Search results for: thermal expansion error of grating scale
10612 University Building: Discussion about the Effect of Numerical Modelling Assumptions for Occupant Behavior
Authors: Fabrizio Ascione, Martina Borrelli, Rosa Francesca De Masi, Silvia Ruggiero, Giuseppe Peter Vanoli
Abstract:
The refurbishment of public buildings is one of the key factors of energy efficiency policy of European States. Educational buildings account for the largest share of the oldest edifice with interesting potentialities for demonstrating best practice with regards to high performance and low and zero-carbon design and for becoming exemplar cases within the community. In this context, this paper discusses the critical issue of dealing the energy refurbishment of a university building in heating dominated climate of South Italy. More in detail, the importance of using validated models will be examined exhaustively by proposing an analysis on uncertainties due to modelling assumptions mainly referring to the adoption of stochastic schedules for occupant behavior and equipment or lighting usage. Indeed, today, the great part of commercial tools provides to designers a library of possible schedules with which thermal zones can be described. Very often, the users do not pay close attention to diversify thermal zones and to modify or to adapt predefined profiles, and results of designing are affected positively or negatively without any alarm about it. Data such as occupancy schedules, internal loads and the interaction between people and windows or plant systems, represent some of the largest variables during the energy modelling and to understand calibration results. This is mainly due to the adoption of discrete standardized and conventional schedules with important consequences on the prevision of the energy consumptions. The problem is surely difficult to examine and to solve. In this paper, a sensitivity analysis is presented, to understand what is the order of magnitude of error that is committed by varying the deterministic schedules used for occupation, internal load, and lighting system. This could be a typical uncertainty for a case study as the presented one where there is not a regulation system for the HVAC system thus the occupant cannot interact with it. More in detail, starting from adopted schedules, created according to questioner’ s responses and that has allowed a good calibration of energy simulation model, several different scenarios are tested. Two type of analysis are presented: the reference building is compared with these scenarios in term of percentage difference on the projected total electric energy need and natural gas request. Then the different entries of consumption are analyzed and for more interesting cases also the comparison between calibration indexes. Moreover, for the optimal refurbishment solution, the same simulations are done. The variation on the provision of energy saving and global cost reduction is evidenced. This parametric study wants to underline the effect on performance indexes evaluation of the modelling assumptions during the description of thermal zones.Keywords: energy simulation, modelling calibration, occupant behavior, university building
Procedia PDF Downloads 14110611 The Efficacy of Lithium vs. Valporate on Bipolar Patients and Their Sexual Side Effect: A Meta-Analysis of 4159 Patients
Authors: Yasmeen Jamal Alabdallat, Almutazballlah Bassam Qablan, Obada Ahmad Al Jayyousi, Ihdaa Mahmoud Bani Khalaf, Eman E. Alshial
Abstract:
Background: Bipolar disorder, formerly known as manic depression, is a mental health status that leads to extreme mood swings that include emotional lows (depression) and highs (mania or hypomania). This systematic review and meta-analysis aimed to assess the safety and efficacy of lithium versus valproate among bipolar patients. Methods: A computer literature search of PubMed, Scopus, Web of Science, and Cochrane Central Register of Controlled Trials was conducted from inception until June 2022. Studies comparing lithium versus valproate among bipolar patients were selected for the analysis, and all relevant outcomes were pooled in the meta-analysis using Review Manager Software. Results: 11 Randomized Clinical Trials were included in this meta-analysis with a total of 4159 patients. Our meta showed that lithium was superior to valproate in terms of Young Mania Rating Scale (YMRS) (MD = 0.00 with 95% CI, (-0.55 – 0.55; I2 = 0%), P = 1.00). The results of the Hamilton Depression Rating Scale (HDRS) showed that the overall effect favored the valproate treated group (MD = 1.41 with 95% CI, (-0.15 – 2.67; I2 = 0%), P = 0.03). Concerning the results of the Montgomery-Asberg Depression Rating Scale (MADRS), the results showed that the lithium was superior to valproate (MD = 0.03 with 95% CI, (-0.80 to 0.87; I2 = 40%), P = 0.94). In terms of the sexual side effect, we found that the valproate was superior to lithium (RR 1.19 with 95% CI, (0.74 to 1.91; I2 = 0%), P = 0.47). The lithium-treated group was superior in comparison to valproate treated group in terms of Abnormal Involuntary Movement Scale (AIMS) (MD = -0.03 with 95% CI (-0.38 to 0.32; I2 = 0%), P = 0.87). The lithium was more favorable in terms of Simpson-Agnes scale (MD = -0.40 with 95% CI, (-0.86 to 0.06; I2 = 0%), P = 0.09). The results of the Barnes akathisia scale showed that the overall effect of the valproate was more favorable in comparison to lithium (MD = 0.05 with 95% CI, (-0.12 to 0.22; I2 = 0%), P = 0.57). Conclusion: Our study revealed that on the scales of efficacy Lithium treated group surpassed Valproate treated group in terms of Young Mania Rating Scale (YMRS), Abnormal Involuntary Movement Scale (AIMS) and Simpson-Agnes scale, but valproate surpassed it in Barnes Akathisia scale. Furthermore, on the scales of depression Hamilton Depression Rating Scale (HDRS) showed that the overall effect favored Valproate treated group, but Lithium surpassed valproate in terms of Montgomery-Asberg Depression Rating Scale (MADRS). Valproate surpassed Lithium in terms of sexual side effects.Keywords: bipolar, mania, bipolar-depression, sexual dysfunction, sexual side effects, treatment
Procedia PDF Downloads 15510610 Investigation of Electrical, Thermal and Structural Properties on Polyacrylonitrile Nano-Fiber
Authors: N. Demirsoy, N. Uçar, A. Önen, N. Kızıldağ, Ö. F. Vurur, O. Eren, İ. Karacan
Abstract:
Polymer composite nano-fibers including (1, 3 wt %) silver nano-particles have been produced by electrospinning method. Polyacrylonitrile/N,N-dimethylformamide (PAN/DMF) solution has been prepared and the amount of silver nitrate has been adjusted to PAN weight. Silver nano-particles were obtained from reduction of silver ions into silver nano-particles by chemical reduction by hydrazine hydroxide (N2H5OH). The different amount of silver salt was loaded into polymer matrix to obtain polyacrylonitrile composite nano-fiber containing silver nano-particles. The effect of the amount of silver nano-particles on the properties of composite nano-fiber web was investigated. Electrical conductivity, mechanical properties, thermal properties were examined by Microtest LCR Meter 6370 (0.01 mΩ-100 MΩ), tensile tester, differential scanning calorimeter DSC (Q10) and SEM, respectively. Also, antimicrobial efficiency test (ASTM E2149-10) was done against Staphylococcus aureus bacteria. It has been seen that breaking strength, conductivity, antimicrobial effect, enthalpy during cyclization increase by use of silver nano-particles while the diameter of nano-fiber decreases.Keywords: composite polyacrylonitrile nanofiber, electrical conductivity, electrospinning, mechanical properties, thermal properties, silver nanoparticles
Procedia PDF Downloads 41810609 Temperature Rises Characteristics of Distinct Double-Sided Flat Permanent Magnet Linear Generator for Free Piston Engines for Hybrid Vehicles
Authors: Ismail Rahama Adam Hamid
Abstract:
This paper presents the development of a thermal model for a flat, double-sided linear generator designed for use in free-piston engines. The study conducted in this paper examines the influence of temperature on the performance of the permeant magnet linear generator, an integral and pivotal component within the system. This research places particular emphasis on the Neodymium Iron Boron (NdFeB) permanent magnet, which serves as a source of magnetic field for the linear generator. In this study, an internal combustion engine that tends to produce heat is connected to a generator. Considering the temperatures rise from both the combustion process and the thermal contributions of current-carrying conductors and frictional forces. Utilizing Computational Fluid Dynamics (CFD) method, a thermal model of the (NdFeB) magnet within the linear generator is constructed and analyzed. Furthermore, the temperature field is examined to ensure that the linear generator operates under stable conditions without the risk of demagnetization.Keywords: free piston engine, permanent magnet, linear generator, demagnetization, simulation
Procedia PDF Downloads 5610608 Longitudinal Vibration of a Micro-Beam in a Micro-Scale Fluid Media
Authors: M. Ghanbari, S. Hossainpour, G. Rezazadeh
Abstract:
In this paper, longitudinal vibration of a micro-beam in micro-scale fluid media has been investigated. The proposed mathematical model for this study is made up of a micro-beam and a micro-plate at its free end. An AC voltage is applied to the pair of piezoelectric layers on the upper and lower surfaces of the micro-beam in order to actuate it longitudinally. The whole structure is bounded between two fixed plates on its upper and lower surfaces. The micro-gap between the structure and the fixed plates is filled with fluid. Fluids behave differently in micro-scale than macro, so the fluid field in the gap has been modeled based on micro-polar theory. The coupled governing equations of motion of the micro-beam and the micro-scale fluid field have been derived. Due to having non-homogenous boundary conditions, derived equations have been transformed to an enhanced form with homogenous boundary conditions. Using Galerkin-based reduced order model, the enhanced equations have been discretized over the beam and fluid domains and solve simultaneously in order to obtain force response of the micro-beam. Effects of micro-polar parameters of the fluid as characteristic length scale, coupling parameter and surface parameter on the response of the micro-beam have been studied.Keywords: micro-polar theory, Galerkin method, MEMS, micro-fluid
Procedia PDF Downloads 18410607 Surface Roughness of Al-Si/10% AlN MMC Material in Milling Operation Using the Taguchi Method
Authors: M. S. Said, J. A. Ghani, Izzati Osman, Z. A. Latiff, S. A .F. Syed Mohd
Abstract:
Metal matrix composites have demand for light-weight structural and functional materials. MMCs have been shown to offer improvements in strength, rigidity, temperature stability, wear resistance, reliability and control of physical properties such as density and coefficient of thermal expansion, thereby providing improved engineering performance in comparison to the un-reinforced matrix. Experiment were conducted at various cutting speed, feed rate and difference cutting tools according to Taguchi method using a standard orthogonal array L9. The volume of AlN reinforced particle was 10% in MMC. The milling process was carried out under dry cutting condition using uncoated carbide, TiN and TiCN tool insert. The parameters used were the cutting speed of (230,300,370 m/min) the federate used were (0.4, 0.6, 0.8 mm/tooth) while the depth of cut is constant (0.3 mm). The tool diameter is 20mm. From the project, the surface roughness mechanism was investigated in detail using Mitutoyo portable surface roughness measurements surftest SJ-310. This machining will be fabricated on MMC with 150mm length, 100mm width and 30mm thick. The results showed using S/N ratio, concluded that a combination of low cutting speed, medium feed rate and uncoated insert give a remarkable surface finish. From the ANOVA result showed the feed rate was major contributing factor (43.76%) following type of insert (40.89%).Keywords: MMC, milling operation and surface roughness, Taguchi method
Procedia PDF Downloads 52910606 Development of a Coupled Thermal-Mechanical-Biological Model to Simulate Impacts of Temperature on Waste Stabilization at a Landfill in Quebec, Canada
Authors: Simran Kaur, Paul J. Van Geel
Abstract:
A coupled Thermal-Mechanical-Biological (TMB) model was developed for the analysis of impacts of temperatures on waste stabilization at a Municipal Solid Waste (MSW) landfill in Quebec, Canada using COMSOL Multiphysics, a finite element-based software. For waste placed in landfills in Northern climates during winter months, it can take months or even years before the waste approaches ideal temperatures for biodegradation to occur. Therefore, the proposed model links biodegradation induced strain in MSW to waste temperatures and corresponding heat generation rates as a result of anaerobic degradation. This provides a link between the thermal-biological and mechanical behavior of MSW. The thermal properties of MSW are further linked to density which is tracked and updated in the mechanical component of the model, providing a mechanical-thermal link. The settlement of MSW is modelled based on the concept of viscoelasticity. The specific viscoelastic model used is a single Kelvin – Voight viscoelastic body in which the finite element response is controlled by the elastic material parameters – Young’s Modulus and Poisson’s ratio. The numerical model was validated with 10 years of temperature and settlement data collected from a landfill in Ste. Sophie, Quebec. The coupled TMB modelling framework, which simulates placement of waste lifts as they are placed progressively in the landfill, allows for optimization of several thermal and mechanical parameters throughout the depth of the waste profile and helps in better understanding of temperature dependence of MSW stabilization. The model is able to illustrate how waste placed in the winter months can delay biodegradation-induced settlement and generation of landfill gas. A delay in waste stabilization will impact the utilization of the approved airspace prior to the placement of a final cover and impact post-closure maintenance. The model provides a valuable tool to assess different waste placement strategies in order to increase airspace utilization within landfills operating under different climates, in addition to understanding conditions for increased gas generation for recovery as a green and renewable energy source.Keywords: coupled model, finite element modeling, landfill, municipal solid waste, waste stabilization
Procedia PDF Downloads 13210605 Comparison of Various Classification Techniques Using WEKA for Colon Cancer Detection
Authors: Beema Akbar, Varun P. Gopi, V. Suresh Babu
Abstract:
Colon cancer causes the deaths of about half a million people every year. The common method of its detection is histopathological tissue analysis, it leads to tiredness and workload to the pathologist. A novel method is proposed that combines both structural and statistical pattern recognition used for the detection of colon cancer. This paper presents a comparison among the different classifiers such as Multilayer Perception (MLP), Sequential Minimal Optimization (SMO), Bayesian Logistic Regression (BLR) and k-star by using classification accuracy and error rate based on the percentage split method. The result shows that the best algorithm in WEKA is MLP classifier with an accuracy of 83.333% and kappa statistics is 0.625. The MLP classifier which has a lower error rate, will be preferred as more powerful classification capability.Keywords: colon cancer, histopathological image, structural and statistical pattern recognition, multilayer perception
Procedia PDF Downloads 57510604 Exploring Error-Minimization Protocols for Upper-Limb Function During Activities of Daily Life in Chronic Stroke Patients
Authors: M. A. Riurean, S. Heijnen, C. A. Knott, J. Makinde, D. Gotti, J. VD. Kamp
Abstract:
Objectives: The current study is done in preparation for a randomized controlled study investigating the effects of an implicit motor learning protocol implemented using an extension-supporting glove. It will explore different protocols to find out which is preferred when studying motor learn-ing in the chronic stroke population that struggles with hand spasticity. Design: This exploratory study will follow 24 individuals who have a chronic stroke (> 6 months) during their usual care journey. We will record the results of two 9-Hole Peg Tests (9HPT) done during their therapy ses-sions with a physiotherapist or in their home before and after 4 weeks of them wearing an exten-sion-supporting glove used to employ the to-be-studied protocols. The participants will wear the glove 3 times/week for one hour while performing their activities of daily living and record the times they wore it in a diary. Their experience will be monitored through telecommunication once every week. Subjects: Individuals that have had a stroke at least 6 months prior to participation, hand spasticity measured on the modified Ashworth Scale of maximum 3, and finger flexion motor control measured on the Motricity Index of at least 19/33. Exclusion criteria: extreme hemi-neglect. Methods: The participants will be randomly divided into 3 groups: one group using the glove in a pre-set way of decreasing support (implicit motor learning), one group using the glove in a self-controlled way of decreasing support (autonomous motor learning), and the third using the glove with constant support (as control). Before and after the 4-week period, there will be an intake session and a post-assessment session. Analysis: We will compare the results of the two 9HPTs to check whether the protocols were effective. Furthermore, we will compare the results between the three groups to find the preferred one. A qualitative analysis will be run of the experience of participants throughout the 4-week period. Expected results: We expect that the group using the implicit learning protocol will show superior results.Keywords: implicit learning, hand spasticity, stroke, error minimization, motor task
Procedia PDF Downloads 5910603 The Environmental Conflict over the Trans Mountain Pipeline Expansion in Burnaby, British Columbia, Canada
Authors: Emiliano Castillo
Abstract:
The aim of this research is to analyze the origins, the development and possible outcomes of the environmental conflict between grassroots organizations, indigenous communities, Kinder Morgan Corporation, and the Canadian government over the Trans Mountain pipeline expansion in Burnaby, British Columbia, Canada. Building on the political ecology and the environmental justice theoretical framework, this research examines the impacts and risks of tar sands extraction, production, and transportation on climate change, public health, the environment, and indigenous people´s rights over their lands. This study is relevant to the environmental justice and political ecology literature because it discusses the unequal distribution of environmental costs and economic benefits of tar sands development; and focuses on the competing interests, needs, values, and claims of the actors involved in the conflict. Furthermore, it will shed light on the context, conditions, and processes that lead to the organization and mobilization of a grassroots movement- comprised of indigenous communities, citizens, scientists, and non-governmental organizations- that draw significant media attention by opposing the Trans Mountain pipeline expansion. Similarly, the research will explain the differences and dynamics within the grassroots movement. This research seeks to address the global context of the conflict by studying the links between the decline of conventional oil production, the rise of unconventional fossil fuels (e.g. tar sands), climate change, and the struggles of low-income, ethnic, and racial minorities over the territorial expansion of extractive industries. Data will be collected from legislative documents, policy and technical reports, scientific journals, newspapers articles, participant observation, and semi-structured interviews with representatives and members of the grassroots organizations, indigenous communities, and Burnaby citizens that oppose the Trans Mountain pipeline. These interviews will focus on their perceptions of the risks of the Trans Mountain pipeline expansion; the roots of the anti-tar sands movement; the differences and dynamics within the movement; and the strategies to defend the livelihoods of local communities and the environment against tar sands development. This research will contribute to the understanding of the underlying causes of the environmental conflict between the Canadian government, Kinder Morgan, and grassroots organizations over tar sands extraction, production, and transportation in Burnaby, British Columbia, Canada. Moreover, this work will elucidate the transformations of society-nature relationships brought by tar sands development. Research findings will provide scientific information about how the resistance movement in British Columbia can challenge the dominant narrative on tar sands, exert greater influence in environmental politics, and efficiently defend Indigenous people´s rights to lands. Furthermore, this research will shed light into how grassroots movements can contribute towards the building of more inclusive and sustainable societies.Keywords: environmental conflict, environmental justice, extractive industry, indigenous communities, political ecology, tar sands
Procedia PDF Downloads 27810602 Studies on Lucrative Process Layout for Medium Scale Industries
Authors: Balamurugan Baladhandapani, Ganesh Renganathan, V. R. Sanal Kumar
Abstract:
In this paper a comprehensive review on various factory layouts has been carried out for designing a lucrative process layout for medium scale industries. Industry data base reveals that the end product rejection rate is on the order of 10% amounting large profit loss. In order to avoid these rejection rates and to increase the quality product production an intermediate non-destructive testing facility (INDTF) has been recommended for increasing the overall profit. We observed through detailed case studies that while introducing INDTF to medium scale industries the expensive production process can be avoided to the defective products well before its final shape. Additionally, the defective products identified during the intermediate stage can be effectively utilized for other applications or recycling; thereby the overall wastage of the raw materials can be reduced and profit can be increased. We concluded that the prudent design of a factory layout through critical path method facilitating with INDTF will warrant profitable outcome.Keywords: intermediate non-destructive testing, medium scale industries, process layout design
Procedia PDF Downloads 50210601 Eco-Friendly Electricity Production from the Waste Heat of Air Conditioners
Authors: Anvesh Rajak
Abstract:
This is a new innovation that can be developed. Here I am going to use the waste heat of air conditioner so as to produce the electricity by using the Stirling engine because this waste heat creates the thermal pollution in the environment. The waste heat from the air conditioners has caused a temperature rise of 1°–2°C or more on weekdays in the Tokyo office areas. This heating promotes the heat-island phenomenon in Tokyo on weekdays. Now these air conditioners creates the thermal pollution in the environment and hence rising the temperature of the environment. Air conditioner generally emit the waste heat air whose temperature is about 50°C which heat the environment. Today the demand of energy is increasing tremendously, but available energy lacks in supply. Hence, there is no option for proper and efficient utilization and conservation of energy. In this paper the main stress is given on energy conservation by using technique of utilizing waste heat from Air-conditioning system. Actually the focus is on the use of the waste heat rather than improving the COP of the air- conditioners; if also we improve the COP of air conditioners gradually it would emit some waste heat so I want that waste heat to be used up. As I have used air conditioner’s waste heat to produce electricity so similarly there are various other appliances which emit the waste heat in the surrounding so here also we could use the Stirling engines and Geothermal heat pump concept to produce the electricity and hence can reduce the thermal pollution in the environment.Keywords: stirling engine, geothermal heat pumps, waste heat, air conditioners
Procedia PDF Downloads 35910600 Comparing Machine Learning Estimation of Fuel Consumption of Heavy-Duty Vehicles
Authors: Victor Bodell, Lukas Ekstrom, Somayeh Aghanavesi
Abstract:
Fuel consumption (FC) is one of the key factors in determining expenses of operating a heavy-duty vehicle. A customer may therefore request an estimate of the FC of a desired vehicle. The modular design of heavy-duty vehicles allows their construction by specifying the building blocks, such as gear box, engine and chassis type. If the combination of building blocks is unprecedented, it is unfeasible to measure the FC, since this would first r equire the construction of the vehicle. This paper proposes a machine learning approach to predict FC. This study uses around 40,000 vehicles specific and o perational e nvironmental c onditions i nformation, such as road slopes and driver profiles. A ll v ehicles h ave d iesel engines and a mileage of more than 20,000 km. The data is used to investigate the accuracy of machine learning algorithms Linear regression (LR), K-nearest neighbor (KNN) and Artificial n eural n etworks (ANN) in predicting fuel consumption for heavy-duty vehicles. Performance of the algorithms is evaluated by reporting the prediction error on both simulated data and operational measurements. The performance of the algorithms is compared using nested cross-validation and statistical hypothesis testing. The statistical evaluation procedure finds that ANNs have the lowest prediction error compared to LR and KNN in estimating fuel consumption on both simulated and operational data. The models have a mean relative prediction error of 0.3% on simulated data, and 4.2% on operational data.Keywords: artificial neural networks, fuel consumption, friedman test, machine learning, statistical hypothesis testing
Procedia PDF Downloads 17810599 Manufacture and Characterization of Poly (Tri Methylene Terephthalate) Nanofibers by Electrospinning
Authors: Omid Saligheh
Abstract:
Poly (tri methylene terephthalate) (PTT) nanofibers were prepared by electrospinning, being directly deposited in the form of a random fibers web. The effect of changing processing parameters such as solution concentration and electrospinning voltage on the morphology of the electrospun PTT nanofibers was investigated with scanning electron microscopy (SEM). The electrospun fibers diameter increased with rising concentration and decreased by increasing the electrospinning voltage, thermal and mechanical properties of electrospun fibers were characterized by DSC and tensile testing, respectively.Keywords: poly tri methylene terephthalate, electrospinning, morphology, thermal behavior, mechanical properties
Procedia PDF Downloads 8610598 Validating the Theme Park Service Quality Scale: A Case Study of Zhuhai Chimelong Ocean Kingdom
Authors: Kat Jingjing Luo
Abstract:
The development of theme parks in China has been through a rapid growth in the past decades. Increasing competition within service quality has forced theme park managers concerned the relationship between service quality and visitors’ satisfaction. Even though those existing service quality measurements such as SERVQUAL and THEMEQUAL have been applied in related researches, none of them is exclusive for Chinese theme park service quality. This study aims to investigate the service quality of the most popular theme park in China currently and develop a unique, reliable and valid scale. The reliability and validity analysis results from a survey of over 200 tourists in Chimelong ocean kingdom in Zhuhai city, south of China, indicate that the dimension of waiting time is a discover factor in the measurement of Chinese theme park service quality excluding in the THEMEQUAL instrument (i.e., tangibles, reliability, responsiveness and access, assurance, empathy and courtesy). The newly developed scale gives a better understand service quality in Chinese theme park industry, and the managerial implications in regard to the research, how to improve theme park service quality are discussed.Keywords: theme park, scale development, China, service quality
Procedia PDF Downloads 27910597 Optimization of Ultrasound Assisted Extraction and Characterization of Functional Properties of Dietary Fiber from Oat Cultivar S2000
Authors: Muhammad Suhail Ibrahim, Muhammad Nadeem, Waseem Khalid, Ammara Ainee, Taleeha Roheen, Sadaf Javaria, Aftab Ahmed, Hira Fatima, Mian Nadeem Riaz, Muhammad Zubair Khalid, Isam A. Mohamed Ahmed J, Moneera O. Aljobair
Abstract:
This study was executed to explore the efficacy of ultrasound-assisted extraction of dietary fiber from oat cultivar S2000. Extraction (variables time, temperature and amplitude) was optimized by using response surface methodology (RSM) conducted by Box Behnken Design (BBD). The effect of time, temperature and amplitude were studied at three levels. It was observed that time and temperature exerted more impact on extraction efficiency as compared to amplitude. The highest yield of total dietary fiber (TDF), soluble dietary fiber (SDF) and In-soluble dietary fiber (IDF) fractions were observed under ultrasound processing for 20 min at 40 ◦C with 80% amplitude. Characterization of extracted dietary fiber showed that it had better crystallinity, thermal properties and good fibrous structure. It also showed better functional properties as compared to traditionally extracted dietary fiber. Furthermore, dietary fibers from oats may offer high-value utilization and the expansion of comprehensive utilization in functional food and nutraceutical development.Keywords: extraction, ultrasonication, response surface methodology, box behnken design
Procedia PDF Downloads 5010596 Human Capital Discourse and Higher Education Policy
Authors: Tien-Hui Chiang
Abstract:
Human capital discourse encourages many countries to expand the capacity of HEIs. Along with this expansion, the higher education system is redefined as a free market and in turn it is privatized and commercialized. However, the state’s role in education is to balance social justice and capital accumulation. This role is further regulated by a specific form of neoliberalism constituted by social contexts. These correlations call for exploring the influence of human capital discourse on interwoven issues, such as the state’s role in education, higher education policy, and employability. Method: According to the perspective of neoliberal governmentality, answers to the above four research questions are likely to be embedded within discourses in documents related to higher education policies. Consequently, this study adopts a qualitative approach by analyzing official documents, including government reports, official statistics, circulars and official statements. Documents were collected and subjected to content analysis, with a particular focus on the period from 2005 to 2021. The technique of content analysis was applied to decode keywords and core concepts of these documents. Findings: Neoliberalism is exerted through human capital discourse in China particularly in the changes in higher education policies moving from quantitative expansion to quality control via employment or employability. Such changes highlight that the principle of “n”eoliberalism is more suitable for illustrating the practice of free market logic in different social contexts. The modifications of neoliberalism adopted by the Chinese government reflect that the state’s mission is to secure social security or the common good, so that public managerialism - in the form of programs for employment, internship and entrepreneurship - is adopted in the name of the public interest and the collective mission. Public managerialism now is not only targeted towards social institutions but the population more generally, incarnated here by college graduates. Its practice is not only to renovate organizational cultures but to activate people’s commitment to national development.Keywords: employability, higher education expansion, neoliberalism, human capital discourse
Procedia PDF Downloads 7810595 Study of Biocomposites Based of Poly(Lactic Acid) and Olive Husk Flour
Authors: Samra Isadounene, Amar Boukerrou, Dalila Hammiche
Abstract:
In this work, the composites were prepared with poly(lactic acid) (PLA) and olive husk flour (OHF) with different percentages (10, 20 and 30%) using extrusion method followed by injection molding. The morphological, mechanical properties and thermal behavior of composites were investigated. Tensile strength and elongation at break of composites showed a decreasing trend with increasing fiber content. On the other hand, Young modulus and storage modulus were increased. The addition of OHF resulted in a decrease in thermal stability of composites. The presence of OHF led to an increase in percentage of crystallinity (Xc) of PLA matrix.Keywords: biopolymers, composites, mechanical properties, poly(lactic acid)
Procedia PDF Downloads 23810594 Performance Prediction of a SANDIA 17-m Vertical Axis Wind Turbine Using Improved Double Multiple Streamtube
Authors: Abolfazl Hosseinkhani, Sepehr Sanaye
Abstract:
Different approaches have been used to predict the performance of the vertical axis wind turbines (VAWT), such as experimental, computational fluid dynamics (CFD), and analytical methods. Analytical methods, such as momentum models that use streamtubes, have low computational cost and sufficient accuracy. The double multiple streamtube (DMST) is one of the most commonly used of momentum models, which divide the rotor plane of VAWT into upwind and downwind. In fact, results from the DMST method have shown some discrepancy compared with experiment results; that is because the Darrieus turbine is a complex and aerodynamically unsteady configuration. In this study, analytical-experimental-based corrections, including dynamic stall, streamtube expansion, and finite blade length correction are used to improve the DMST method. Results indicated that using these corrections for a SANDIA 17-m VAWT will lead to improving the results of DMST.Keywords: vertical axis wind turbine, analytical, double multiple streamtube, streamtube expansion model, dynamic stall model, finite blade length correction
Procedia PDF Downloads 13510593 Preoperative Anxiety Evaluation: Comparing the Visual Facial Anxiety Scale/Yumul Faces Anxiety Scale, Numerical Verbal Rating Scale, Categorization Scale, and the State-Trait Anxiety Inventory
Authors: Roya Yumul, Chse, Ofelia Loani Elvir Lazo, David Chernobylsky, Omar Durra
Abstract:
Background: Preoperative anxiety has been shown to be caused by the fear associated with surgical and anesthetic complications; however, the current gold standard for assessing patient anxiety, the STAI, is problematic to use in the preoperative setting given the duration and concentration required to complete the 40-item extensive questionnaire. Our primary aim in the study is to investigate the correlation of the Visual Facial Anxiety Scale (VFAS) and Numerical Verbal Rating Scale (NVRS) to State-Trait Anxiety Inventory (STAI) to determine the optimal anxiety scale to use in the perioperative setting. Methods: A clinical study of patients undergoing various surgeries was conducted utilizing each of the preoperative anxiety scales. Inclusion criteria included patients undergoing elective surgeries, while exclusion criteria included patients with anesthesia contraindications, inability to comprehend instructions, impaired judgement, substance abuse history, and those pregnant or lactating. 293 patients were analyzed in terms of demographics, anxiety scale survey results, and anesthesia data via Spearman Coefficients, Chi-Squared Analysis, and Fischer’s exact test utilized for comparison analysis. Results: Statistical analysis showed that VFAS had a higher correlation to STAI than NVRS (rs=0.66, p<0.0001 vs. rs=0.64, p<0.0001). The combined VFAS-Categorization Scores showed the highest correlation with the gold standard (rs=0.72, p<0.0001). Subgroup analysis showed similar results. STAI evaluation time (247.7 ± 54.81 sec) far exceeds VFAS (7.29 ± 1.61 sec), NVRS (7.23 ± 1.60 sec), and Categorization scales (7.29 ± 1.99 sec). Patients preferred VFAS (54.4%), Categorization (11.6%), and NVRS (8.8%). Anesthesiologists preferred VFAS (63.9%), NVRS (22.1%), and Categorization Scales (14.0%). Of note, the top five causes of preoperative anxiety were determined to be waiting (56.5%), pain (42.5%), family concerns (40.5%), no information about surgery (40.1%), or anesthesia (31.6%). Conclusions: Combined VFAS-Categorization Score (VCS) demonstrates the highest correlation to the gold standard, STAI. Both VFAS and Categorization tests also take significantly less time than STAI, which is critical in the preoperative setting. Among both patients and anesthesiologists, VFAS was the most preferred scale. This forms the basis of the Yumul FACES Anxiety Scale, designed for quick quantization and assessment in the preoperative setting while maintaining a high correlation to the golden standard. Additional studies using the formulated Yumul FACES Anxiety Scale are merited.Keywords: numerical verbal anxiety scale, preoperative anxiety, state-trait anxiety inventory, visual facial anxiety scale
Procedia PDF Downloads 14010592 A Single Feature Probability-Object Based Image Analysis for Assessing Urban Landcover Change: A Case Study of Muscat Governorate in Oman
Authors: Salim H. Al Salmani, Kevin Tansey, Mohammed S. Ozigis
Abstract:
The study of the growth of built-up areas and settlement expansion is a major exercise that city managers seek to undertake to establish previous and current developmental trends. This is to ensure that there is an equal match of settlement expansion needs to the appropriate levels of services and infrastructure required. This research aims at demonstrating the potential of satellite image processing technique, harnessing the utility of single feature probability-object based image analysis technique in assessing the urban growth dynamics of the Muscat Governorate in Oman for the period 1990, 2002 and 2013. This need is fueled by the continuous expansion of the Muscat Governorate beyond predicted levels of infrastructural provision. Landsat Images of the years 1990, 2002 and 2013 were downloaded and preprocessed to forestall appropriate radiometric and geometric standards. A novel approach of probability filtering of the target feature segment was implemented to derive the spatial extent of the final Built-Up Area of the Muscat governorate for the three years period. This however proved to be a useful technique as high accuracy assessment results of 55%, 70%, and 71% were recorded for the Urban Landcover of 1990, 2002 and 2013 respectively. Furthermore, the Normalized Differential Built – Up Index for the various images were derived and used to consolidate the results of the SFP-OBIA through a linear regression model and visual comparison. The result obtained showed various hotspots where urbanization have sporadically taken place. Specifically, settlement in the districts (Wilayat) of AL-Amarat, Muscat, and Qurayyat experienced tremendous change between 1990 and 2002, while the districts (Wilayat) of AL-Seeb, Bawshar, and Muttrah experienced more sporadic changes between 2002 and 2013.Keywords: urban growth, single feature probability, object based image analysis, landcover change
Procedia PDF Downloads 27410591 Active Space Debris Removal by Extreme Ultraviolet Radiation
Authors: A. Anandha Selvan, B. Malarvizhi
Abstract:
In recent year the problem of space debris have become very serious. The mass of the artificial objects in orbit increased quite steadily at the rate of about 145 metric tons annually, leading to a total tally of approximately 7000 metric tons. Now most of space debris object orbiting in LEO region about 97%. The catastrophic collision can be mostly occurred in LEO region, where this collision generate the new debris. Thus, we propose a concept for cleaning the space debris in the region of thermosphere by passing the Extreme Ultraviolet (EUV) radiation to in front of space debris object from the re-orbiter. So in our concept the Extreme Ultraviolet (EUV) radiation will create the thermosphere expansion by reacting with atmospheric gas particles. So the drag is produced in front of the space debris object by thermosphere expansion. This drag force is high enough to slow down the space debris object’s relative velocity. Therefore the space debris object gradually reducing the altitude and finally enter into the earth’s atmosphere. After the first target is removed, the re-orbiter can be goes into next target. This method remove the space debris object without catching debris object. Thus it can be applied to a wide range of debris object without regard to their shapes or rotation. This paper discusses the operation of re-orbiter for removing the space debris in thermosphere region.Keywords: active space debris removal, space debris, LEO, extreme ultraviolet, re-orbiter, thermosphere
Procedia PDF Downloads 46210590 Advanced Bio-Composite Materials Based on Biopolymer Blends and Cellulose Nanocrystals
Authors: Zineb Kassab, Nassima El Miri, A. Aboulkas, Abdellatif Barakat, Mounir El Achaby
Abstract:
Recently, more attention has been given to biopolymers with a focus on sustainable development and environmental preservation. Following this tendency, the attempt has been made to replace polymers derived from petroleum with superior biodegradable polymers (biopolymers). In this context, biopolymers are considered potential replacements for conventional plastic materials. However, some of their properties must be improved for better competitiveness, especially regarding their mechanical, thermal and barrier properties. Bio-nanocomposite technology using nanofillers has already been proven as an effective way to produce new materials with specific properties and high performances. With the emergence of nanostructured bio-composite materials, incorporating elongated rod-like cellulose nanocrystals (CNC) has attracted more and more attention in the field of nanotechnology. This study is aimed to develop bio-composite films of biopolymer matrices [Carboxymethyle cellulose (CMC), Starch (ST), Chitosan (CS) and Polyvinyl alcohol (PVA)] reinforced with cellulose nanocrystals (CNC) using the solution casting method. The CNC were extracted at a nanometric scale from lignocellulosic fibers via sulfuric acid hydrolysis and then characterized using X-ray diffraction (XRD), thermogravimetric analysis (TGA), confocal microscopy, infrared spectroscopy (IR), atomic force and transmission electron microscopies (AFM and TEM) techniques. The as extracted CNC were used as a reinforcing phase to produce a variety of bio-composite films at different CNC loading (0.5-10 wt %) with specific properties. The rheological properties of film-forming solutions (FFS) of bio-composites were studied, and their relation to the casting process was evaluated. Then, the structural, optical transparency, water vapor permeability, thermal stability and mechanical properties of all prepared bio-composite films were evaluated and studied in this report. The high performances of these bio-composite films are expected to have potential in biomaterials or packaging applications.Keywords: biopolymer composites, cellulose nanocrystals, food packaging, lignocellulosic fibers
Procedia PDF Downloads 24010589 Design and Evaluation of a Prototype for Non-Invasive Screening of Diabetes – Skin Impedance Technique
Authors: Pavana Basavakumar, Devadas Bhat
Abstract:
Diabetes is a disease which often goes undiagnosed until its secondary effects are noticed. Early detection of the disease is necessary to avoid serious consequences which could lead to the death of the patient. Conventional invasive tests for screening of diabetes are mostly painful, time consuming and expensive. There’s also a risk of infection involved, therefore it is very essential to develop non-invasive methods to screen and estimate the level of blood glucose. Extensive research is going on with this perspective, involving various techniques that explore optical, electrical, chemical and thermal properties of the human body that directly or indirectly depend on the blood glucose concentration. Thus, non-invasive blood glucose monitoring has grown into a vast field of research. In this project, an attempt was made to device a prototype for screening of diabetes by measuring electrical impedance of the skin and building a model to predict a patient’s condition based on the measured impedance. The prototype developed, passes a negligible amount of constant current (0.5mA) across a subject’s index finger through tetra polar silver electrodes and measures output voltage across a wide range of frequencies (10 KHz – 4 MHz). The measured voltage is proportional to the impedance of the skin. The impedance was acquired in real-time for further analysis. Study was conducted on over 75 subjects with permission from the institutional ethics committee, along with impedance, subject’s blood glucose values were also noted, using conventional method. Nonlinear regression analysis was performed on the features extracted from the impedance data to obtain a model that predicts blood glucose values for a given set of features. When the predicted data was depicted on Clarke’s Error Grid, only 58% of the values predicted were clinically acceptable. Since the objective of the project was to screen diabetes and not actual estimation of blood glucose, the data was classified into three classes ‘NORMAL FASTING’,’NORMAL POSTPRANDIAL’ and ‘HIGH’ using linear Support Vector Machine (SVM). Classification accuracy obtained was 91.4%. The developed prototype was economical, fast and pain free. Thus, it can be used for mass screening of diabetes.Keywords: Clarke’s error grid, electrical impedance of skin, linear SVM, nonlinear regression, non-invasive blood glucose monitoring, screening device for diabetes
Procedia PDF Downloads 32510588 A Strategy for Reducing Dynamic Disorder in Small Molecule Organic Semiconductors by Suppressing Large Amplitude Thermal Motions
Authors: Steffen Illig, Alexander S. Eggeman, Alessandro Troisi, Stephen G. Yeates, John E. Anthony, Henning Sirringhaus
Abstract:
Large-amplitude intermolecular vibrations in combination with complex shaped transfer integrals generate a thermally fluctuating energetic landscape. The resulting dynamic disorder and its intrinsic presence in organic semiconductors is one of the most fundamental differences to their inorganic counterparts. Dynamic disorder is believed to govern many of the unique electrical and optical properties of organic systems. However, the low energy nature of these vibrations makes it difficult to access them experimentally and because of this we still lack clear molecular design rules to control and reduce dynamic disorder. Applying a novel technique based on electron diffraction we encountered strong intermolecular, thermal vibrations in every single organic material we studied (14 up to date), indicating that a large degree of dynamic disorder is a universal phenomenon in organic crystals. In this paper a new molecular design strategy will be presented to avoid dynamic disorder. We found that small molecules that have their side chains attached to the long axis of their conjugated core have been found to be less likely to suffer from dynamic disorder effects. In particular, we demonstrate that 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothio-phene (C8-BTBT) and 2,9-di-decyl-dinaphtho-[2,3-b:20,30-f]-thieno-[3,2-b]-thiophene (C10DNTT) exhibit strongly reduced thermal vibrations in comparison to other molecules and relate their outstanding performance to their lower dynamic disorder. We rationalize the low degree of dynamic disorder in C8-BTBT and C10-DNTT with a better encapsulation of the conjugated cores in the crystal structure which helps reduce large amplitude thermal motions. The work presented in this paper provides a general strategy for the design of new classes of very high mobility organic semiconductors with low dynamic disorder.Keywords: charge transport, C8-BTBT, C10-DNTT, dynamic disorder, organic semiconductors, thermal vibrations
Procedia PDF Downloads 39910587 Research of the Load Bearing Capacity of Inserts Embedded in CFRP under Different Loading Conditions
Authors: F. Pottmeyer, M. Weispfenning, K. A. Weidenmann
Abstract:
Continuous carbon fiber reinforced plastics (CFRP) exhibit a high application potential for lightweight structures due to their outstanding specific mechanical properties. Embedded metal elements, so-called inserts, can be used to join structural CFRP parts. Drilling of the components to be joined can be avoided using inserts. In consequence, no bearing stress is anticipated. This is a distinctive benefit of embedded inserts, since continuous CFRP have low shear and bearing strength. This paper aims at the investigation of the load bearing capacity after preinduced damages from impact tests and thermal-cycling. In addition, characterization of mechanical properties during dynamic high speed pull-out testing under different loading velocities was conducted. It has been shown that the load bearing capacity increases up to 100% for very high velocities (15 m/s) in comparison with quasi-static loading conditions (1.5 mm/min). Residual strength measurements identified the influence of thermal loading and preinduced mechanical damage. For both, the residual strength was evaluated afterwards by quasi-static pull-out tests. Taking into account the DIN EN 6038 a high decrease of force occurs at impact energy of 16 J with significant damage of the laminate. Lower impact energies of 6 J, 9 J, and 12 J do not decrease the measured residual strength, although the laminate is visibly damaged - distinguished by cracks on the rear side. To evaluate the influence of thermal loading, the specimens were placed in a climate chamber and were exposed to various numbers of temperature cycles. One cycle took 1.5 hours from -40 °C to +80 °C. It could be shown that already 10 temperature cycles decrease the load bearing capacity up to 20%. Further reduction of the residual strength with increasing number of thermal cycles was not observed. Thus, it implies that the maximum damage of the composite is already induced after 10 temperature cycles.Keywords: composite, joining, inserts, dynamic loading, thermal loading, residual strength, impact
Procedia PDF Downloads 27910586 Thermal Performance and Environmental Assessment of Evaporative Cooling Systems: Case of Mina Valley, Saudi Arabia
Authors: A. Alharbi, R. Boukhanouf, T. Habeebullah, H. Ibrahim
Abstract:
This paper presents a detailed description of evaporative cooling systems used for space cooling in Mina Valley, Saudi Arabia. The thermal performance and environmental impact of the evaporative coolers were evaluated. It was found that the evaporative cooling systems used for space cooling in pilgrims’ accommodations and in the train stations could reduce energy consumption by as much as 75% and cut carbon dioxide emission by 78% compared to traditional vapour compression systems.Keywords: evaporative cooling, vapor compression, electricity consumption, CO2 emission
Procedia PDF Downloads 43410585 MMSE-Based Beamforming for Chip Interleaved CDMA in Aeronautical Mobile Radio Channel
Authors: Sherif K. El Dyasti, Esam A. Hagras, Adel E. El-Hennawy
Abstract:
This paper addresses the performance of antenna array beam-forming on Chip-Interleaved Code Division Multiple Access (CI_CDMA) system based on Minimum Mean Square Error (MMSE) detector in aeronautical mobile radio channel. Multipath fading, Doppler shifts caused by the speed of the aircraft, and Multiple Access Interference (MAI) are the most important reasons that affect and reduce the performance of aeronautical system. In this paper, we suggested the CI-CDMA with antenna array to combat this fading and improve the bit error rate (BER) performance. We further evaluate the performance of the proposed system in the four standard scenarios in aeronautical mobile radio channel.Keywords: aeronautical channel, CI-CDMA, beamforming, communication, information
Procedia PDF Downloads 41810584 Influence of Low and Extreme Heat Fluxes on Thermal Degradation of Carbon Fibre-Reinforced Polymers
Authors: Johannes Bibinger, Sebastian Eibl, Hans-Joachim Gudladt
Abstract:
This study considers the influence of different irradiation scenarios on the thermal degradation of carbon fiber-reinforced polymers (CFRP). Real threats are simulated, such as fires with long-lasting low heat fluxes and nuclear heat flashes with short-lasting high heat fluxes. For this purpose, coated and uncoated quasi-isotropic samples of the commercially available CFRP HexPly® 8552/IM7 are thermally irradiated from one side by a cone calorimeter and a xenon short-arc lamp with heat fluxes between 5 and 175 W/cm² at varying time intervals. The specimen temperature is recorded on the front and backside as well as at different laminate depths. The CFRP is non-destructively tested with ultrasonic testing, infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), and micro-focused computed X-Ray tomography (μCT). Destructive tests are performed to evaluate the mechanical properties in terms of interlaminar shear strength (ILSS), compressive and tensile strength. The irradiation scenarios vary significantly in heat flux and exposure time. Thus, different heating rates, radiation effects, and temperature distributions occur. This leads to unequal decomposition processes, which affect the sensitivity of the strength type and damage behaviour of the specimens. However, with the use of surface coatings, thermal degradation of composite materials can be delayed.Keywords: CFRP, one-sided thermal damage, high heat flux, heating rate, non-destructive and destructive testing
Procedia PDF Downloads 11210583 Machine Learning Models for the Prediction of Heating and Cooling Loads of a Residential Building
Authors: Aaditya U. Jhamb
Abstract:
Due to the current energy crisis that many countries are battling, energy-efficient buildings are the subject of extensive research in the modern technological era because of growing worries about energy consumption and its effects on the environment. The paper explores 8 factors that help determine energy efficiency for a building: (relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area, and glazing area distribution), with Tsanas and Xifara providing a dataset. The data set employed 768 different residential building models to anticipate heating and cooling loads with a low mean squared error. By optimizing these characteristics, machine learning algorithms may assess and properly forecast a building's heating and cooling loads, lowering energy usage while increasing the quality of people's lives. As a result, the paper studied the magnitude of the correlation between these input factors and the two output variables using various statistical methods of analysis after determining which input variable was most closely associated with the output loads. The most conclusive model was the Decision Tree Regressor, which had a mean squared error of 0.258, whilst the least definitive model was the Isotonic Regressor, which had a mean squared error of 21.68. This paper also investigated the KNN Regressor and the Linear Regression, which had to mean squared errors of 3.349 and 18.141, respectively. In conclusion, the model, given the 8 input variables, was able to predict the heating and cooling loads of a residential building accurately and precisely.Keywords: energy efficient buildings, heating load, cooling load, machine learning models
Procedia PDF Downloads 96