Search results for: pneumatic artificial muscles
984 An Experimental Investigation of Air Entrainment Due to Water Jets in Crossflows
Authors: Mina Esmi Jahromi, Mehdi Khiadani
Abstract:
Vertical water jets discharging into free surface turbulent cross flows result in the ingression of a large amount of air in the body of water and form a region of two-phase air-water flow with a considerable interfacial area. This research presents an experimental study of the two-phase bubbly flow using image processing technique. The air ingression and the trajectories of bubble swarms under different experimental conditions are evaluated. The rate of air entrainment and the bubble characteristics such as penetration depth, and dispersion pattern were found to be affected by the most influential parameters of water jet and cross flow including water jet-to-crossflow velocity ratio, water jet falling height, and cross flow depth. This research improves understanding of the underwater flow structure due to the water jet impingement in crossflow and advances the practical applications of water jets such as artificial aeration, circulation, and mixing where crossflow is present.Keywords: air entrainment, image processing, jet in cross flow, two-phase flow
Procedia PDF Downloads 369983 Determination of Activation Energy for Thermal Decomposition of Selected Soft Tissues Components
Authors: M. Ekiert, T. Uhl, A. Mlyniec
Abstract:
Tendons are the biological soft tissue structures composed of collagen, proteoglycan, glycoproteins, water and cells of extracellular matrix (ECM). Tendons, which primary function is to transfer force generated by the muscles to the bones causing joints movement, are exposed to many micro and macro damages. In fact, tendons and ligaments trauma are one of the most numerous injuries of human musculoskeletal system, causing for many people (particularly for athletes and physically active people), recurring disorders, chronic pain or even inability of movement. The number of tendons reconstruction and transplantation procedures is increasing every year. Therefore, studies on soft tissues storage conditions (influencing i.e. tissue aging) seem to be an extremely important issue. In this study, an atomic-scale investigation on the kinetics of decomposition of two selected tendon components – collagen type I (which forms a 60-85% of a tendon dry mass) and elastin protein (which combine with ECM creates elastic fibers of connective tissues) is presented. A molecular model of collagen and elastin was developed based on crystal structure of triple-helical collagen-like 1QSU peptide and P15502 human elastin protein, respectively. Each model employed 4 linear strands collagen/elastin strands per unit cell, distributed in 2x2 matrix arrangement, placed in simulation box filled with water molecules. A decomposition phenomena was simulated with molecular dynamics (MD) method using ReaxFF force field and periodic boundary conditions. A set of NVT-MD runs was performed for 1000K temperature range in order to obtained temperature-depended rate of production of decomposition by-products. Based on calculated reaction rates activation energies and pre-exponential factors, required to formulate Arrhenius equations describing kinetics of decomposition of tested soft tissue components, were calculated. Moreover, by adjusting a model developed for collagen, system scalability and correct implementation of the periodic boundary conditions were evaluated. An obtained results provide a deeper insight into decomposition of selected tendon components. A developed methodology may also be easily transferred to other connective tissue elements and therefore might be used for further studies on soft tissues aging.Keywords: decomposition, molecular dynamics, soft tissue, tendons
Procedia PDF Downloads 210982 Analysis and Rule Extraction of Coronary Artery Disease Data Using Data Mining
Authors: Rezaei Hachesu Peyman, Oliyaee Azadeh, Salahzadeh Zahra, Alizadeh Somayyeh, Safaei Naser
Abstract:
Coronary Artery Disease (CAD) is one major cause of disability in adults and one main cause of death in developed. In this study, data mining techniques including Decision Trees, Artificial neural networks (ANNs), and Support Vector Machine (SVM) analyze CAD data. Data of 4948 patients who had suffered from heart diseases were included in the analysis. CAD is the target variable, and 24 inputs or predictor variables are used for the classification. The performance of these techniques is compared in terms of sensitivity, specificity, and accuracy. The most significant factor influencing CAD is chest pain. Elderly males (age > 53) have a high probability to be diagnosed with CAD. SVM algorithm is the most useful way for evaluation and prediction of CAD patients as compared to non-CAD ones. Application of data mining techniques in analyzing coronary artery diseases is a good method for investigating the existing relationships between variables.Keywords: classification, coronary artery disease, data-mining, knowledge discovery, extract
Procedia PDF Downloads 657981 The Effect of Artificial Intelligence on Human Rights Legislations and Evolution
Authors: Nawal Yacoub Halim Abdelmasih
Abstract:
The link between terrorism and human rights has grown to be a chief challenge in the combat against terrorism around the sector. This is primarily based on the truth that terrorism and human rights are so closely related that after the former starts, the latter is violated. This direct connection is identified in the Vienna Declaration and program of movement adopted by way of the sector Convention on Human Rights in Vienna on June 25, 1993, which acknowledges that acts of terrorism in all their paperwork and manifestations intended to damage the human rights of people. Terrorism, therefore, represents an assault on our maximum fundamental human rights. To this stop, the first part of this article makes a specialty of the connections between terrorism and human rights and seeks to spotlight the interdependence between those two standards. The second part discusses the rising idea of cyberterrorism and its manifestations. An evaluation of the fight against cyberterrorism inside the context of human rights is likewise performed.Keywords: sustainable development, human rights, the right to development, the human rights-based approach to development, environmental rights, economic development, social sustainability human rights protection, human rights violations, workers’ rights, justice, security.
Procedia PDF Downloads 4980 TMIF: Transformer-Based Multi-Modal Interactive Fusion for Rumor Detection
Authors: Jiandong Lv, Xingang Wang, Cuiling Shao
Abstract:
The rapid development of social media platforms has made it one of the important news sources. While it provides people with convenient real-time communication channels, fake news and rumors are also spread rapidly through social media platforms, misleading the public and even causing bad social impact in view of the slow speed and poor consistency of artificial rumor detection. We propose an end-to-end rumor detection model-TIMF, which captures the dependencies between multimodal data based on the interactive attention mechanism, uses a transformer for cross-modal feature sequence mapping and combines hybrid fusion strategies to obtain decision results. This paper verifies two multi-modal rumor detection datasets and proves the superior performance and early detection performance of the proposed model.Keywords: hybrid fusion, multimodal fusion, rumor detection, social media, transformer
Procedia PDF Downloads 246979 Energy Efficiency Analysis of Electrical Submersible Pump on Mature Oil Field Offshore Java Sea
Authors: Marda Vidrianto, Tania Surya Utami
Abstract:
Electrical Submersible Pump (ESP) is an artificial lift of choice to produce oil on Offshore Java Sea. It is selected based on the production rate capacity and running life expectation. ESP performance in a mature field is highly affected by oil well conditions. The presence of sand, scale, gas, and low influx will create unstable ESP operation hence lowering the run life expectation and system efficiency. This paper reviews the current energy usage and efficiency on every part of the ESP system. The hydraulic and electrical losses, as well as system efficiency for each well, are calculated to identify energy losses and the possibility for improvement. It is shown that high back pressure on the system and low-efficiency pump are the major contributors to energy losses. It was found that optimized production rate and the use of advanced technology on pump and motor unit could improve energy efficiency.Keywords: advance technology, energy efficiency, ESP, mature field, production rate
Procedia PDF Downloads 342978 Development of a Congestion Controller of Computer Network Using Artificial Intelligence Algorithm
Authors: Mary Anne Roa
Abstract:
Congestion in network occurs due to exceed in aggregate demand as compared to the accessible capacity of the resources. Network congestion will increase as network speed increases and new effective congestion control methods are needed, especially for today’s very high speed networks. To address this undeniably global issue, the study focuses on the development of a fuzzy-based congestion control model concerned with allocating the resources of a computer network such that the system can operate at an adequate performance level when the demand exceeds or is near the capacity of the resources. Fuzzy logic based models have proven capable of accurately representing a wide variety of processes. The model built is based on bandwidth, the aggregate incoming traffic and the waiting time. The theoretical analysis and simulation results show that the proposed algorithm provides not only good utilization but also low packet loss.Keywords: congestion control, queue management, computer networks, fuzzy logic
Procedia PDF Downloads 397977 Beta Titanium Alloys: The Lowest Elastic Modulus for Biomedical Applications: A Review
Authors: Mohsin Talib Mohammed, Zahid A. Khan, Arshad N. Siddiquee
Abstract:
Biometallic materials are the most important materials for use in biomedical applications especially in manufacturing a variety of biological artificial replacements in a modern worlds, e.g. hip, knee or shoulder joints, due to their advanced characteristics. Titanium (Ti) and its alloys are used extensively in biomedical applications based on their high specific strength and excellent corrosion resistance. Beta-Ti alloys containing completely biocompatible elements are exceptionally prospective materials for manufacturing of bioimplants. They have superior mechanical, chemical and electrochemical properties for use as biomaterials. These biomaterials have the ability to introduce the most important property of biochemical compatibility which is low elastic modulus. This review examines current information on the recent developments in alloying elements leading to improvements of beta Ti alloys for use as biomaterials. Moreover, this paper focuses mainly on the evolution, evaluation and development of the modulus of elasticity as an effective factor on the performance of beta alloys.Keywords: beta alloys, biomedical applications, titanium alloys, Young's modulus
Procedia PDF Downloads 325976 Histopatological Analysis of Vital Organs in Cattle Infected with Lumpy Skin Disease in Rajasthan, India
Authors: Manisha, Manisha Mathur, Jay K. Desai, Shesh Asopa, Manisha Mehra
Abstract:
The present study was carried out for the comprehensive analysis of lumpy skin disease (LSD) in cattle and to elucidate the histopathology of vital organs in natural outbreaks. Lumpy skin disease (LSD) is a viral infection that primarily affects cattle. It is caused by a Capri pox virus and is characterized by the formation of skin nodules or lesions. For this study, a postmortem of 20 cows who died of Lumpy skin disease in different regions of Rajasthan was conducted. This study aimed to examine a cow's external and internal organs to confirm if lumpy skin disease was the cause of death. Accurate diagnosis is essential for improving disease surveillance, understanding the disease's progression, and informing control measures. Pathological examinations reveal virus-induced changes across organs, while histopathological analyses provide crucial insights into the disease's pathogenesis, aiding in the development of advanced diagnostics and effective prevention strategies. Histopathological examination of nodular skin lesions revealed edema, hyperemia, acanthosis, severe hydropic degeneration/ballooning degeneration, and hyperkeratosis in the epidermis. In the lungs, congestion, oedema, emphysema, and atelectasis were observed grossly. Microscopically changes were suggestive of interstitial pneumonia, suppurative pneumonia, bronchopneumonia post pneumonic fibrosis, and stage of resolution. Grossely liver showed congestion and necrotic foci microscopically in most of the cases, and the liver showed acute viral hepatitis. Microscopically in kidneys, multifocal interstitial nephritis was observed. There was marked interstitial inflammation and zonal fibrosis with cystically dilated tubules and bowman's capsules. Microscopically, most of the heart tissue section showed normal histology with few sarcocysts in between cardiac muscles. In some cases, loss of cross striation, sarcoplasmic vacuolation, fregmentation, and disintegration of cardiac fibres were observed. The present study revealed the characteristic gross and histopathological changes in different organs in natural cases of lumpy skin disease. Further, the disease was confirmed based on the molecular diagnosis and transmission electron microscopy of capripox infection in the affected cattle in the study area.Keywords: Capripoxvirus, lumpy skin disease, polymerage chain reaction, transmission electron microscopy
Procedia PDF Downloads 25975 A Multi-Objective Evolutionary Algorithm of Neural Network for Medical Diseases Problems
Authors: Sultan Noman Qasem
Abstract:
This paper presents an evolutionary algorithm for solving multi-objective optimization problems-based artificial neural network (ANN). The multi-objective evolutionary algorithm used in this study is genetic algorithm while ANN used is radial basis function network (RBFN). The proposed algorithm named memetic elitist Pareto non-dominated sorting genetic algorithm-based RBFNN (MEPGAN). The proposed algorithm is implemented on medical diseases problems. The experimental results indicate that the proposed algorithm is viable, and provides an effective means to design multi-objective RBFNs with good generalization capability and compact network structure. This study shows that MEPGAN generates RBFNs coming with an appropriate balance between accuracy and simplicity, comparing to the other algorithms found in literature.Keywords: radial basis function network, hybrid learning, multi-objective optimization, genetic algorithm
Procedia PDF Downloads 563974 A Neuro-Automata Decision Support System for the Control of Late Blight in Tomato Crops
Authors: Gizelle K. Vianna, Gustavo S. Oliveira, Gabriel V. Cunha
Abstract:
The use of decision support systems in agriculture may help monitoring large fields of crops by automatically detecting the symptoms of foliage diseases. In our work, we designed and implemented a decision support system for small tomatoes producers. This work investigates ways to recognize the late blight disease from the analysis of digital images of tomatoes, using a pair of multilayer perceptron neural networks. The networks outputs are used to generate repainted tomato images in which the injuries on the plant are highlighted, and to calculate the damage level of each plant. Those levels are then used to construct a situation map of a farm where a cellular automata simulates the outbreak evolution over the fields. The simulator can test different pesticides actions, helping in the decision on when to start the spraying and in the analysis of losses and gains of each choice of action.Keywords: artificial neural networks, cellular automata, decision support system, pattern recognition
Procedia PDF Downloads 455973 Death Due to Ulnar Artery Injury by Glassdoor: A Case Report
Authors: Ashok Kumar Rastogi
Abstract:
Glass is a material commonly used for Glassdoor, glass bottles, cookware, and containers. It can be harmful, as it is a hard and blunt object. Glass has been associated with severe injury and is a common cause of injuries warranting hospital visits to the emergency department (ED). These injuries can be accidental or intentionally inflicted. Broken glass injuries can be severe, even deadly. If broken glass shards fall out on your arm, it may cause fatal injuries. Case history: A 20-year-old male dead body was found aside the road, police informed, and a video recording ceased during an investigation. In the video recording, the person was in a drunken state (unable to walk and disoriented), wandering in the residential area road. He saw a barber shop, the shop door made of Glass. Suddenly, he hit the Glassdoor with his right hand forcefully. The Glassdoor broke into multiple pieces, and multiple injuries were seen over the right hand. Observations: Multiple small and large lacerations were seen over the right anterior part of the elbow. The main injury looked like an incised wound caused by a hard and sharp object. The main injury was noted as a laceration of size 13 x 06 cm bone deep, placed obliquely over the anteromedial aspect of the right elbow joint, its medial end at medial end of elbow joint while its anterior end was 04 cm below the elbow joint with laceration of underline brachialis muscles and complete transaction of ulnar artery and vein, skin margins looking sharply cut with irregular margins with tiny cuts at the medial lower border of laceration. Injuries were antemortem and fresh in nature, caused by hard and blunt objects but looking like hard and sharp objects. All organs were found pale, and the cause of death was shock and hemorrhage because of ulnar vessel injury. Conclusion: The findings of this case report highlight the potentially lethal consequences of glass injuries, especially those involving Glassdoors. The study underscores the importance of accurate interpretation and identification of wounds caused by Glass, as they may resemble injuries caused by other objects. It emphasizes the challenges faced by autopsy surgeons when determining the cause and manner of death in cases where visual evidence of injury is absent or when the weapon is not recovered. Ultimately, this case report serves as a reminder of the potential dangers posed by Glass and the importance of comprehensive forensic examinations.Keywords: glassdoor, incised, wound, laceration, autopsy
Procedia PDF Downloads 76972 The Impact of Artificial Intelligence on Qualty Conrol and Quality
Authors: Mary Moner Botros Fanawel
Abstract:
Many companies use the statistical tool named as statistical quality control, and which can have a high cost for the companies interested on these statistical tools. The evaluation of the quality of products and services is an important topic, but the reduction of the cost of the implantation of the statistical quality control also has important benefits for the companies. For this reason, it is important to implement a economic design for the various steps included into the statistical quality control. In this paper, we describe some relevant aspects related to the economic design of a quality control chart for the proportion of defective items. They are very important because the suggested issues can reduce the cost of implementing a quality control chart for the proportion of defective items. Note that the main purpose of this chart is to evaluate and control the proportion of defective items of a production process.Keywords: model predictive control, hierarchical control structure, genetic algorithm, water quality with DBPs objectives proportion, type I error, economic plan, distribution function bootstrap control limit, p-value method, out-of-control signals, p-value, quality characteristics
Procedia PDF Downloads 62971 Optimal Placement and Sizing of Distributed Generation in Microgrid for Power Loss Reduction and Voltage Profile Improvement
Authors: Ferinar Moaidi, Mahdi Moaidi
Abstract:
Environmental issues and the ever-increasing in demand of electrical energy make it necessary to have distributed generation (DG) resources in the power system. In this research, in order to realize the goals of reducing losses and improving the voltage profile in a microgrid, the allocation and sizing of DGs have been used. The proposed Genetic Algorithm (GA) is described from the array of artificial intelligence methods for solving the problem. The algorithm is implemented on the IEEE 33 buses network. This study is presented in two scenarios, primarily to illustrate the effect of location and determination of DGs has been done to reduce losses and improve the voltage profile. On the other hand, decisions made with the one-level assumptions of load are not universally accepted for all levels of load. Therefore, in this study, load modelling is performed and the results are presented for multi-levels load state.Keywords: distributed generation, genetic algorithm, microgrid, load modelling, loss reduction, voltage improvement
Procedia PDF Downloads 143970 Enunciation on Complexities of Selected Tree Searching Algorithms
Authors: Parag Bhalchandra, S. D. Khamitkar
Abstract:
Searching trees is a most interesting application of Artificial Intelligence. Over the period of time, many innovative methods have been evolved to better search trees with respect to computational complexities. Tree searches are difficult to understand due to the exponential growth of possibilities when increasing the number of nodes or levels in the tree. Usually it is understood when we traverse down in the tree, traverse down to greater depth, in the search of a solution or a goal. However, this does not happen in reality as explicit enumeration is not a very efficient method and there are many algorithmic speedups that will find the optimal solution without the burden of evaluating all possible trees. It was a common question before all researchers where they often wonder what algorithms will yield the best and fastest result The intention of this paper is two folds, one to review selected tree search algorithms and search strategies that can be applied to a problem space and the second objective is to stimulate to implement recent developments in the complexity behavior of search strategies. The algorithms discussed here apply in general to both brute force and heuristic searches.Keywords: trees search, asymptotic complexity, brute force, heuristics algorithms
Procedia PDF Downloads 304969 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design
Authors: Rajaian Hoonejani Mohammad, Eshraghi Pegah, Zomorodian Zahra Sadat, Tahsildoost Mohammad
Abstract:
Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.Keywords: early stage of design, energy, thermal comfort, validation, machine learning
Procedia PDF Downloads 73968 The Correlation between Musculoskeletal Disorders and Body Postures during Playing among Guitarists
Authors: Navah Z. Ratzon, Shlomit Cohen, Sigal Portnoy
Abstract:
This work focuses on posture and risk factors for the musculoskeletal disorder in guitarists, which constitutes the largest group of musicians today. The source of the problems experienced by these musicians is linked to physical, psychosocial and personal risk factors. These muscular problems are referred to as Playing Related Musculoskeletal Disorder (PRMD). There is not enough research that specifically studies guitar players, and to the extent of our knowledge, there is almost no reference to the characteristics of their movement patterns while they play. This is in spite of the high prevalence of PRMD in this population. Kinematic research may provide a basis for the development of a prevention plan for this population and their unique characteristics of playing patterns. The aim of the study was to investigate the correlation between risk factors for PRMD among guitar players and self-reporting of pain in the skeletal muscles, and specifically to test whether there are differences in the kinematics of the upper body while playing in a sitting or standing posture. Twenty-five guitarists, aged 18-35, participated in the study. The methods included a motion analysis using a motion capture system, anthropometric measurements and questionnaires relating to risk factors. The questionnaires used were the Standardized Nordic Questionnaire for the Analysis of Musculoskeletal Symptoms and the Demand Control Support Questionnaire, as well as a questionnaire of personal details. All of the study participants complained of musculoskeletal pain in the past year; the most frequent complaints being in the left wrist. Statistically significant correlations were found between biodemographic indices and reports of pain in the past year and the previous week. No significant correlations were found between the physical posture while playing and reports of pain among professional guitarists. However, a difference was found in several kinematic parameters between seated and standing playing postures. In a majority of the joints, the joint angles while playing in a seated position were more extreme than those during standing. This finding may suggest a higher risk for musculoskeletal disorder while playing in a seated position. In conclusion, the results of the present research highlight the prevalence of musculoskeletal problems in guitar players and its correlation with various risk factors. The finding supports the need for intervention in the form of prevention through identifying the risk factors and addressing them. Relating to the person, to their occupation and environment, which are the basis of proper occupational therapy, can help meet this need.Keywords: body posture, motion tracking, PRMD, guitarists
Procedia PDF Downloads 225967 Design of a 28-nm CMOS 2.9-64.9-GHz Broadband Distributed Amplifier with Floating Ground CPW
Authors: Tian-Wei Huang, Wei-Ting Bai, Yu-Tung Cheng, Jeng-Han Tsai
Abstract:
In this paper, a 1-stage 6-section conventional distributed amplifier (CDA) structure distributed power amplifier (DPA) fabricated in a 28-nm HPC+ 1P9M CMOS process is proposed. The transistor size selection is introduced to achieve broadband power matching and thus remains a high flatness output power and power added efficiency (PAE) within the bandwidth. With the inductive peaking technique, the high-frequency pole appears and the high-frequency gain is increased; the gain flatness becomes better as well. The inductive elements used to form an artificial transmission line are built up with a floating ground coplanar waveguide plane (CPWFG) rather than a microstrip line, coplanar waveguide (CPW), or spiral inductor to get better performance. The DPA achieves 12.6 dB peak gain at 52.5 GHz with 2.9 to 64.9 GHz 3-dB bandwidth. The Psat is 11.4 dBm with PAEMAX of 10.6 % at 25 GHz. The output 1-dB compression point power is 9.8 dBm.Keywords: distributed power amplifier (DPA), gain bandwidth (GBW), floating ground CPW, inductive peaking, 28-nm, CMOS, 5G.
Procedia PDF Downloads 81966 Clinical Experience and Perception of Risk affect the Acceptance and Trust of using AI in Medicine
Authors: Schulz Peter, Kee Kalya, Lwin May, Goh Wilson, Chia Kendrikck, Chueng Max, Lam Thomas, Sung Joseph
Abstract:
As Artificial Intelligence (AI) is progressively making inroads into clinical practice, questions have arisen as to whether acceptance of AI is skewed toward certain medical practitioner segments, even within particular specializations. This study examines distinct AI acceptance among gastroenterologists with contrasting levels of seniority/experience when interacting with AI typologies. Data from 319 gastroenterologists show the presence of four distinct clusters of clinicians based on experience levels and perceived risk typologies. Analysis of cluster-based responses further revealed that acceptance of AI was not uniform. Our findings showed that clinician experience and risk perspective have an interactive role in influencing AI acceptance. Senior clinicians with low-risk perceptions were highly accepting of AI, but those with high-risk perceptions of AI were substantially less accepting. In contrast, junior clinicians were more inclined to embrace AI when they perceived high risk, yet they hesitated to adopt AI when the perceived risk was minimal.Keywords: risk perception, acceptance, trust, medicine
Procedia PDF Downloads 13965 An Axiomatic Approach to Constructing an Applied Theory of Possibility
Authors: Oleksii Bychkov
Abstract:
The fundamental difference between randomness and vagueness is that the former requires statistical research. These issues were studied by Zadeh L, Dubois D., Prad A. The theory of possibility works with expert assessments, hypotheses, etc. gives an idea of the characteristics of the problem situation, the nature of the goals and real limitations. Possibility theory examines experiments that are not repeated. The article discusses issues related to the formalization of a fuzzy, uncertain idea of reality. The author proposes to expand the classical model of the theory of possibilities by introducing a measure of necessity. The proposed model of the theory of possibilities allows us to extend the measures of possibility and necessity onto a Boolean while preserving the properties of the measure. Thus, upper and lower estimates are obtained to describe the fact that the event will occur. Knowledge of the patterns that govern mass random, uncertain, fuzzy events allows us to predict how these events will proceed. The article proposed for publication quite fully reveals the essence of the construction and use of the theory of probability and the theory of possibility.Keywords: possibility, artificial, modeling, axiomatics, intellectual approach
Procedia PDF Downloads 32964 Proof of Concept Design and Development of a Computer-Aided Medical Evaluation of Symptoms Web App: An Expert System for Medical Diagnosis in General Practice
Authors: Ananda Perera
Abstract:
Computer-Assisted Medical Evaluation of Symptoms (CAMEOS) is a medical expert system designed to help General Practices (GPs) make an accurate diagnosis. CAMEOS comprises a knowledge base, user input, inference engine, reasoning module, and output statement. The knowledge base was developed by the author. User input is an Html file. The physician user collects data in the consultation. Data is sent to the inference engine at servers. CAMEOS uses set theory to simulate diagnostic reasoning. The program output is a list of differential diagnoses, the most probable diagnosis, and the diagnostic reasoning.Keywords: CDSS, computerized decision support systems, expert systems, general practice, diagnosis, diagnostic systems, primary care diagnostic system, artificial intelligence in medicine
Procedia PDF Downloads 155963 The Effect of Artificial Intelligence on Construction Development
Authors: Shady Gamal Aziz Shehata
Abstract:
Difficulty in defining construction quality arises due to perception based on the nature and requirements of the market, the different partners themselves and the results they want. Quantitative research was used in this constructivist research. A case-based study was conducted to assess the structures of positive attitudes and expectations in the context of quality improvement. A survey based on expert opinions was analyzed among construction organizations/companies operating in the construction industry in Pakistan. The financial strength, management structure and construction experience of the construction companies formed the basis of their selection. A good concept is visible at the project level and is seen as the most valuable part of the construction project. Each quality improvement technique was expected to increase the user's profits by improving the efficiency of the construction project. The Survey is useful for construction professionals to evaluate current construction concepts and expectations for the application of quality improvement techniques in construction projects.Keywords: correlation analysis, lean construction tools, lean construction, logistic regression analysis, risk management, safety construction quality, expectation, improvement, perception
Procedia PDF Downloads 59962 Numerical Methods for Topological Optimization of Wooden Structural Elements
Authors: Daniela Tapusi, Adrian Andronic, Naomi Tufan, Ruxandra Erbașu, Ioana Teodorescu
Abstract:
The proposed theme of this article falls within the policy of reducing carbon emissions imposed by the ‘Green New Deal’ by replacing structural elements made of energy-intensive materials with ecological materials. In this sense, wood has many qualities (high strength/mass and stiffness/mass ratio, low specific gravity, recovery/recycling) that make it competitive with classic building materials. The topological optimization of the linear glulam elements, resulting from different types of analysis (Finite Element Method, simple regression on metamodels), tests on models or by Monte-Carlo simulation, leads to a material reduction of more than 10%. This article proposes a method of obtaining topologically optimized shapes for different types of glued laminated timber beams. The results obtained will constitute the database for AI training.Keywords: timber, glued laminated timber, artificial-intelligence, environment, carbon emissions
Procedia PDF Downloads 39961 The Effect of Artificial Intelligence on Media Production
Authors: Mona Mikhail Shakhloul Gadalla
Abstract:
The brand-new media revolution, which features a huge range of new media technologies like blogs, social networking, visual worlds, and wikis, has had a tremendous impact on communications, traditional media and across different disciplines. This paper gives an evaluation of the impact of recent media technology on the news, social interactions and conventional media in developing and advanced nations. The look points to the reality that there is a widespread impact of recent media technologies on the news, social interactions and the conventional media in developing and developed nations, albeit undoubtedly and negatively. Social interactions have been considerably affected, in addition to news manufacturing and reporting. It's miles reiterated that regardless of the pervasiveness of recent media technologies, it might now not carry a complete decline of conventional media. This paper contributes to the theoretical framework of the new media and will assist in assessing the extent of the effect of the new media in special places.Keywords: court reporting, offenders in media, quantitative content analysis, victims in mediamedia literacy, ICT, internet, education communication, media, news, new media technologies, social interactions, traditional media
Procedia PDF Downloads 34960 Predictive Models of Ruin Probability in Retirement Withdrawal Strategies
Authors: Yuanjin Liu
Abstract:
Retirement withdrawal strategies are very important to minimize the probability of ruin in retirement. The ruin probability is modeled as a function of initial withdrawal age, gender, asset allocation, inflation rate, and initial withdrawal rate. The ruin probability is obtained based on the 2019 period life table for the Social Security, IRS Required Minimum Distribution (RMD) Worksheets, US historical bond and equity returns, and inflation rates using simulation. Several popular machine learning algorithms of the generalized additive model, random forest, support vector machine, extreme gradient boosting, and artificial neural network are built. The model validation and selection are based on the test errors using hyperparameter tuning and train-test split. The optimal model is recommended for retirees to monitor the ruin probability. The optimal withdrawal strategy can be obtained based on the optimal predictive model.Keywords: ruin probability, retirement withdrawal strategies, predictive models, optimal model
Procedia PDF Downloads 74959 Effects of an Envious Experience on Schadenfreude and Economic Decisions Making
Authors: Pablo Reyes, Vanessa Riveros Fiallo, Cesar Acevedo, Camila Castellanos, Catalina Moncaleano, Maria F. Parra, Laura Colmenares
Abstract:
Social emotions are physiological, cognitive and behavioral phenomenon that intervene in the mechanisms of adaptation of individuals and their context. These are mediated by interpersonal relationship and language. Such emotions are subdivided into moral and comparison. The present research emphasizes two comparative emotions: Envy and Schadenfreude. Envy arises when a person lack of quality, possessions or achievements and these are superior in someone else. The Schadenfreude (SC) expresses the pleasure that someone experienced by the misfortune of the other. The relationship between both emotions has been questioned before. Hence there are reports showing that envy increases and modulates SC response. Other documents suggest that envy causes SC response. However, the methodological approach of the topic has been made through self-reports, as well as the hypothetical scenarios. Given this problematic, the neuroscience social framework provides an alternative and demonstrates that social emotions have neurophysiological correlates that can be measured. This is relevant when studying social emotions that are reprehensible like envy or SC are. When tested, the individuals tend to report low ratings due to social desirability. In this study, it was drawn up a proposal in research's protocol and the progress on its own piloting. The aim is to evaluate the effect of feeling envy and Schadenfreude has on the decision-making process, as well as the cooperative behavior in an economic game. To such a degree, it was proposed an experimental model that will provoke to feel envious by performing games against an unknown opponent. The game consists of asking general knowledge questions. The difficulty level in questions and the strangers' facial response have been manipulated in order to generate an ecological comparison framework and be able to arise both envy and SC emotions. During the game, an electromyography registry will be made for two facial muscles that have been associated with the expressiveness of envy and SC emotions. One of the innovations of the current proposal is the measurement of the effect that emotions have on a specific behavior. To that extent, it was evaluated the effect of each condition on the dictators' economic game. The main intention is to evaluate if a social emotion can modulate actions that have been associated with social norms, in the literacy. The result of the evaluation of a pilot model (without electromyography record and self-report) have shown an association between envy and SC, in a way that as the individuals report a greater sense of envy, the greater the chance to experience SC. The results of the economic game show a slight tendency towards profit maximization decisions. It is expected that at the time of using real cash this behavior will be strengthened and also to correlate with the responses of electromyography.Keywords: envy, schadenfreude, electromyography, economic games
Procedia PDF Downloads 370958 Foggy Image Restoration Using Neural Network
Authors: Khader S. Al-Aidmat, Venus W. Samawi
Abstract:
Blurred vision in the misty atmosphere is essential problem which needs to be resolved. To solve this problem, we developed a technique to restore foggy degraded image from its original version using Back-propagation neural network (BP-NN). The suggested technique is based on mapping between foggy scene and its corresponding original scene. Seven different approaches are suggested based on type of features used in image restoration. Features are extracted from spatial and spatial-frequency domain (using DCT). Each of these approaches comes with its own BP-NN architecture depending on type and number of used features. The weight matrix resulted from training each BP-NN represents a fog filter. The performance of these filters are evaluated empirically (using PSNR), and perceptually. By comparing the performance of these filters, the effective features that suits BP-NN technique for restoring foggy images is recognized. This system proved its effectiveness and success in restoring moderate foggy images.Keywords: artificial neural network, discrete cosine transform, feed forward neural network, foggy image restoration
Procedia PDF Downloads 382957 Intrusion Detection Using Dual Artificial Techniques
Authors: Rana I. Abdulghani, Amera I. Melhum
Abstract:
With the abnormal growth of the usage of computers over networks and under the consideration or agreement of most of the computer security experts who said that the goal of building a secure system is never achieved effectively, all these points led to the design of the intrusion detection systems(IDS). This research adopts a comparison between two techniques for network intrusion detection, The first one used the (Particles Swarm Optimization) that fall within the field (Swarm Intelligence). In this Act, the algorithm Enhanced for the purpose of obtaining the minimum error rate by amending the cluster centers when better fitness function is found through the training stages. Results show that this modification gives more efficient exploration of the original algorithm. The second algorithm used a (Back propagation NN) algorithm. Finally a comparison between the results of two methods used were based on (NSL_KDD) data sets for the construction and evaluation of intrusion detection systems. This research is only interested in clustering the two categories (Normal and Abnormal) for the given connection records. Practices experiments result in intrude detection rate (99.183818%) for EPSO and intrude detection rate (69.446416%) for BP neural network.Keywords: IDS, SI, BP, NSL_KDD, PSO
Procedia PDF Downloads 382956 Machine Learning Automatic Detection on Twitter Cyberbullying
Authors: Raghad A. Altowairgi
Abstract:
With the wide spread of social media platforms, young people tend to use them extensively as the first means of communication due to their ease and modernity. But these platforms often create a fertile ground for bullies to practice their aggressive behavior against their victims. Platform usage cannot be reduced, but intelligent mechanisms can be implemented to reduce the abuse. This is where machine learning comes in. Understanding and classifying text can be helpful in order to minimize the act of cyberbullying. Artificial intelligence techniques have expanded to formulate an applied tool to address the phenomenon of cyberbullying. In this research, machine learning models are built to classify text into two classes; cyberbullying and non-cyberbullying. After preprocessing the data in 4 stages; removing characters that do not provide meaningful information to the models, tokenization, removing stop words, and lowering text. BoW and TF-IDF are used as the main features for the five classifiers, which are; logistic regression, Naïve Bayes, Random Forest, XGboost, and Catboost classifiers. Each of them scores 92%, 90%, 92%, 91%, 86% respectively.Keywords: cyberbullying, machine learning, Bag-of-Words, term frequency-inverse document frequency, natural language processing, Catboost
Procedia PDF Downloads 130955 Estimating Poverty Levels from Satellite Imagery: A Comparison of Human Readers and an Artificial Intelligence Model
Authors: Ola Hall, Ibrahim Wahab, Thorsteinn Rognvaldsson, Mattias Ohlsson
Abstract:
The subfield of poverty and welfare estimation that applies machine learning tools and methods on satellite imagery is a nascent but rapidly growing one. This is in part driven by the sustainable development goal, whose overarching principle is that no region is left behind. Among other things, this requires that welfare levels can be accurately and rapidly estimated at different spatial scales and resolutions. Conventional tools of household surveys and interviews do not suffice in this regard. While they are useful for gaining a longitudinal understanding of the welfare levels of populations, they do not offer adequate spatial coverage for the accuracy that is needed, nor are their implementation sufficiently swift to gain an accurate insight into people and places. It is this void that satellite imagery fills. Previously, this was near-impossible to implement due to the sheer volume of data that needed processing. Recent advances in machine learning, especially the deep learning subtype, such as deep neural networks, have made this a rapidly growing area of scholarship. Despite their unprecedented levels of performance, such models lack transparency and explainability and thus have seen limited downstream applications as humans generally are apprehensive of techniques that are not inherently interpretable and trustworthy. While several studies have demonstrated the superhuman performance of AI models, none has directly compared the performance of such models and human readers in the domain of poverty studies. In the present study, we directly compare the performance of human readers and a DL model using different resolutions of satellite imagery to estimate the welfare levels of demographic and health survey clusters in Tanzania, using the wealth quintile ratings from the same survey as the ground truth data. The cluster-level imagery covers all 608 cluster locations, of which 428 were classified as rural. The imagery for the human readers was sourced from the Google Maps Platform at an ultra-high resolution of 0.6m per pixel at zoom level 18, while that of the machine learning model was sourced from the comparatively lower resolution Sentinel-2 10m per pixel data for the same cluster locations. Rank correlation coefficients of between 0.31 and 0.32 achieved by the human readers were much lower when compared to those attained by the machine learning model – 0.69-0.79. This superhuman performance by the model is even more significant given that it was trained on the relatively lower 10-meter resolution satellite data while the human readers estimated welfare levels from the higher 0.6m spatial resolution data from which key markers of poverty and slums – roofing and road quality – are discernible. It is important to note, however, that the human readers did not receive any training before ratings, and had this been done, their performance might have improved. The stellar performance of the model also comes with the inevitable shortfall relating to limited transparency and explainability. The findings have significant implications for attaining the objective of the current frontier of deep learning models in this domain of scholarship – eXplainable Artificial Intelligence through a collaborative rather than a comparative framework.Keywords: poverty prediction, satellite imagery, human readers, machine learning, Tanzania
Procedia PDF Downloads 105