Search results for: Pargol Ghavam Mostafavi
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16

Search results for: Pargol Ghavam Mostafavi

16 Cytotoxic Effect of Crude Extract of Sea Pen Virgularia gustaviana on HeLa and MDA-MB-231 Cancer Cell Lines

Authors: Sharareh Sharifi, Pargol Ghavam Mostafavi, Ali Mashinchian Moradi, Mohammad Hadi Givianrad, Hassan Niknejad

Abstract:

Marine organisms such as soft coral, sponge, ascidians, and tunicate containing rich source of natural compound have been studied in last decades because of their special chemical compounds with anticancer properties. The aim of this study was to investigate anti-cancer property of ethyl acetate extracted from marine sea pen Virgularia gustaviana found from Persian Gulf coastal (Bandar Abbas). The extraction processes were carried out with ethyl acetate for five days. Thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC) were used for qualitative identification of crude extract. The viability of HeLa and MDA-Mb-231 cancer cells was investigated using MTT assay at the concentration of 25, 50, and a 100 µl/ml of ethyl acetate is extracted. The crude extract of Virgularia gustaviana demonstrated ten fractions with different Retention factor (Rf) by TLC and Retention time (Rt) evaluated by HPLC. The crude extract dose-dependently decreased cancer cell viability compared to control group. According to the results, the ethyl acetate extracted from Virgularia gustaviana inhibits the growth of cancer cells, an effect which needs to be further investigated in the future studies.

Keywords: anti-cancer, Hela cancer cell, MDA-Md-231 cancer cell, Virgularia gustavina

Procedia PDF Downloads 402
15 Review in Role of Geotextile on Soil Improvement

Authors: Sandra Ghavam Shirazi, Mohsen Ramezan Shirazi, Mohammadreza Golhashem

Abstract:

Nowadays by development of construction in modern world new techniques are introduced to civil engineering. As for geotechnical problems and demands of soil improvement, engineers are searching for decisive methods to ensure the safety of projects. As a popular material Geotextiles are used in almost every aspect of civil engineering. There is a vast variety of geotextiles and each kind has their own unique characteristics therefor to select the proper geotextile for a specific project their properties must be carefully examined. This review gathers and evaluates different parameters of geotextiles that are used in geotechnical field.

Keywords: geotextile, soft soils, fabric, stabilization, fiber

Procedia PDF Downloads 372
14 A Review on Geomembrane Characteristics and Application in Geotechnical Engineering

Authors: Sandra Ghavam Shirazi, Komeil Valipourian, Mohammad Reza Golhashem

Abstract:

This paper represents the basic idea and mechanisms associated with the durability of geomembranes and discusses the factors influencing the service life and temperature of geomembrane liners. Geomembrane durability is stated as field performance and laboratory test outcomes under various conditions. Due to the high demand of geomembranes as landfill barriers and their crucial role in sensitive projects, sufficient service life of geomembranes is very important, therefore in this paper, the durability, the effect of temperature on geomembrane and the role of this type of reinforcement in different types of soil will be discussed. Also, the role of geomembrane in the earthquake will be considered in the last part of the paper.

Keywords: geomembrane, durability temperature soil mechanic, soil

Procedia PDF Downloads 273
13 Synthesis and in-Vitro Biological Activity of Novel Gallic Acid Derivatives

Authors: Hossein Mostafavi

Abstract:

A diversity of biological activities and pharmaceutical uses have been attributed to gallic acid derivatives such as antibacterial, anticancer, anti inflammatory. A series of gallic acid derivatives were synthesized, and their structure was confirmed by FT-IR, HNMR, CNMR, elemental analysis. In vitro biological activity of compounds was determined against Proteus vulgaris ATCC 7829, Escherichia coli ATCC 25922, as (Gram-negative) bacteria and bacillus cereus ATCC 11778, Staphylococus aureus ATCC 6538 as (Gram-positive) bacteria. Antibacterial susceptibility tests were done by use of the paper disc diffusion method on Mueller Hinton agar (Merck). Chloramiphenicol, Penicilline, Streptomycin and Tetracycline were standard reference antibiotics. The zone of inhibition against bacteria was measured after 24 hours at 37 °C. Compounds 3, 4, 5 were the main antibacterial compounds against Gram-negative bacteria but not Gram-positive.

Keywords: gallic acid derivatives, antibacterial, antibiotics, inhibition

Procedia PDF Downloads 105
12 Management of Nutritional Strategies in Controlling of Autism in Children

Authors: Maryam Ghavam Sadri, Kimia Moiniafshari

Abstract:

Objectives: The prevalence of Autism in the world has taken on a growing trend. Autism is a neuro-developmental disorder that is identified at the age of three. Studies have been shown that nutritional management can control nutritional deficiencies in Autism. This review study aimed to assess the role of nutritional management strategies for Autism in children has been made. Methods: This review study was accomplished by using the keywords related to the topic, 68 articles were found (2000-2015) and finally 15 articles with criteria such as including dietary pattern, nutritional deficiencies and Autism controlling were selected. Results: The studies showed that intake of vitamins D, E, and calcium because of restricted diet (casein and gluten free) in autistic children is less than typically developing children (TYP) (p value ≤ 0.001) and as a result of restrictions on the consumption of fresh fruits and vegetables, vitamin C and magnesium intake is less than TYP children (p value ≤ 0.001). Autistic children also get omega-3 less than TYP children. Studies have shown that food sources rich in omega-3 can improve behavioral indicators, especially in reducing hyperactivity (95% CI = -2.2 - 5.2). Zinc deficiency in these children leads to a high serum level of mercury, lead and cadmium. As a result of the repetitive dietary pattern, Sodium intake in autistic children is more than TYP children (p value < 0.001).Because of low food variety in autistic children, healthy eating index (HEI) is less than TYP children (p value = 0.008).Food selectivity in Autism due to repetitive and restricted dietary pattern and nutritional deficiencies. Conclusion: Because of restricted (casein and gluten free) and repetitive dietary pattern, the intake of some micronutrients are denied in autistic children. The nutritional strategy programs appear to help controlling of Autism.

Keywords: autism, food selectivity, nutrient intake, nutritional strategies

Procedia PDF Downloads 393
11 Multiple Strategies in Prevention of Metabolic Syndrome Result from Vitamin D Deficiency in Children

Authors: Maryam Ghavam Sadri, Maryam Shahrooz

Abstract:

Background: Nowadays the prevalence of metabolic syndrome (Mets) has taken on a growing trend. Studies have shown the relationship between vitamin D deficiency (VDD) status and Mets in children. Also studies have recorded that exerting strategies for vitamin D status improvement can help prevent Mets in children. This study investigated multiple strategies of prevention of Mets resulting from VDD in children. Methods: This review study has been done by using keywords related to the topic and 54 articles were found (2000-2015) that 25 were selected according to the indicators of Mets, supplementation and fortification of foods with vitamin D and attention to children environment and life style. Results: Studies have suggested the correlation between serum levels of vitamin D with waist circumference (p < 0.0001), systolic blood pressure (p=0.01), HOMA-IR (p=0.001) and HDL cholesterol (p < 0.0001). An inverse correlation between serum 25 (OH) D and HOMA-IR (p = 0.006) and insulin (P = 0.002) has been proved in overweight group. Higher HOMASDS and triglycerides found in vitamin D deficient obese children compared to control group without VDD (p=0.04). After supplementation with vitamin D, serum TG concentration decreases significantly (p=0.04), and improves insulin resistance (p=0.02). The prevalence of VDD is associated with time of watching TV (P < 0.01), hours of physical activity per week (P = 0.01), skipping breakfast (P < 0.001) soda intake (P < 0.001), and milk intake per day (P < 0.01). Conclusion: According to the beneficial role of vitamin D in prevention of Mets and proven relationship between serum levels of vitamin D and Mets indicators, we can prevent childhood Mets through the application of appropriate strategies such as supplementation and food fortification with vitamin D and positive changes in children life style with especial attention to physical activity in exposure of sunlight and their environment condition.

Keywords: children, metabolic syndrome, prevention strategies, vitamin D

Procedia PDF Downloads 535
10 Management of Nutritional Strategies in Prevention of Autism Before and During Pregnancy

Authors: Maryam Ghavam Sadri, Kimia Moiniafshari

Abstract:

Objectives: Autism is a neuro-developmental disorder that has negative effects on verbal, mental and behavioral development. Studies have shown the role of a maternal dietary pattern before and during pregnancy. The relation of exerting of nutritional management programs in prevention of Autism has been approved. This review article has been made to investigate the role of nutritional management strategies before and during pregnancy in the prevention of Autism. Methods: This review study was accomplished by using the keywords related to the topic, 67 articles were found (2000-2015) and finally 20 article with criteria such as including maternal lifestyle, nutritional deficiencies and Autism prevention were selected. Results: Maternal dietary pattern and health before and during pregnancy have important roles in the incidence of Autism. Studies have suggested that high dietary fat intake and obesity can increase the risk of Autism in offspring. Maternal metabolic condition specially gestational diabetes (GDM) (p-value < 0.04) and folate deficiency (p-value = 0.04) is associated with risk of Autism. Studies have shown that folate intake in mothers with autistic children is less than mothers who have typically developing children (TYP) (p-value<0.01). As folate is an essential micronutrient for fetus mental development, consumption of average 600 mcg/day especially in P1 phase of pregnancy results in significant reduction in incidence of Autism (OR:1.53, 95%CI=0.42-0.92, p-value = 0.02). furthermore, essential fatty acid deficiency especially omega-3 fatty acid increases the rate of Autism and consumption of supplements and food sources of omega-3 can decrease the risk of Autism up to 34% (RR=1.53, 95%CI=1-2.32). Conclusion: regards to nutritional deficiency and maternal metabolic condition before and during pregnancy in prevalence of Autism, carrying out the appropriate nutritional strategies such as well-timed folate supplementation before pregnancy and healthy lifestyle adherence for prevention of metabolic syndrome (GDM) seems to help Autism prevention.

Keywords: autism, autism prevention, dietary inadequacy, maternal lifestyle

Procedia PDF Downloads 321
9 Optical Analysis of the Plasmon Resonances of Gold Nano-Ring

Authors: Mehrnaz Mostafavi

Abstract:

The current research aims to explore a method for creating nano-ring structures through chemical reduction. By employing a direct reduction process at a controlled, slow pace, and concurrently introducing specific reduction agents, the goal is to fabricate these unique nano-ring formations. The deliberate slow reduction of nanoparticles within this process helps prevent spatial hindrances caused by the reduction agents. The timing of the reduction of metal atoms, facilitated by these agents, emerges as a crucial factor influencing the creation of nano-ring structures. In investigation involves a chemical approach utilizing bovine serum albumin and human serum albumin as organic reducing agents to produce gold nano-rings. The controlled reduction of metal atoms at a slow pace and under specific pH conditions plays a pivotal role in the successful fabrication of these nanostructures. Optical spectroscopic analyses revealed distinctive plasmonic behavior in both visible and infrared spectra, owing to the collective movement of electrons along the inner and outer walls of the gold nano-rings. Importantly, these ring-shaped nanoparticles exhibit customizable plasmon resonances in the near-infrared spectrum, a characteristic absent in solid particles of similar sizes. This unique attribute makes the generated samples valuable for applications in Nanomedicine and Nanobiotechnology, leveraging the distinct optical properties of these nanostructures.

Keywords: nano-ring structure, nano-particles, reductant agents, plasmon resonace

Procedia PDF Downloads 40
8 In vitro Antifungal Activity of Methanolic Extracts of Eight Various Cultivar of Persian Punica granatum L. against Candida Species

Authors: Shahindokht Bassiri-Jahromi, Mohammad Reza Pourshafie, Farzad Katiraee, Mannan Hajimahmoodi, Ehsan Mostafavi, Malihe Talebi

Abstract:

Objective: Resistance of Candida species to antifungal agents has potentially serious implications for management of infections. Candida species are now fourth common organisms isolated from hospitalized patients. It is important to increase effective therapy. In the past decade, numerous reports of treatment failures were reported. Prevention and control of these infections will require new antimicrobial agents. Plant-derived antifungal have always been a source of novel therapeutics. The aim of this study was to investigate the antifungal effect of methanolic extract of pomegranate peel and pulp against Candida species. Material and Methods: Eight cultivars of Punica granatum L. were collected from Saveh Agricultural Investigation Center in Iran. Both pomegranate pulp and peel were dried and powdered separately. The dried powders were extracted by using a soxhlet extractor. The antifungal effect of methanolic extract of pomegranate peel and pulp were determined in vitro by minimum inhibitory concentration (MIC) against five standard species of (ATCC 10231), C. parapsilosis (ATCC 22019), C. tropicalis (ATCC 750), C. glabrata (PTCC 5297), and C. kroseii (PTCC 5295). Results: Maximum inhibitions of antifungal effect were attributed to peel extract pomegranate cultivar and Candida species. The most potential antifungal inhibition among 8 different cultivars observed by sour malas, sour white peel, and sour summer extracts respectively, against five Candida strains. The antifungal activity of pulp extracts against Candida species was approximately negative. Conclusion: The use of Punica granatum peel extract has been shown to possess antifungal activities. The phytochemistry and pharmacological actions of Punica granatum peel components suggest a wide range of clinical applications for the treatment and prevention of candidiasis.

Keywords: antifungal activity, Candida species, Punica granatum L., pharmacognosy

Procedia PDF Downloads 447
7 Application of Gold Nanorods in Cancer Photothermaltherapy

Authors: Mehrnaz Mostafavi

Abstract:

Lung cancer is one of the most harmful forms of cancer. The long-term survival rate of lung cancer patients treated by conventional modalities such as surgical resection, radiation, and chemotherapy remains far from satisfactory. Systemic drug delivery is rarely successful because only a limited amount of the chemotherapeutic drug targets lung tumor sites, even when administered at a high dose. Targeted delivery of drug molecules to organs or special sites is one of the most challenging research areas in pharmaceutical sciences. By developing colloidal delivery systems such as liposomes, micelles and nanoparticles a new frontier was opened for improving drug delivery. Nanoparticles with their special characteristics such as small particle size, large surface area and the capability of changing their surface properties have numerous advantages compared with other delivery systems. Targeted nanoparticle delivery to the lungs is an emerging area of interest.Multimodal or combination therapy represents a promising new method to fight disease. Therefore, a combination of different therapeutic strategies may be the best alternative to improve treatment outcomes for lung cancer. Photothermal therapy was proposed as a novel approach to treatment. In this work, photothermal therapy with gold nanoparticles and near infrared laser (NIR) irradiation was investigated.Four types of small (<100nm), NIR absorbing gold nanoparticles (nanospheres, nanorods) were synthesized using wet chemical methods and characterized by transmission electron microscopy, dynamic light scattering and UV-vis spectroscopy. Their synthesis and properties were evaluated, to determine their feasibility as a photothermal agent for clinical applications. In vitro cellular uptake studies of the nanoparticles into lung cancer cell lines was measured using light scattering microscopy.Small gold nanorods had good photothermal properties and the greatest cellular uptake, and were used in photothermal studies. Under 4W laser irradiation, an increase in temperature of 10°C and decrease in cell viability of up to 80% were obtained.

Keywords: photothermal, therapy, cancer, gold nanorods

Procedia PDF Downloads 217
6 Long-Term Resilience Performance Assessment of Dual and Singular Water Distribution Infrastructures Using a Complex Systems Approach

Authors: Kambiz Rasoulkhani, Jeanne Cole, Sybil Sharvelle, Ali Mostafavi

Abstract:

Dual water distribution systems have been proposed as solutions to enhance the sustainability and resilience of urban water systems by improving performance and decreasing energy consumption. The objective of this study was to evaluate the long-term resilience and robustness of dual water distribution systems versus singular water distribution systems under various stressors such as demand fluctuation, aging infrastructure, and funding constraints. To this end, the long-term dynamics of these infrastructure systems was captured using a simulation model that integrates institutional agency decision-making processes with physical infrastructure degradation to evaluate the long-term transformation of water infrastructure. A set of model parameters that varies for dual and singular distribution infrastructure based on the system attributes, such as pipes length and material, energy intensity, water demand, water price, average pressure and flow rate, as well as operational expenditures, were considered and input in the simulation model. Accordingly, the model was used to simulate various scenarios of demand changes, funding levels, water price growth, and renewal strategies. The long-term resilience and robustness of each distribution infrastructure were evaluated based on various performance measures including network average condition, break frequency, network leakage, and energy use. An ecologically-based resilience approach was used to examine regime shifts and tipping points in the long-term performance of the systems under different stressors. Also, Classification and Regression Tree analysis was adopted to assess the robustness of each system under various scenarios. Using data from the City of Fort Collins, the long-term resilience and robustness of the dual and singular water distribution systems were evaluated over a 100-year analysis horizon for various scenarios. The results of the analysis enabled: (i) comparison between dual and singular water distribution systems in terms of long-term performance, resilience, and robustness; (ii) identification of renewal strategies and decision factors that enhance the long-term resiliency and robustness of dual and singular water distribution systems under different stressors.

Keywords: complex systems, dual water distribution systems, long-term resilience performance, multi-agent modeling, sustainable and resilient water systems

Procedia PDF Downloads 256
5 Perovskite Nanocrystals and Quantum Dots: Advancements in Light-Harvesting Capabilities for Photovoltaic Technologies

Authors: Mehrnaz Mostafavi

Abstract:

Perovskite nanocrystals and quantum dots have emerged as leaders in the field of photovoltaic technologies, demonstrating exceptional light-harvesting abilities and stability. This study investigates the substantial progress and potential of these nano-sized materials in transforming solar energy conversion. The research delves into the foundational characteristics and production methods of perovskite nanocrystals and quantum dots, elucidating their distinct optical and electronic properties that render them well-suited for photovoltaic applications. Specifically, it examines their outstanding light absorption capabilities, enabling more effective utilization of a wider solar spectrum compared to traditional silicon-based solar cells. Furthermore, this paper explores the improved durability achieved in perovskite nanocrystals and quantum dots, overcoming previous challenges related to degradation and inconsistent performance. Recent advancements in material engineering and techniques for surface passivation have significantly contributed to enhancing the long-term stability of these nanomaterials, making them more commercially feasible for solar cell usage. The study also delves into the advancements in device designs that incorporate perovskite nanocrystals and quantum dots. Innovative strategies, such as tandem solar cells and hybrid structures integrating these nanomaterials with conventional photovoltaic technologies, are discussed. These approaches highlight synergistic effects that boost efficiency and performance. Additionally, this paper addresses ongoing challenges and research endeavors aimed at further improving the efficiency, stability, and scalability of perovskite nanocrystals and quantum dots in photovoltaics. Efforts to mitigate concerns related to material degradation, toxicity, and large-scale production are actively pursued, paving the way for broader commercial application. In conclusion, this paper emphasizes the significant role played by perovskite nanocrystals and quantum dots in advancing photovoltaic technologies. Their exceptional light-harvesting capabilities, combined with increased stability, promise a bright future for next-generation solar cells, ushering in an era of highly efficient and cost-effective solar energy conversion systems.

Keywords: perovskite nanocrystals, quantum dots, photovoltaic technologies, light-harvesting, solar energy conversion, stability, device designs

Procedia PDF Downloads 37
4 Nanoliposomes in Photothermal Therapy: Advancements and Applications

Authors: Mehrnaz Mostafavi

Abstract:

Nanoliposomes, minute lipid-based vesicles at the nano-scale, show promise in the realm of photothermal therapy (PTT). This study presents an extensive overview of nanoliposomes in PTT, exploring their distinct attributes and the significant progress in this therapeutic methodology. The research delves into the fundamental traits of nanoliposomes, emphasizing their adaptability, compatibility with biological systems, and their capacity to encapsulate diverse therapeutic substances. Specifically, it examines the integration of light-absorbing materials, like gold nanoparticles or organic dyes, into nanoliposomal formulations, enabling their efficacy as proficient agents for photothermal treatment Additionally, this paper elucidates the mechanisms involved in nanoliposome-mediated PTT, highlighting their capability to convert light energy into localized heat, facilitating the precise targeting of diseased cells or tissues. This precise regulation of light absorption and heat generation by nanoliposomes presents a non-invasive and precisely focused therapeutic approach, particularly in conditions like cancer. The study explores advancements in nanoliposomal formulations aimed at optimizing PTT outcomes. These advancements include strategies for improved stability, enhanced drug loading, and the targeted delivery of therapeutic agents to specific cells or tissues. Furthermore, the paper discusses multifunctional nanoliposomal systems, integrating imaging components or targeting elements for real-time monitoring and improved accuracy in PTT. Moreover, the review highlights recent preclinical and clinical trials showcasing the effectiveness and safety of nanoliposome-based PTT across various disease models. It also addresses challenges in clinical implementation, such as scalability, regulatory considerations, and long-term safety assessments. In conclusion, this paper underscores the substantial potential of nanoliposomes in advancing PTT as a promising therapeutic approach. Their distinctive characteristics, combined with their precise ability to convert light into heat, offer a tailored and efficient method for treating targeted diseases. The encouraging outcomes from preclinical studies pave the way for further exploration and potential clinical applications of nanoliposome-based PTT.

Keywords: nanoliposomes, photothermal therapy, light absorption, heat conversion, therapeutic agents, targeted delivery, cancer therapy

Procedia PDF Downloads 46
3 Chemical Fabrication of Gold Nanorings: Controlled Reduction and Optical Tuning for Nanomedicine Applications

Authors: Mehrnaz Mostafavi, Jalaledin Ghanavi

Abstract:

This research investigates the production of nanoring structures through a chemical reduction approach, exploring gradual reduction processes assisted by reductant agents, leading to the formation of these specialized nanorings. The study focuses on the controlled reduction of metal atoms within these agents, crucial for shaping these nanoring structures over time. The paper commences by highlighting the wide-ranging applications of metal nanostructures across fields like Nanomedicine, Nanobiotechnology, and advanced spectroscopy methods such as Surface Enhanced Raman Spectroscopy (SERS) and Surface Enhanced Infrared Absorption Spectroscopy (SEIRA). Particularly, gold nanoparticles, especially in the nanoring configuration, have gained significant attention due to their distinctive properties, offering accessible spaces suitable for sensing and spectroscopic applications. The methodology involves utilizing human serum albumin as a reducing agent to create gold nanoparticles through a chemical reduction process. This process involves the transfer of electrons from albumin's carboxylic groups, converting them into carbonyl, while AuCl4− acquires electrons to form gold nanoparticles. Various characterization techniques like Ultraviolet–visible spectroscopy (UV-Vis), Atomic-force microscopy (AFM), and Transmission electron microscopy (TEM) were employed to examine and validate the creation and properties of the gold nanoparticles and nanorings. The findings suggest that precise and gradual reduction processes, in conjunction with optimal pH conditions, play a pivotal role in generating nanoring structures. Experiments manipulating optical properties revealed distinct responses in the visible and infrared spectrums, demonstrating the tunability of these nanorings. Detailed examinations of the morphology confirmed the formation of gold nanorings, elucidating their size, distribution, and structural characteristics. These nanorings, characterized by an empty volume enclosed by uniform walls, exhibit promising potential in the realms of Nanomedicine and Nanobiotechnology. In summary, this study presents a chemical synthesis approach using organic reducing agents to produce gold nanorings. The results underscore the significance of controlled and gradual reduction processes in crafting nanoring structures with unique optical traits, offering considerable value across diverse nanotechnological applications.

Keywords: nanoring structures, chemical reduction approach, gold nanoparticles, spectroscopy methods, nano medicine applications

Procedia PDF Downloads 71
2 Role of Artificial Intelligence in Nano Proteomics

Authors: Mehrnaz Mostafavi

Abstract:

Recent advances in single-molecule protein identification (ID) and quantification techniques are poised to revolutionize proteomics, enabling researchers to delve into single-cell proteomics and identify low-abundance proteins crucial for biomedical and clinical research. This paper introduces a different approach to single-molecule protein ID and quantification using tri-color amino acid tags and a plasmonic nanopore device. A comprehensive simulator incorporating various physical phenomena was designed to predict and model the device's behavior under diverse experimental conditions, providing insights into its feasibility and limitations. The study employs a whole-proteome single-molecule identification algorithm based on convolutional neural networks, achieving high accuracies (>90%), particularly in challenging conditions (95–97%). To address potential challenges in clinical samples, where post-translational modifications affecting labeling efficiency, the paper evaluates protein identification accuracy under partial labeling conditions. Solid-state nanopores, capable of processing tens of individual proteins per second, are explored as a platform for this method. Unlike techniques relying solely on ion-current measurements, this approach enables parallel readout using high-density nanopore arrays and multi-pixel single-photon sensors. Convolutional neural networks contribute to the method's versatility and robustness, simplifying calibration procedures and potentially allowing protein ID based on partial reads. The study also discusses the efficacy of the approach in real experimental conditions, resolving functionally similar proteins. The theoretical analysis, protein labeler program, finite difference time domain calculation of plasmonic fields, and simulation of nanopore-based optical sensing are detailed in the methods section. The study anticipates further exploration of temporal distributions of protein translocation dwell-times and the impact on convolutional neural network identification accuracy. Overall, the research presents a promising avenue for advancing single-molecule protein identification and quantification with broad applications in proteomics research. The contributions made in methodology, accuracy, robustness, and technological exploration collectively position this work at the forefront of transformative developments in the field.

Keywords: nano proteomics, nanopore-based optical sensing, deep learning, artificial intelligence

Procedia PDF Downloads 34
1 Integrating Natural Language Processing (NLP) and Machine Learning in Lung Cancer Diagnosis

Authors: Mehrnaz Mostafavi

Abstract:

The assessment and categorization of incidental lung nodules present a considerable challenge in healthcare, often necessitating resource-intensive multiple computed tomography (CT) scans for growth confirmation. This research addresses this issue by introducing a distinct computational approach leveraging radiomics and deep-learning methods. However, understanding local services is essential before implementing these advancements. With diverse tracking methods in place, there is a need for efficient and accurate identification approaches, especially in the context of managing lung nodules alongside pre-existing cancer scenarios. This study explores the integration of text-based algorithms in medical data curation, indicating their efficacy in conjunction with machine learning and deep-learning models for identifying lung nodules. Combining medical images with text data has demonstrated superior data retrieval compared to using each modality independently. While deep learning and text analysis show potential in detecting previously missed nodules, challenges persist, such as increased false positives. The presented research introduces a Structured-Query-Language (SQL) algorithm designed for identifying pulmonary nodules in a tertiary cancer center, externally validated at another hospital. Leveraging natural language processing (NLP) and machine learning, the algorithm categorizes lung nodule reports based on sentence features, aiming to facilitate research and assess clinical pathways. The hypothesis posits that the algorithm can accurately identify lung nodule CT scans and predict concerning nodule features using machine-learning classifiers. Through a retrospective observational study spanning a decade, CT scan reports were collected, and an algorithm was developed to extract and classify data. Results underscore the complexity of lung nodule cohorts in cancer centers, emphasizing the importance of careful evaluation before assuming a metastatic origin. The SQL and NLP algorithms demonstrated high accuracy in identifying lung nodule sentences, indicating potential for local service evaluation and research dataset creation. Machine-learning models exhibited strong accuracy in predicting concerning changes in lung nodule scan reports. While limitations include variability in disease group attribution, the potential for correlation rather than causality in clinical findings, and the need for further external validation, the algorithm's accuracy and potential to support clinical decision-making and healthcare automation represent a significant stride in lung nodule management and research.

Keywords: lung cancer diagnosis, structured-query-language (SQL), natural language processing (NLP), machine learning, CT scans

Procedia PDF Downloads 35