It is found that the proposed method outperforms those of the NCC and POC methods in identifying both the overlapping and non-overlapping medical images. The efficacy of the proposed method is further vindicated by its average execution time which is about two to five times shorter than those of the POC and NCC methods.

Keywords: image stitching, MACE filter, panorama image, scoliosis

Procedia PDF Downloads 436
536 Hemostasis Poly Vinyl Alcohol Gauze Coated with Chitosan Encapsulated with Polymer and Drug

Authors: Abhishekkumar Ramasamy, Parameshwari

Abstract:

Chitosan is the deacyelitated derivative of chitin, the second most abundant biopolymer just after cellulose. Without doubt, its biomedical usages have gained more importance among the vast variety of chitosan applications owing to its good biocompatibility and biodegradability. In recent years, particular interest has been devoted to chitosan hydrogels as a promising alternative in competition with conventional sutures or bioadhesives. Different parameters such as acid type and concentration, and degree of deacetylation (DD%) of chitosan, were altered to modify hydrogel properties including viscosity, pH, cohesive strength, and tissue bioadhesiveness. In the current work, we have investigated the effectiveness of chitosan hydrogel encapsulated with tanexamic acid to stop bleeding. Chitosan film was obtained with solubilization of chitosan powder in aqueous acidic media. In vivo experiments have been conducted on rat and rabbit models that provide a convenient way to evaluate the efficacy of prepared samples. The arteries vein was punctured on the hind limb of the rat and the gauze was been applied on the punchered area. Bioadhesive strength as well as irritant effects were discussed. Samples with higher degree of deacetylation, including Chs-16 and Chs-19 that were dissolved in lactic media showed best sealing effect.

Keywords: chitosan, biocomaptibility, biodegradability, bioadhersive, deacetylation

Procedia PDF Downloads 332
535 Finite Element Analysis of Piezolaminated Structures with Both Geometric and Electroelastic Material Nonlinearities

Authors: Shun-Qi Zhang, Shu-Yang Zhang, Min Chen, , Jing Bai

Abstract:

Piezoelectric laminated smart structures can be subjected to the strong driving electric field, which may result in large displacements and rotations. In one hand, piezoelectric materials usually behave very significant material nonlinear effects under strong electric fields. On the other hand, thin-walled structures undergoing large displacements and rotations exist nonnegligible geometric nonlinearity. In order to give a precise prediction of piezo laminated smart structures under the large electric field, this paper develops a finite element (FE) model accounting for material nonlinearity (piezoelectric part) and geometric nonlinearity based on the first order shear deformation (FSOD) hypothesis. The proposed FE model is first validated by both experimental and numerical examples from the literature. Afterwards, it is applied to simulate for plate and shell structures with multiple piezoelectric patches under the strong applied electric field. From the simulation results, it shows that large discrepancies occur between linear and nonlinear predictions for piezoelectric laminated structures driving at the strong electric field. Therefore, both material and geometric nonlinearities should be taken into account for piezoelectric structures under strong electric.

Keywords: piezoelectric smart structures, finite element analysis, geometric nonlinearity, electroelastic material nonlinearities

Procedia PDF Downloads 298
534 Characterization of Biosurfactants Produced by Bacteria Degrading Gasoline

Authors: Ikram Kamal, Mohamed Blaghen

Abstract:

Biosurfactants are amphiphilic biological compounds consisting of hydrophobic and hydrophilic domains produced extracellularly or as part of the cell membrane by a variety of yeast, bacteria and filamentous fungi. Biosurfactant applications in the environmental industries are promising due to their biodegradability, low toxicity, and effectiveness in enhancing biodegradation and solubilization of low solubility compounds. Currently, the main application is for enhancement of oil recovery and hydrocarbon bioremediation due to their biodegradability and low critical micelle concentration (CMC). The use of biosurfactants has also been proposed for various industrial applications, such as in food additives, cosmetics, detergent formulations and in combinations with enzymes for wastewater treatment. In this study, we have investigated the potential of bacterial strains: Mannheimia haemolytica, Burkholderia cepacia and Serratia ficaria were collected aseptically from the lagoon Marchika (water and soil) in Nador, Morocco; for the production of biosurfactants. This study also aimed to optimize the biosurfactant production process by changing the variables that influence the type and amount of biosurfactant produced by these microorganisms such as: carbon sources and also other physical and chemical parameters such as temperature and pH. Emulsification index, methylene blue test, and thin layer chromatography (TLC) revealed the ability of strains used in this study to produce compounds that could emulsify gasoline. In addition, a GC/MS was used to separate and identify different biosurfactants purified.

Keywords: biosurfactants, Mannheimia haemolytica, biodegradability, Burkholderia cepacia, Serratia ficaria

Procedia PDF Downloads 244
533 Hydrogen Sulfide Removal from Biogas Using Biofilm on Packed Bed of Salak Fruit Seeds

Authors: Retno A. S. Lestari, Wahyudi B. Sediawan, Siti Syamsiah, Sarto

Abstract:

Sulfur-oxidizing bacteria were isolated and then grown on snakefruits seeds forming biofilm. Their performance in sulfide removal were experimentally observed. Snakefruit seeds were then used as packing material in a cylindrical tube. Biological treatment of hydrogen sulfide from biogas was investigated using biofilm on packed bed of snakefruits seeds. Biogas containing 27,9512 ppm of hydrogen sulfide was flown through the bed. Then the hydrogen sulfide concentrations in the outlet at various times were analyzed. A set of simple kinetics model for the rate of the sulfide removal and the bacterial growth was proposed. The axial sulfide concentration gradient in the flowing liquid are assumed to be steady-state. Mean while the biofilm grows on the surface of the seeds and the oxidation takes place in the biofilm. Since the biofilm is very thin, the sulfide concentration in the biofilm is assumed to be uniform. The simultaneous ordinary differential equations obtained were then solved numerically using Runge-Kutta method. The acuracy of the model proposed was tested by comparing the calcultion results using the model with the experimental data obtained. It turned out that the model proposed can be applied to describe the removal of sulfide liquid using bio-filter in packed bed. The values of the parameters were also obtained by curve-fitting. The biofilter could remove 89,83 % of the inlet of hydrogen sulfide from biogas for 2.5 h, and optimum loading of 8.33 ml/h.

Keywords: Sulfur-oxidizing bacteria, snakefruits seeds, biofilm, packing material, biogas

Procedia PDF Downloads 391
532 The Flavonoids for a Plant Grows in the Arid and Semi-Arid Zone of the Northern Sahara of Algeria - Atriplex halimus L.

Authors: O. Smara, H. Dendougui, B. Legseir

Abstract:

Atriplex halimus L. is particularly well adapted to arid and salt-affected areas. In this species, salinity resistance is often attributed to the presence of vesiculated hairs covering leaf surface and containing a large amount of salt. Atriplex halimus L. (Chenopodiaceae) is a perennial shrub native to the Mediterranean basin with excellent tolerance to drought and salinity. The species is present in semiarid to subhumid areas of the north Mediterranean and in arid zones from North Africa and the eastern Mediterranean. The main aim of this study was to identify a medicinal plant used in the Ouargla (Est-southern Algeria) for the treatment of several human pathologies. This plant is an important source for livestock in nitrogenous matter, it is an effective and relatively inexpensive tool in the fight against erosion and desertification and rehabilitation of degraded lands. Phytochemical investigation is applied to the majority of extracts of the powder of the aerial parts of Atriplex halimus L. Different chromatographic methods after liquid-liquid extraction are used; it is the thin layer chromatography (TLC) and paper using multiple systems and chemical revelations. This study followed by an evaluation by the phenol assay the Folin-Ciocalteu method, using gallic acid as a reference for phenols and quercetin for flavonols. Some polar extracts showed an interesting result better than the less polar extracts.

Keywords: Atriples halimus L., chenopodiaceae, flavonoids, phenols

Procedia PDF Downloads 288
531 Influence of Electrode Assembly on Catalytic Activation and Deactivation of a PT Film Immobilized H+ Conducting Solid Electrolyte in Electrocatalytic Reduction Reactions

Authors: M. A. Hasnat, M. Amirul Islam, M. A. Rashed, Jamil. Safwan, M. Mahabubul Alam

Abstract:

Symmetric (Cu–Pt|Nafion|Pt–Cu) and asymmetric(Pt|Nafion|Pt–Cu) assemblies were fabricated to study the nitrate reduction processes at the cathode. The electrocatalytic nitrate reduction reactions were performed in these assemblies in order to investigate the prerequisite for the enhanced catalytic activity, electrochemical cell durability as well as preferable product selectivity resulting from the reduction of nitrate at the cathode. It has been observed for the symmetric assembly that Cu particles were oxidized on the anode surface under an applied potential and the resulting copper ions migrated to the cathode surface through the Nafion membrane, which deposited as copper oxide on the cathode surface. The formation of this copper oxide covering layer on the Pt–Cu cathode surface is attributed as the reason for the deactivation of the cathode that governed the reduced nitrate reduction along with increasing nitrite selectivity. These problems were addressed and resolved with the asymmetric design of the electrocatalytic reactor, where enhanced hydrogen evolution activates the surface by eroding the CuO over layer as well as speeding up the slow rate determining hydrogenation reactions.

Keywords: membrane, nitrate, electrocatalysis, voltammetry, electrolysis

Procedia PDF Downloads 249
530 Dried Venison Quality Parameters Changes during Storage

Authors: Laima Silina, Ilze Gramatina, Liga Skudra, Tatjana Rakcejeva

Abstract:

The aim of the current research was to determine quality parameters changes of dried venison during storage. Protein, fat and moisture content dynamics as well microbiological quality was analyzed. For the experiments the meat (0.02×4.00×7.00 cm) pieces were marinated in “teriyaki sauce” marinade (composition: teriyaki sauce, sweet and sour sauce, taco sauce, soy sauce, American BBQ sauce hickory, sesame oil, garlic, garlic salt, tabasco red pepper sauce) at 4±2°C temperature for 48±1h. Sodium monophosphate (E339) was also added in part of marinade to improve the meat textural properties. After marinating, meat samples were dried in microwave-vacuum drier MUSSON–1, packaged in vacuum pouches made from polymer film (PA/PE) with barrier properties and storage for 4 months at 18±1°C temperature in dark place. Dried venison samples were analyzed after 0, 35, 91 and 112 days of storage. During the storage total plate counts of dried venison samples significantly (p<0.05) increased. No significant differences in the content of protein, fat and moisture were detected when analyzing dried meat samples during storage and comparing them with the chemical parameters of just dried meat.

Keywords: drying, microwave-vacuum drier, quality, venison

Procedia PDF Downloads 297
529 The Impact of Information and Communication Technologies on Teaching Performance at an Iranian University

Authors: Yusef Hedjazi, Saeedeh Nazari Nooghabi

Abstract:

New information and communication technologies (ICT) as one of the main needs of Faculty members in the process of teaching and learning has used in Irans higher education system since 2000.The main purpose of this study is to investigate the role of information and communication technologies (ICT) in teaching performance of Agricultural and Natural Resources Faculties at University of Tehran. The statistical population of the study consisted of all 250 faculties in Agriculture and Natural Resources Colleges and a questionnaire was used to collect data. The reliability of the questionnaire was confirmed by computing of Cronbachs Alpha coefficient at greater than .72. The study showed a significant relationship between agricultural Faculty members teaching performance and competency in using ICT. The results of the regression analysis also explained 51.7% of the variance, teaching performance. The six independent variables that accounted for the explained variance were experience in using educational websites or software, use of educational multimedia (e.g. film and CD, etc), making a presentation using PowerPoint, familiarity with online education websites, using News group to discuss on educational subjects with colleagues and students, and using Electronic communication (messengers) to solve studentsproblems.

Keywords: information and communication technologies, agricultural and natural resources, faculties, teaching performance

Procedia PDF Downloads 310
528 Transnationalization Strategies of Danish Cinema: Susanne Bier, Lone Scherfig

Authors: Ebru Thwaites Diken

Abstract:

This article analyzes the works of certain directors in Danish cinema, namely Susanne Bier and Lone Sherfig, in the context of transnationalisation of Danish cinema. It looks at how the films' narratives negotiate and reconstruct the local / national / regional and the global. Scholars such as Nestingen & Elkington (2005), Hjort (2010), Higbee and Lim (2010), Bondebjerg and Redvall (2011) address transnationalism of Danish cinema in terms of production and distribution processes and how film making trascends national boundaries. This paper employs a particular understanding of transnationalism - in terms of how ideas and characters travel - to analyze how the storytelling and style has evolved to connect the national, the regional and the global on the basis of the works of these two directors. Strategies such as Hollywoodization - i.e. focus on stardom and classical narration, adhering to conventional European genre formulas, producing Danish films in English language have been identifiable strategies in Danish cinema in the period after the 2000s. Susanne Bier and Lone Scherfig are significant for employing some of these strategies simultaneously. For this reason, this article will look at how these two directors have employed these strategies and negotiated the cultural boundaries and exchanges.

Keywords: danish cinema, transnational cinema, susanne bier, lone scherfig, national cinema

Procedia PDF Downloads 54
527 Depositional Facies, High Resolution Sequence Stratigraphy, Reservoir Characterization of Early Oligocene Carbonates (Mukta Formation) Of North & Northwest of Heera, Mumbai Offshore

Authors: Almas Rajguru, Archana Kamath, Rachana Singh

Abstract:

The study aims to determine the depositional facies, high-resolution sequence stratigraphy, and diagenetic processes of Early Oligocene carbonates in N & N-W of Heera, Mumbai Offshore. Foraminiferal assemblage and microfacies from cores of Well A, B, C, D and E are indicative of facies association related to four depositional environments, i.e., restricted inner lagoons-tidal flats, shallow open lagoons, high energy carbonate bars-shoal complex and deeper mid-ramps of a westerly dipping homoclinal carbonate ramp. Two high-frequency (4th Order) depositional sequences bounded by sequence boundary, DS1 and DS2, displaying hierarchical stacking patterns, are identified and correlated across wells. Vadose zone diagenesis effect during short diastem/ subaerial exposure has rendered good porosity due to dissolution in HST carbonates and occasionally affected underlying TST sediments (Well D, C and E). On mapping and correlating the sequences, the presence of thin carbonate bars that can be potential reservoirs are envisaged along NW-SE direction, towards north and south of Wells E, D and C. A more pronounced development of these bars in the same orientation can be anticipated towards the west of the study area.

Keywords: sequence stratigraphy, depositional facies, diagenesis petrography, early Oligocene, Mumbai offshore

Procedia PDF Downloads 59
526 Study of the Adhesive Bond Effect on Electro-Mechanical Behaviour of Coupled Piezo Structural System

Authors: Rahul S. Raj

Abstract:

Electro-mechanical impedance technique is a recently developed non-destructive method for structural health monitoring. This system comprises of piezo electric patch, bonded to the structure using an adhesive/epoxy and electrically excited to determine the health of the component. The subjected electric field actuates the PZT patch harmonically and imparts a force on the host structure. The structural response thus produced by the host component is in the form of peaks and valleys which further shows the admittance signatures of the structure for the given excitation frequency. Adhesives have the capability to change the structural signatures, in EMI technique, by transforming conductance and susceptance signatures. The static approximation provide a justifiable result where adhesive bond lines are thin and stiff. The epoxy adhesive bonds limits design flexibility due to poor bond strengths, hence to enhance the performance of the joints, a new technique is developed for joining PZT, i.e. the alloy bonding technique. It is a metallic joining compound which contains many active elements including Titanium, that reacts with the tenacious surface films of the ceramic and composites to create excellent bonds. This alloy-based bonding technique will be used for better strain interaction and rigorous stress transfer between PZT patch and the host structure.

Keywords: EMI technique, conductance, susceptance, admittance, alloy bonding

Procedia PDF Downloads 106
525 A Comparative Study on Electrical Characteristics of Au/n-SiC structure, with and Without Zn-Doped PVA Interfacial Layer at Room Temperature

Authors: M. H. Aldahrob, A. Kokce, S. Altindal, H. E. Lapa

Abstract:

In order to obtain the detailed information about the effect of (Zn-doped PVA) interfacial layer, surface states (Nss) and series resistance (Rs) on electrical characteristics, both Au/n- type 4H-SiC (MS) with and without (Zn doped PVA) interfacial layer were fabricated to compare. The main electrical parameters of them were investigated using forward and reverse bias current-voltage (I-V), capacitance-voltage (C-V) and conductance –voltage (G/W –V) measurements were performed at room temperature. Experimental results show that the value of ideality factor (n), zero –bias barrier height (ΦBo), Rs, rectifier rate (RR=IF/IR) and the density of Nss are strong functions interfacial layer and applied bias voltage. The energy distribution profile of Nss was obtained from forward bias I-V data by taking into account voltage dependent effective BH (ΦBo) and ideality factor (n(V)). Voltage dependent profile of Rs was also obtained both by using Ohm’s law and Nicollian and Brew methods. The other main diode parameters such as the concentration of doping donor atom (ND), Fermi energy level (EF).BH (ΦBo), depletion layer with (WD) were obtained by using the intercept and slope of the reverse bias C-2 vs V plots. It was found that (Zn-doped PVA) interfacial layer lead to a quite decrease in the values Nss, Rs and leakage current and increase in shunt resistance (Rsh) and RR. Therefore, we can say that the use of thin (Zn-doped PVA) interfacial layer can quite improved the performance of MS structure.

Keywords: interfacial polymer layer, thickness dependence, electric and dielectric properties, series resistance, interface state

Procedia PDF Downloads 236
524 Integrated Electric Resistivity Tomography and Magnetic Techniques in a Mineralization Zone, Erkowit, Red Sea State, Sudan

Authors: Khalid M. Kheiralla, Georgios Boutsis, Mohammed Y. Abdelgalil, Mohammed A. Ali, Nuha E. Mohamed

Abstract:

The present study focus on integrated geoelectrical surveys carried out in the mineralization zone in Erkowit region, Eastern Sudan to determine the extensions of the potential ore deposits on the topographically high hilly area and under the cover of alluvium along the nearby wadi and to locate other occurrences if any. The magnetic method (MAG) and the electrical resistivity tomography (ERT) were employed for the survey. Eleven traverses were aligned approximately at right angles to the general strike of the rock formations. The disseminated sulfides are located on the alteration shear zone which is composed of granitic and dioritic highly ferruginated rock occupying the southwestern and central parts of the area, this was confirmed using thin and polished sections mineralogical analysis. The magnetic data indicates low magnetic values for wadi sedimentary deposits in its southern part of the area, and high anomalies which are suspected as gossans due to magnetite formed during wall rock alteration consequent to mineralization. The significant ERT images define low resistivity zone as traced as sheared zones which may associated with the main loci of ore deposition. By itself, no geophysical anomaly can simply be correlated with lithology, instead, magnetic and ERT anomalies raised due to variations in some specific physical properties of rocks which were extremely useful in mineral exploration.

Keywords: ERT, magnetic, mineralization, Red Sea, Sudan

Procedia PDF Downloads 409
523 Effect of Using Different Packaging Materials on Quality of Minimally Process (Fresh-Cut) Banana (Musa acuminata balbisiana) Cultivar 'Nipah'

Authors: Nur Allisha Othman, Rosnah Shamsudin, Zaulia Othman, Siti Hajar Othman

Abstract:

Mitigating short storage life of fruit like banana uses minimally process or known as fresh cut can contribute to the growing demand especially in South East Asian countries. The effect of different types of packaging material on fresh-cut Nipah (Musa acuminata balbisiana) were studied. Fresh cut banana cultivar (cv) Nipah are packed in polypropylene plastic (PP), low density polypropylene plastic (LDPE), polymer plastic film (shrink wrap) and polypropylene container as control for 12 days at low temperature (4ᵒC). Quality of physical and chemical evaluation such as colour, texture, pH, TA, TSS, and vitamin C were examined every 2 days interval for 12 days at 4ᵒC. Result shows that the PP is the most suitable packaging for banana cv Nipah because it can reduce respiration and physicochemical quality changes of banana cv Nipah. Different types of packaging significantly affected quality of fresh-cut banana cv Nipah. PP bag was the most suitable packaging to maintain quality and prolong storage life of fresh-cut banana cv Nipah for 12 days at 4ᵒC.

Keywords: physicochemical, PP, LDPE, shrink wrap, browning, respiration

Procedia PDF Downloads 206
522 Effect of Laminating Sequence of MWCNTs and Fe₂O₃ Filled Nanocomposites on Emi Shielding Effectiveness

Authors: Javeria Ahmad, Ayesha Maryam, Zahid Rizwan, Nadeem Nasir, Yasir Nawab, Hafiz Shehbaz Ahmad

Abstract:

Mitigation of electromagnetic interference (EMI) through thin, lightweight, and cost-effective materials is critical for electronic appliances as well as human health. The present research work discusses the design of composites that are suitable to minimize EMI through various stacking sequences. The carbon fibers reinforced composite structures impregnated with dielectric (MWCNTs) and magnetic nanofillers (Fe₂O₃) were developed to investigate their microwave absorption properties. The composite structure comprising a single type of nanofillers, each of MWCNTs & Fe₂O₃, was developed, and then their layers were stacked over each other with various stacking sequences to investigate the best stacking sequence, which presents good microwave absorption characteristics. A vector network analyzer (VNA) was used to analyze the microwave absorption properties of these developed composite structures. The composite structures impregnated with the layers of a dielectric nanofiller and sandwiched between the layers of a magnetic nanofiller show the highest EMI shielding value of 59 dB and a dielectric conductivity of 35 S/cm in the frequency range of 0.1 to 13.6 GHz. The results also demonstrate that the microwave absorption properties of the developed composite structures were dominant over reflection properties. The absence of an external peak in X-ray diffraction (XRD), marked the purity of the added nanofillers.

Keywords: nanocomposites, microwave absorption, EMI shielding, skin depth, reflection loss

Procedia PDF Downloads 35
521 Double Beta Decay Experiments in Novi Sad

Authors: Nataša Todorović, Jovana Nikolov

Abstract:

Despite the great interest in β⁻β⁻ decay, β⁺β⁺ decays are rarely investigated due to the low probability of detecting these processes with available low-level equipment. If β⁺β⁺, β⁺EC, or ECEC decay occurs in a thin sample of a material, the positrons will be stopped and annihilated inside the material, leading to the emission of two or four coincidence gamma photons energy of 511 keV. The paper presents the results of measurements of double beta decay of ⁶⁴Zn, ⁵⁰Cr, and ⁵⁴Fe isotopes. In the first experiment, 511-keV gamma rays originating from the annihilation of positrons in natural zinc were measured by a coincidence technique to obtain a non-zero value for the (0ν+2ν) half-life. In the second experiment, the result of measuring double beta decay of ⁵⁰Cr is presented, which suggests a result other than zero at 95% CL and gives the lowest limit for the half-life of this process. In the third experiment, neutrino-less ECEC decay of ⁵⁴Fe was examined. Under the decay theory, gamma rays are emitted whose energy does not coincide with the energies of gamma rays emitted by nuclei from known discrete excited states. Iron shield of an internal volume of 1 m³ and thickness of 25 cm served as a source for measuring the (0ν+2ν) process in ⁵⁴Fe, whose yield in natural iron is 5.4%. We obtain the lower limit for the half-life for ⁵⁴Fe: T(0ν, K, K)>4.4x10²⁰ yr, T(0ν, K, L)>4.1x10²⁰ yr, and T(0ν, L, L)>5.0x10²⁰ yr. For ⁵⁰Cr limit for the half-life is T(0ν+2ν)>1.3(6)x10¹⁸ yr, and for ⁶⁴Zn T(0ν+2ν, ECβ+)=1.1(0.9)x10⁹ years.

Keywords: neutrinoless double beta decay, half-life, ⁶⁴Zn, ⁵⁰Cr, and, ⁵⁴Fe

Procedia PDF Downloads 92
520 Superior Wear Performance of CoCrNi Matrix Composite Reinforced with Quasi-Continuously Networked Graphene Nanosheets and In-Situ Carbide

Authors: Wenting Ye

Abstract:

The biological materials evolved in nature generally exhibit interpenetrating network structures, which may offer useful inspiration for the architectural design of wear-resistant composites. Here, a strategy for designing self-lubricating medium entropy alloy (MEA) composites with high strength and excellent anti-wear performance was proposed through quasi-continuously networked in-situ carbides and graphene nanosheets. The discontinuous coating of graphene on the MEA powder surface inhibits continuous metallurgy bonding of the MEA powders during sintering, generating the typical quasi-continuously networked architecture. A good combination of mechanical properties with high fracture strength over 2 GPa and large compressive plasticity over 30% benefits from metallurgy bonding that prevents crack initiation and extension. The wear rate of an order of 10-6 m3N-1m-1 ascribing to an amorphous-crystalline nanocomposite surface, tribo-film induced by graphene, as well as the gradient worn subsurface during friction was achieved by the MEA composite, which is an order of magnitude lower than the unreinforced MEA matrix.

Keywords: in-situ carbide, tribological behavior, medium entropy alloy matrix composite, graphene

Procedia PDF Downloads 11
519 Effect of Tensile Strain on Microstructure of Irradiated Core Internal Material

Authors: Hygreeva Kiran Namburi, Anna Hojna, Edita Lecianova, Fencl Zdenek

Abstract:

Irradiation Assisted Stress Corrosion Cracking [IASCC] is one of the most significant environmental degradation in the internal components made from Austenitic stainless steel. This mechanism is still not fully understood and there are no suitable criteria for prediction of the damage during operation. In this work, core basket material 08Ch18N10T austenitic stainless steel acquired from decommissioned NPP Nord / Greifswald Unit 1, VVER 440-230 type, operated for 15 years and irradiated at 5.2 dpa is studied. This material was tensile tested at two different test temperatures and strain rates in air and at the elevated temperature under the water environment. SEM observations of the fracture surface documented ductile fracture of the samples tested in air, but areas of IASCC tested in water. This paper emphasizes on the microscopic examination results from the mechanically tested samples to determine the underlying IASCC physical damage process. TEM observations of thin foils made from the gauge sections that are closer to the fractured surface of the specimen aimed to find variances in interaction of dislocations and grain boundaries owing to different test conditions.

Keywords: irradiation assisted stress corrosion cracking, core basket material, SEM observations of the fracture surface, microscopic examination results

Procedia PDF Downloads 338