Search results for: plant extract
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5043

Search results for: plant extract

3603 Effect of Peppermint Essential Oil versus a Mixture of Formic and Propionic Acids on Corn Silage Volatile Fatty Acid Score

Authors: Mohsen Danesh Mesgaran, Ali Hodjatpanah Montazeri, Alireza Vakili, Mansoor Tahmasbei

Abstract:

To compare peppermint essential oil versus a mixture of formic and propionic acids a study was conducted to their effects on volatile fatty acid proportion and VFA score of corn silage. Chopped whole crop corn (control) was treated with peppermint essential oil (240 mg kg-1 DM) or a mixture of formic and propionic acids (2:1) at 0.4% of fresh forage weight, and ensiled for 30 days. Then, silage extract was provided and the concentration of each VFA was determined using gas chromatography. The VFA score was calculated according to the patented formula proposed by Dairy One Scientific Committee. The score is calculated based on the positive impact of lactic and acetic acids versus the negative effect of butyric acid to achieve a single value for evaluating silage quality. The essential oil declined pH and increased the concentration of lactic and acetic acids in the silage extract. All corn silages evaluated in this study had a VFA score between 6 through 8. However, silage with peppermint essential oils had lower volatile fatty acids score than those of the other treatments. Both of applied additives caused a significant improvement in silage aerobic stability.

Keywords: peppermint, essential oil, corn silage, VFA (volatile fatty acids)

Procedia PDF Downloads 392
3602 Potential of Safflower (Carthamus tinctorius L.) for Phytoremediation of Soils Contaminated with Heavy Metals

Authors: Violina R. Angelova, Vanja I. Akova, Stefan V. Krustev, Krasimir I. Ivanov

Abstract:

A field study was conducted to evaluate the efficacy of safflower plant for phytoremediation of contaminated soils. The experiment was performed on an agricultural fields contaminated by the Non-Ferrous-Metal Works near Plovdiv, Bulgaria. The concentrations of Pb, Zn and Cd in safflower (roots, stems, leaves and seeds), safflower oil and meal were determined. A correlation was found between the quantity of the mobile forms and the uptake of Pb, Zn and Cd by the safflower seeds. Safflower is a plant which is tolerant to heavy metals and can be grown on contaminated soils, and which can be referred to the hyperaccumulators of cadmium and the accumulators of lead and zinc, and can be successfully used in the phytoremediation of heavy metal contaminated soils. The processing of seeds to oil and using the obtained oil for nutritional purposes will greatly reduce the cost of phytoremediation. The possibility of further industrial processing will make safflower economically interesting crops for farmers of phytoremediation technology.

Keywords: heavy metals, phytoremediation, polluted soils, safflower

Procedia PDF Downloads 310
3601 Removal of Lead in High Rate Activated Sludge System

Authors: Mamdouh Y. Saleh, Gaber El Enany, Medhat H. Elzahar, Mohamed Z. Elshikhipy, Rana Hamouda

Abstract:

The heavy metals pollution in water, sediments and fish of Lake Manzala affected from the disposal of wastewater, industrial and agricultural drainage water into the lake on the environmental situation. A pilot plant with an industrial discharge flow of 135L/h was designed according to the activated sludge plant to simulate between the biological and chemical treatment with the addition of alum to the aeration tank with dosages of 100, 150, 200, and 250 mg/L. The industrial discharge had concentrations of Lead and BOD5 with an average range 1.22, 145mg/L, respectively. That means the average Pb was high up to 25 times than the allowed permissible concentration. The optimization of the chemical-biological process using 200mg/L alum dosage compared has improvement of Lead and BOD5 removal efficiency to 61.76% and 56%, respectively.

Keywords: industrial wastewater, activated sludge, BOD5, lead, alum salt

Procedia PDF Downloads 513
3600 Protein Extraction by Enzyme-Assisted Extraction followed by Alkaline Extraction from Red Seaweed Eucheuma denticulatum (Spinosum) Used in Carrageenan Production

Authors: Alireza Naseri, Susan L. Holdt, Charlotte Jacobsen

Abstract:

In 2014, the global amount of carrageenan production was 60,000 ton with a value of US$ 626 million. From this number, it can be estimated that the total dried seaweed consumption for this production was at least 300,000 ton/year. The protein content of these types of seaweed is 5 – 25%. If just half of this total amount of protein could be extracted, 18,000 ton/year of a high-value protein product would be obtained. The overall aim of this study was to develop a technology that will ensure further utilization of the seaweed that is used only as raw materials for carrageenan production as single extraction at present. More specifically, proteins should be extracted from the seaweed either before or after extraction of carrageenan with focus on maintaining the quality of carrageenan as a main product. Different mechanical, chemical and enzymatic technologies were evaluated. The optimized process was implemented in lab scale and based on its results; the new experiments were done a pilot and larger scale. In order to calculate the efficiency of the new upstream multi-extraction process, protein content was tested before and after extraction. After this step, the extraction of carrageenan was done and carrageenan content and the effect of extraction on yield were evaluated. The functionality and quality of carrageenan were measured based on rheological parameters. The results showed that by using the new multi-extraction process (submitted patent); it is possible to extract almost 50% of total protein without any negative impact on the carrageenan quality. Moreover, compared to the routine carrageenan extraction process, the new multi-extraction process could increase the yield of carrageenan and the rheological properties such as gel strength in the final carrageenan had a promising improvement. The extracted protein has initially been screened as a plant protein source in typical food applications. Further work will be carried out in order to improve properties such as color, solubility, and taste.

Keywords: carrageenan, extraction, protein, seaweed

Procedia PDF Downloads 279
3599 Characterization of Heterotrimeric G Protein α Subunit in Tomato

Authors: Thi Thao Ninh, Yuri Trusov, José Ramón Botella

Abstract:

Heterotrimeric G proteins, comprised of three subunits, α, β and γ, are involved in signal transduction pathways that mediate a vast number of processes across the eukaryotic kingdom. 23 Gα subunits are present in humans whereas most plant genomes encode for only one canonical Gα. The disparity observed between Arabidopsis, rice, and maize Gα-deficient mutant phenotypes suggest that Gα functions have diversified between eudicots and monocots during evolution. Alternatively, since the only Gα mutations available in dicots have been produced in Arabidopsis, the possibility exists that this species might be an exception to the rule. In order to test this hypothesis, we studied the G protein α subunit (TGA1) in tomato. Four tga1 knockout lines were generated in tomato cultivar Moneymaker using CRISPR/Cas9. The tga1 mutants exhibit a number of auxin-related phenotypes including changes in leaf shape, reduced plant height, fruit size and number of seeds per fruit. In addition, tga1 mutants have increased sensitivity to abscisic acid during seed germination, reduced sensitivity to exogenous auxin during adventitious root formation from cotyledons and excised hypocotyl explants. Our results suggest that Gα mutant phenotypes in tomato are very similar to those observed in monocots, i.e. rice and maize, and cast doubts about the validity of using Arabidopsis as a model system for plant G protein studies.

Keywords: auxin-related phenotypes, CRISPR/Cas9, G protein α subunit, heterotrimeric G proteins, tomato

Procedia PDF Downloads 127
3598 Medicinal and Aromatic Plants of Borcka (Artvin)

Authors: Özgür Emi̇nağaoğlu, Hayal Akyildirim Beğen, Şevval Sali̇oğlu

Abstract:

In this study, the plant used for purification and aromatic purposes by the public in Adagül, Akpınar, Alaca, Ambarlı, Arkaköy, Avcılar, Balcı, Civan, Demirciler, Düzköy, İbrikli, Kale, Kaynarca and Taraklı villages in Borcka (Artvin) district between 2020-2022. The purpose of the study, determining the surgical common and local names, regions, botanical features, used parts of plants, purpose of use, local usage intensive, and giving literature data. The research area is located on the A8 square according to Davis's grid system; its phytogeographic extensions are in the Holarctic regions, and the Euro-Siberian flora settlement is in the Colchic subsection of the Euxine region. In the research area, 71 personal questionnaires were applied. As a result of the surveys, it was determined that 93 plant species belonging to 44 families were used by the local people for purification and aromatic purposes. The families that contain the most taxa in the research area are, respectively, Rosaceae (15 taxa), Astericaeae (9 taxa), Lamiaceae (7 taxa), Crassulaceae (4 taxa). As a result of the survey studies, Plantago major L. is known by almost all participants. The most used plants were Allium scorodoprasum, Helichrysum arenarium, Alnus glutinosa subsp. barbata, Juglans regia, Tilia rubra subsp. caucasica, Picea orientalis, Urtica dioica. These plants are used in the treatment of many diseases. Some of these plants that grow in Borçka are used in different countries for the treatment of the same diseases.

Keywords: artvin, borçka, medicinal, aromatic, plant

Procedia PDF Downloads 61
3597 Scaling-Down an Agricultural Waste Biogas Plant Fermenter

Authors: Matheus Pessoa, Matthias Kraume

Abstract:

Scale-Down rules in process engineering help us to improve and develop Industrial scale parameters into lab scale. Several scale-down rules available in the literature like Impeller Power Number, Agitation device Power Input, Substrate Tip Speed, Reynolds Number and Cavern Development were investigated in order to stipulate the rotational speed to operate an 11 L working volume lab-scale bioreactor within industrial process parameters. Herein, xanthan gum was used as a fluid with a representative viscosity of a hypothetical biogas plant, with H/D = 1 and central agitation, fermentation broth using sewage sludge and sugar beet pulp as substrate. The results showed that the cavern development strategy was the best method for establishing a rotational speed for the bioreactor operation, while the other rules presented values out of reality for this article proposes.

Keywords: anaerobic digestion, cavern development, scale down rules, xanthan gum

Procedia PDF Downloads 483
3596 Estimation of Genetic Diversity in Sorghum Accessions Using Agro-Mophological and Nutritional Traits

Authors: Maletsema Alina Mofokeng, Nemera Shargie

Abstract:

Sorghum is one of the most important cereal crops grown as a source of calories for many people in tropics and sub-tropics of the world. Proper characterisation and evaluation of crop germplasm is an important component for effective management of genetic resources and their utilisation in the improvement of the crop through plant breeding. The objective of the study was to estimate the genetic diversity present in sorghum accessions grown in South Africa using agro-morphological traits and some nutritional contents. The experiment was carried out in Potchefstroom. Data were subjected to correlations, principal components analysis, and hierarchical clustering using GenStat statistical software. There were highly significance differences among the accessions based on agro-morphological and nutritional quality traits. Grain yield was highly positively correlated with panicle weight. Plant height was highly significantly correlated with internode length, leaf length, leaf number, stem diameter, the number of nodes and starch content. The Principal component analysis revealed three most important PCs with a total variation of 78.6%. The protein content ranged from 7.7 to 14.7%, and starch ranged from 58.52 to 80.44%. The accessions that had high protein and starch content were AS16cyc and MP4277. There was vast genetic diversity observed among the accessions assessed that can be used by plant breeders to improve yield and nutritional traits.

Keywords: accessions, genetic diversity, nutritional quality, sorghum

Procedia PDF Downloads 258
3595 Genetic Variability Studies of Some Quantitative Traits in Cowpea (Vigna unguiculata L. [Walp.] ) under Water Stress

Authors: Auwal Ibrahim Magashi, Lawan Dan Larai Fagwalawa, Muhammad Bello Ibrahim

Abstract:

A research was conducted to study genetic variability of some quantitative traits in varieties of cowpea (Vigna unguiculata L. [Walp]) under water stressed from Zaria, Nigeria. Seeds of seven varieties of cowpea (Sampea 1, Sampea 2, IAR1074, Sampea 7, Sampea 8, Sampea 10 and Sampea 12) collected from Institute for Agricultural Research (IAR), Samaru, Zaria were screened for water stressed tolerance. The seeds were then sown in poly bags containing sandy-loam arranged in Completely Randomized Design with three replications for quantitative traits evaluation. The nutritional composition of the seeds obtained from the water stress tolerant varieties of cowpea were analyzed. The result obtained revealed highly significant difference (P ≤ 0.01) in the effects of water stress on the number of wilted and dead plants at 40 days after sowing (DAS) and significant (P ≤ 0.05) 34 DAS. However, sampea 10 has the highest mean performance in terms of number of wilted plants at 34 DAS while sampea 2 and IAR 1074 has the lowest mean performance. However, sampea 7 was found to have the highest mean performance for the number of wilted plants at 40 DAS and sampea 2 is lowest. The result for quantitative traits study indicated highly significant difference (P ≤ 0.01) in the plant height, number of days to 50% flowering, number of days to maturity, number of pods per plant, pod length, number of seeds per plant and 100 seed weight; and significant (P ≤ 0.05) at seedling height and number of branches per plant. Similarly, IAR1074 was found to have high performance in terms of most of the quantitative traits under study. However, sampea 8 has the highest mean performance at nutritional level. It was therefore concluded that, all the seven cowpea genotypes were water stress tolerant and produced considerable yield that contained significant nutrients. It was recommended that IAR1074 should be grown for yield while sampea 8 should be grown for protein supplements.

Keywords: cowpea, genetic variability, quantitative traits, water stress

Procedia PDF Downloads 151
3594 Effect of Solvents in the Extraction and Stability of Anthocyanin from the Petals of Caesalpinia pulcherrima for Natural Dye-Sensitized Solar Cell

Authors: N. Prabavathy, R. Balasundaraprabhu, S. Shalini, Dhayalan Velauthapillai, S. Prasanna, N. Muthukumarasamy

Abstract:

Dye sensitized solar cell (DSSC) has become a significant research area due to their fundamental and scientific importance in the area of energy conversion. Synthetic dyes as sensitizer in DSSC are efficient and durable but they are costlier, toxic and have the tendency to degrade. Natural sensitizers contain plant pigments such as anthocyanin, carotenoid, flavonoid, and chlorophyll which promote light absorption as well as injection of charges to the conduction band of TiO2 through the sensitizer. But, the efficiency of natural dyes is not up to the mark mainly due to instability of the pigment such as anthocyanin. The stability issues in vitro are mainly due to the effect of solvents on extraction of anthocyanins and their respective pH. Taking this factor into consideration, in the present work, the anthocyanins were extracted from the flower Caesalpinia pulcherrima (C. pulcherrimma) with various solvents and their respective stability and pH values are discussed. The usage of citric acid as solvent to extract anthocyanin has shown good stability than other solvents. It also helps in enhancing the sensitization properties of anthocyanins with Titanium dioxide (TiO2) nanorods. The IPCE spectra show higher photovoltaic performance for dye sensitized TiO2nanorods using citric acid as solvent. The natural DSSC using citric acid as solvent shows a higher efficiency compared to other solvents. Hence citric acid performs to be a safe solvent for natural DSSC in boosting the photovoltaic performance and maintaining the stability of anthocyanins.

Keywords: Caesalpinia pulcherrima, citric acid, dye sensitized solar cells, TiO₂ nanorods

Procedia PDF Downloads 282
3593 Genomic and Proteomic Variation in Glycine Max Genotypes towards Salinity

Authors: Faheema Khan

Abstract:

In order to investigate the influence of genetic background on salt tolerance in Soybean (Glycine max) ten soybean genotypes released/notified in India were selected. (Pusa-20, Pusa-40, Pusa-37, Pusa-16, Pusa-24, Pusa-22, BRAGG, PK-416, PK-1042, and DS-9712). The 10-day-old seedlings were subjected to 0, 25, 50, 75, 100, 125, and 150 mM NaCl for 15 days. Plant growth, leaf osmotic adjustment, and RAPD analysis were studied. In comparison to control plants, the plant growth in all genotypes was decreased by salt stress, respectively. Salt stress decreased leaf osmotic potential in all genotypes however the maximum reduction was observed in genotype Pusa-24 followed by PK-416 and Pusa-20. The difference in osmotic adjustment between all the genotypes was correlated with the concentrations of ion examined such as Na+ and the leaf proline concentration. These results suggest that the genotypic variation for salt tolerance can be partially accounted for by plant physiological measures. The genetic polymorphisms between soybean genotypes differing in response to salt stress were characterized using 25 RAPD primers. These primers generated a total of 1640 amplification products, among which 1615 were found to be polymorphic. A very high degree of polymorphism (98.30%) was observed. UPGMA cluster analysis of genetic similarity indices grouped all the genotypes into two major clusters. Intra-clustering within the two clusters precisely grouped the 10 genotypes in sub-cluster as expected from their physiological findings. Our results show that RAPD technique is a sensitive, precise and efficient tool for genomic analysis in soybean genotypes.

Keywords: glycine max, NaCl, RAPD, proteomics

Procedia PDF Downloads 577
3592 Extraction of Road Edge Lines from High-Resolution Remote Sensing Images Based on Energy Function and Snake Model

Authors: Zuoji Huang, Haiming Qian, Chunlin Wang, Jinyan Sun, Nan Xu

Abstract:

In this paper, the strategy to extract double road edge lines from acquired road stripe image was explored. The workflow is as follows: the road stripes are acquired by probabilistic boosting tree algorithm and morphological algorithm immediately, and road centerlines are detected by thinning algorithm, so the initial road edge lines can be acquired along the road centerlines. Then we refine the results with big variation of local curvature of centerlines. Specifically, the energy function of edge line is constructed by gradient feature and spectral information, and Dijkstra algorithm is used to optimize the initial road edge lines. The Snake model is constructed to solve the fracture problem of intersection, and the discrete dynamic programming algorithm is used to solve the model. After that, we could get the final road network. Experiment results show that the strategy proposed in this paper can be used to extract the continuous and smooth road edge lines from high-resolution remote sensing images with an accuracy of 88% in our study area.

Keywords: road edge lines extraction, energy function, intersection fracture, Snake model

Procedia PDF Downloads 335
3591 Mathematical Modeling for the Break-Even Point Problem in a Non-homogeneous System

Authors: Filipe Cardoso de Oliveira, Lino Marcos da Silva, Ademar Nogueira do Nascimento, Cristiano Hora de Oliveira Fontes

Abstract:

This article presents a mathematical formulation for the production Break-Even Point problem in a non-homogeneous system. The optimization problem aims to obtain the composition of the best product mix in a non-homogeneous industrial plant, with the lowest cost until the breakeven point is reached. The problem constraints represent real limitations of a generic non-homogeneous industrial plant for n different products. The proposed model is able to solve the equilibrium point problem simultaneously for all products, unlike the existing approaches that propose a resolution in a sequential way, considering each product in isolation and providing a sub-optimal solution to the problem. The results indicate that the product mix found through the proposed model has economical advantages over the traditional approach used.

Keywords: branch and bound, break-even point, non-homogeneous production system, integer linear programming, management accounting

Procedia PDF Downloads 200
3590 Metabolomics Fingerprinting Analysis of Melastoma malabathricum L. Leaf of Geographical Variation Using HPLC-DAD Combined with Chemometric Tools

Authors: Dian Mayasari, Yosi Bayu Murti, Sylvia Utami Tunjung Pratiwi, Sudarsono

Abstract:

Melastoma malabathricum L. is an Indo-Pacific herb that has been traditionally used to treat several ailments such as wounds, dysentery, diarrhea, toothache, and diabetes. This plant is common across tropical Indo-Pacific archipelagos and is tolerant of a range of soils, from low-lying areas subject to saltwater inundation to the salt-free conditions of mountain slopes. How the soil and environmental variation influences secondary metabolite production in the herb, and an understanding of the plant’s utility as traditional medicine, remain largely unknown and unexplored. The objective of this study is to evaluate the variability of the metabolic profiles of M. malabathricum L. across its geographic distribution. By employing high-performance liquid chromatography-diode array detector (HPLC-DAD), a highly established, simple, sensitive, and reliable method was employed for establishing the chemical fingerprints of 72 samples of M. malabathricum L. leaves from various geographical locations in Indonesia. Specimens collected from six terrestrial and archipelago regions of Indonesia were analyzed by HPLC to generate chromatogram peak profiles that could be compared across each region. Data corresponding to the common peak areas of HPLC chromatographic fingerprint were analyzed by hierarchical component analysis (HCA) and principal component analysis (PCA) to extract information on the most significant variables contributing to characterization and classification of analyzed samples data. Principal component values were identified as PC1 and PC2 with 41.14% and 19.32%, respectively. Based on variety and origin, the high-performance liquid chromatography method validated the chemical fingerprint results used to screen the in vitro antioxidant activity of M. malabathricum L. The result shows that the developed method has potential values for the quality of similar M. malabathrium L. samples. These findings provide a pathway for the development and utilization of references for the identification of M. malabathricum L. Our results indicate the importance of considering geographic distribution during field-collection efforts as they demonstrate regional metabolic variation in secondary metabolites of M. malabathricum L., as illustrated by HPLC chromatogram peaks and their antioxidant activities. The results also confirm the utility of this simple approach to a rapid evaluation of metabolic variation between plants and their potential ethnobotanical properties, potentially due to the environments from whence they were collected. This information will facilitate the optimization of growth conditions to suit particular medicinal qualities.

Keywords: fingerprint, high performance liquid chromatography, Melastoma malabathricum l., metabolic profiles, principal component analysis

Procedia PDF Downloads 149
3589 Application of Free Living Nitrogen Fixing Bacteria to Increase Productivity of Potato in Field

Authors: Govinda Pathak

Abstract:

In modern agriculture, the sustainable enhancement of crop productivity while minimizing environmental impacts remains a paramount challenge. Plant Growth Promoting Rhizobacteria (PGPR) have emerged as a promising solution to address this challenge. The rhizosphere, the dynamic interface between plant roots and soil, hosts intricate microbial interactions crucial for plant health and nutrient acquisition. PGPR, a subset of rhizospheric microorganisms, exhibit multifaceted beneficial effects on plants. Their abilities to stimulate growth, confer stress tolerance, enhance nutrient availability, and suppress pathogens make them invaluable contributors to sustainable agriculture. This work examines the pivotal role of free living nitrogen fixer in optimizing agricultural practices. We delve into the intricate mechanisms underlying PGPR-mediated plant-microbe interactions, encompassing quorum sensing, root exudate modulation, and signaling molecule exchange. Furthermore, we explore the diverse strategies employed by PGPR to enhance plant resilience against abiotic stresses such as drought, salinity, and metal toxicity. Additionally, we highlight the role of PGPR in augmenting nutrient acquisition and soil fertility through mechanisms such as nitrogen fixation, phosphorus solubilization, and mineral mobilization. Furthermore, we discuss the potential of PGPR in minimizing the reliance on chemical fertilizers and pesticides, thereby contributing to environmentally friendly agriculture. However, harnessing the full potential of PGPR requires a comprehensive understanding of their interactions with host plants and the surrounding microbial community. We also address challenges associated with PGPR application, including formulation, compatibility, and field efficacy. As the quest for sustainable agriculture intensifies, harnessing the remarkable attributes of PGPR offers a holistic approach to propel agricultural productivity while maintaining ecological balance. This work underscores the promising prospect of free living nitrogen fixer as a panacea for addressing critical agricultural challenges regarding chemical urea in an era of sustainable and resilient food production.

Keywords: PGPR, nitrogen fixer, quorum sensing, Rhizobacteria, pesticides

Procedia PDF Downloads 51
3588 Enhancing Plant Throughput in Mineral Processing Through Multimodal Artificial Intelligence

Authors: Muhammad Bilal Shaikh

Abstract:

Mineral processing plants play a pivotal role in extracting valuable minerals from raw ores, contributing significantly to various industries. However, the optimization of plant throughput remains a complex challenge, necessitating innovative approaches for increased efficiency and productivity. This research paper investigates the application of Multimodal Artificial Intelligence (MAI) techniques to address this challenge, aiming to improve overall plant throughput in mineral processing operations. The integration of multimodal AI leverages a combination of diverse data sources, including sensor data, images, and textual information, to provide a holistic understanding of the complex processes involved in mineral extraction. The paper explores the synergies between various AI modalities, such as machine learning, computer vision, and natural language processing, to create a comprehensive and adaptive system for optimizing mineral processing plants. The primary focus of the research is on developing advanced predictive models that can accurately forecast various parameters affecting plant throughput. Utilizing historical process data, machine learning algorithms are trained to identify patterns, correlations, and dependencies within the intricate network of mineral processing operations. This enables real-time decision-making and process optimization, ultimately leading to enhanced plant throughput. Incorporating computer vision into the multimodal AI framework allows for the analysis of visual data from sensors and cameras positioned throughout the plant. This visual input aids in monitoring equipment conditions, identifying anomalies, and optimizing the flow of raw materials. The combination of machine learning and computer vision enables the creation of predictive maintenance strategies, reducing downtime and improving the overall reliability of mineral processing plants. Furthermore, the integration of natural language processing facilitates the extraction of valuable insights from unstructured textual data, such as maintenance logs, research papers, and operator reports. By understanding and analyzing this textual information, the multimodal AI system can identify trends, potential bottlenecks, and areas for improvement in plant operations. This comprehensive approach enables a more nuanced understanding of the factors influencing throughput and allows for targeted interventions. The research also explores the challenges associated with implementing multimodal AI in mineral processing plants, including data integration, model interpretability, and scalability. Addressing these challenges is crucial for the successful deployment of AI solutions in real-world industrial settings. To validate the effectiveness of the proposed multimodal AI framework, the research conducts case studies in collaboration with mineral processing plants. The results demonstrate tangible improvements in plant throughput, efficiency, and cost-effectiveness. The paper concludes with insights into the broader implications of implementing multimodal AI in mineral processing and its potential to revolutionize the industry by providing a robust, adaptive, and data-driven approach to optimizing plant operations. In summary, this research contributes to the evolving field of mineral processing by showcasing the transformative potential of multimodal artificial intelligence in enhancing plant throughput. The proposed framework offers a holistic solution that integrates machine learning, computer vision, and natural language processing to address the intricacies of mineral extraction processes, paving the way for a more efficient and sustainable future in the mineral processing industry.

Keywords: multimodal AI, computer vision, NLP, mineral processing, mining

Procedia PDF Downloads 63
3587 Response of Summer Sesame to Irrigation Regimes and Nitrogen Levels

Authors: Kalpana Jamdhade, Anita Chorey, Bharti Tijare, V. M. Bhale

Abstract:

A field experiment was conducted during summer season of 2011 at Agronomy research farm, Dr. PDKV, Akola, to study the effect of irrigation regime and nitrogen levels on growth and productivity of summer sesame. The experiment was laid out in split plot Design in which three irrigation scheduling on the basis of IW/CPE ratio viz., irrigation at 0.6, 0.8 and 1.0 IW/CPE ratios (I1, I2 and I3, respectively) and one irrigation scheduling based on critical growth stages of sesame (I4), in main plot and three nitrogen levels 0, 30 and 60 kg N ha-1 (N0, N1 and N2, respectively) in subplot. The result showed that plant height, number of leaves plant-1, leaf area and dry matter accumulation were maximum in irrigation scheduling at 1.0 IW/CPE ratio, which significantly superior over 0.6 IW/CPE ratio and irrigation at critical growth stages but were statistically at par with irrigation at 0.8 IW/CPE ratio. Nitrogen levels, application of 60 kg N ha-1 was recorded significantly superior all growth parameters over treatment 30 kg N ha-1 and 0 kg N ha-1. In case of yield attributes viz., No. of capsules plant-1, Test wt., grain yield and Stalk yield (qha-1) were maximum in irrigation scheduling at 1.0 IW/CPE ratio and were significantly superior over 0.8 IW/CPE ratio, 0.6 IW/CPE ratio and irrigation at critical growth stages. Application of 60 kg N ha-1 increased all yield attributing characters over application of 30 and 0 kg N ha-1. In case of economics of crop same trend was found and the highest B:C ration was obtained in irrigation scheduling at 1.0 IW/CPE ratio. Whereas, application of 30 kg N ha-1 was recorded highest B:C ration over application of 60 and 0 kg N ha-1. Interaction effect of irrigation and nitrogen levels were found to be non significant in summer season.

Keywords: irrigation regimes, nitrogen levels, summer sesame, agricultural technology

Procedia PDF Downloads 359
3586 Insectivorous Medicinal Plant Drosera Ecologyand its Biodiversity Conservation through Tissue Culture and Sustainable Biotechnology

Authors: Sushil Pradhan

Abstract:

Biotechnology contributes to sustainable development in several ways such as biofertilizer production, biopesticide production and management of environmental pollution, tissue culture and biodiversity conservation in vitro, in vivo and in situ, Insectivorous medicinal plant Drosera burmannii Vahl belongs to the Family-Droseraceae under Order-Caryophyllales, Dicotyledoneae, Angiospermeae which has 31 (thirty one) living genera and 194 species besides 7 (seven) extinct (fossil) genera. Locally it is known as “Patkanduri” in Odia. Its Hindi name is “Mukhajali” and its English name is “Sundew”. The earliest species of Drosera was first reported in 1753 by Carolous Linnaeus called Drosera indica L (Indian Sundew). The latest species of Drosera reported by Fleisch A, Robinson, AS, McPherson S, Heinrich V, Gironella E and Madulida D.A. (2011) is Drosera ultramafica from Malaysia. More than 50 % species of Drosera have been reported from Australia and next to Australia is South Africa. India harbours only 3 species such as D. indica L, Drosera burmannii Vahl and D. peltata L. From our Odisha only D. burmannii Vahl is being reported for the first time from the district of Subarnapur near Sonepur (Arjunpur Reserve Forest Area). Drosera plant is autotrophic but to supplement its Nitrogen (N2) requirement it adopts heterotrophic mode of nutrition (insectivorous/carnivorous) as well. The colour of plant in mostly red and about 20-30cm in height with beautiful pink or white pentamerous flowers. Plants grow luxuriantly during November to February in shady and moist places near small water bodies of running water stream. Medicinally it is a popular herb in the locality for the treatment of cold and cough in children in rainy season by the local Doctors (Kabiraj and Baidya). In the present field investigation an attempt has been made to understand the unique reproductive phase and life cycle of the plant thereby planning for its conservation and propagation through various techniques of tissue culture and biotechnology. More importantly besides morphological and anatomical studies, cytological investigation is being carried out to find out the number of chromosomes in the cell and its genomics as there is no such report as yet for Drosera burmannii Vahl. The ecological significance and biodiversity conservation of Drosera with special reference to energy, environmental and chemical engineering has been discussed in the research paper presentation.

Keywords: insectivorous, medicinal, drosera, biotechnology, chromosome, genome

Procedia PDF Downloads 377
3585 Species Composition of Alticinae Newman, 1834 (Coleoptera, Chrysomelidae): Distribution and Host Plants in Eastern Upper Plains (Setif, Algeria)

Authors: M. Bounechada, M. Fenni, S. Bouharati, S. E. Doumandji

Abstract:

The study was taken in Setif region (36° 11' 29 N and 5° 24' 34 E) located at the north-eastern of Algeria. This paper recorded and discusses zoogeography and host plant relationships of Setifian species Alticinae subfamily. A total of 50 species belonging to Alticinae subfamily of Chrysomelidae which is the economically important familty, were recorded from differentes localities of Setif region. They are included in 10 genera. Genera Longitarsus Berthold, 1827 is less species-rich than the other Alticinae genera captured. It represens about 38% of the all species collected. Cruciferae and Compositae were the mostly prefered host plant families representing Alticinae species. For each species we mentioned the collecting sites, geographical distribution and the host plants.

Keywords: Algeria, Alticinae, Chrysomelidae, Coleoptera, distribution, host plants, species composition, Setif

Procedia PDF Downloads 232
3584 A Review on Silicon Based Induced Resistance in Plants against Insect Pests

Authors: Asim Abbasi, Muhammad Sufyan, Muhammad Kamran, Iqra

Abstract:

Development of resistance in insect pests against various groups of insecticides has prompted the use of alternative integrated pest management approaches. Among these induced host plant resistance represents an important strategy as it offers a practical, cheap and long lasting solution to keep pests populations below economic threshold level (ETL). Silicon (Si) has a major role in regulating plant eco-relationship by providing strength to the plant in the form of anti-stress mechanism which was utilized in coping with the environmental extremes to get a better yield and quality end produce. Among biotic stresses, insect herbivore signifies one class against which Si provide defense. Silicon in its neutral form (H₄SiO₄) is absorbed by the plants via roots through an active process accompanied by the help of different transporters which were located in the plasma membrane of root cells or by a passive process mostly regulated by transpiration stream, which occurs via the xylem cells along with the water. Plants tissues mainly the epidermal cell walls are the sinks of absorbed silicon where it polymerizes in the form of amorphous silica or monosilicic acid. The noteworthy function of this absorbed silicon is to provide structural rigidity to the tissues and strength to the cell walls. Silicon has both direct and indirect effects on insect herbivores. Increased abrasiveness and hardness of epidermal plant tissues and reduced digestibility as a result of deposition of Si primarily as phytoliths within cuticle layer is now the most authenticated mechanisms of Si in enhancing plant resistance to insect herbivores. Moreover, increased Si content in the diet also impedes the efficiency by which insects transformed consumed food into the body mass. The palatability of food material has also been changed by Si application, and it also deters herbivore feeding for food. The production of defensive compounds of plants like silica and phenols have also been amplified by the exogenous application of silicon sources which results in reduction of the probing time of certain insects. Some studies also highlighted the role of silicon at the third trophic level as it also attracts natural enemies of insects attacking the crop. Hence, the inclusion of Si in pest management approaches can be a healthy and eco-friendly tool in future.

Keywords: defensive, phytoliths, resistance, stresses

Procedia PDF Downloads 183
3583 Management of Soil Borne Plant Diseases Using Agricultural Waste Residues as Green Waste and Organic Amendment

Authors: Temitayo Tosin Alawiye

Abstract:

Plant disease control is important in maintaining plant vigour, grain quantity, abundance of food, feed, and fibre produced by farmers all over the world. Farmers make use of different methods in controlling these diseases but one of the commonly used method is the use of chemicals. However, the continuous and excessive usages of these agrochemicals pose a danger to the environment, man and wildlife. The more the population growth the more the food security challenge which leads to more pressure on agronomic growth. Agricultural waste also known as green waste are the residues from the growing and processing of raw agricultural products such as fruits, vegetables, rice husk, corn cob, mushroom growth medium waste, coconut husk. They are widely used in land bioremediation, crop production and protection which include disease control. These agricultural wastes help the crop by improving the soil fertility, increase soil organic matter and reduce in many cases incidence and severity of disease. The objective was to review the agricultural waste that has worked effectively against certain soil-borne diseases such as Fusarium oxysporum, Pythiumspp, Rhizoctonia spp so as to help minimize the use of chemicals. Climate change is a major problem of agriculture and vice versa. Climate change and agriculture are interrelated. Change in climatic conditions is already affecting agriculture with effects unevenly distributed across the world. It will increase the risk of food insecurity for some vulnerable groups such as the poor in Sub Saharan Africa. The food security challenge will become more difficult as the world will need to produce more food estimated to feed billions of people in the near future with Africa likely to be the biggest hit. In order to surmount this hurdle, smallholder farmers in Africa must embrace climate-smart agricultural techniques and innovations which includes the use of green waste in agriculture, conservative agriculture, pasture and manure management, mulching, intercropping, etc. Training and retraining of smallholder farmers on the use of green energy to mitigate the effect of climate change should be encouraged. Policy makers, academia, researchers, donors, and farmers should pay more attention to the use of green energy as a way of reducing incidence and severity of soilborne plant diseases to solve looming food security challenges.

Keywords: agricultural waste, climate change, green energy, soil borne plant disease

Procedia PDF Downloads 263
3582 Characterization and Selection of Phosphorus Deficiency Tolerant Genotypes in Nigeria Based on Morpho-Physiologic Traits

Authors: Umego Chukwudi T., Ntui Valentine O., Uyoh Edak A.

Abstract:

Phosphorus (P) deficiency has been identified as a major hindrance to rice production the world over. Eleven (11) rice genotypes predominantly used by local farmers in Nigeria were studied for their responses to P deficient conditions. The characterization was based on morpho-physiologic parameters. The genotypes were screened using a hydroponic system in a modified Hoagland’s solution. Morphological and physiologic parameters, including Plant height (PH), number of tillers per plant, shoot dry weight (SDW), shoot phosphate concentration (SPC), and chlorophyll content, were recorded after exposure to three levels of phosphate concentration (0µM, 400 µM, and 800 µM). The data obtained were subjected to analysis of variance (ANOVA), and the means were separated using least significance difference tests. The results obtained showed that P starvation caused a significant (p≤0.05) reduction in PH, SDW, and tillering and also triggered a significant (p≤0.05) increase in root length among the genotypes. The Pearsons correlation coefficient was used to estimate the relationships among studied parameters, and a significant negative correlation was observed between plant height and root length. FARO63 was identified as a highly tolerant genotype to P deficiency with a low (0.24) SPC and higher (4.81) phosphate utilization efficiency (PUE). This study has identified FARO63 as a true tolerant genotype to Phosphate deficiency, which will be useful in breeding for phosphate deficiency tolerance in rice and thus combating food insecurity.

Keywords: phosphate deficiency, rice genotypes, hydroponic system, food security

Procedia PDF Downloads 99
3581 Biological Activity of Bilberry Pomace

Authors: Gordana S. Ćetković, Vesna T. Tumbas Šaponjac, Sonja M. Djilas, Jasna M. Čanadanović-Brunet, Sladjana M. Stajčić, Jelena J. Vulić

Abstract:

Bilberry is one of the most important dietary sources of phenolic compounds, including anthocyanins, phenolic acids, flavonol glycosides and flavan-3-ols. These phytochemicals have different biological activities and therefore may improve our health condition. Also, anthocyanins are interesting to the food industry as colourants. In the present study, bilberry pomace, a by-product of juice processing, was used as a potential source of bioactive compounds. The contents of total phenolic acids, flavonoids and anthocyanins in bilberry pomace were determined by HPLC/UV-Vis. The biological activities of bilberry pomace were evaluated by reducing power (RP) and α-glucosidase inhibitory potential (α-GIP), and expressed as RP0.5 value (the effective concentration of bilberry pomace extract assigned at 0.5 value of absorption) and IC50 value (the concentration of bilberry pomace extract necessary to inhibit 50% of α-glucosidase enzyme activity). Total phenolic acids content was 807.12 ± 25.16 mg/100 g pomace, flavonoids 54.36 ± 1.83mg/100 g pomace and anthocyanins 3426.18 ± 112.09 mg/100 g pomace. The RP0.5 value of bilberry pomace was 0.38 ± 0.02 mg/ml, while IC50 value was 1.82 ± 0.11 mg/ml. These results have revealed the potential for valorization of bilberry juice production by-products for further industrial use as a rich source of bioactive compounds and natural colourants (mainly anthocyanins).

Keywords: bilberry pomace, phenolics, antioxidant activity, reducing power, α-glucosidase enzyme activity

Procedia PDF Downloads 592
3580 Determination of in vitro Antioxidative Activity of Aster yomena (Kitam.) Honda

Authors: Hyun Young Kim, Min Jung Kim, Ji Hyun Kim, Sanghyun Lee, Eun Ju Cho

Abstract:

Oxidative stress that results from overproduction of free radicals can lead to pathogenesis of human diseases including cancer, neurodegenerative diseases, and cardiovascular disease. Aster yomena (Kitam.) Honda (A. yomena) belonging to Compositae family is a perennial plant, and it has anti-inflammatory, anti-asthmatic and anti-obesity effects. In this study, we investigated the antioxidative effect of A. yomena by measuring 2, 2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl radical (˙OH) and superoxide radical (O₂⁻) scavenging activities in vitro. A. yomena was extracted with ethanol and then partitioned with n-hexane, methylene chloride (CH₂Cl₂), ethyl acetate (EtOAc) and n-butanol (n-BuOH). In DPPH radical scavenging assay, the concentration of A. yomena from 10 to 100μg/mL dose-dependently raised the inhibition of DPPH oxidation. Especially, EtOAc fraction of A. yomena showed the highest DPPH radical scavenging activity among other fractions. The ˙OH radical scavenging activities of the extract and four fractions of A. yomena were increased by over 80% at a concentration of 50μg/mL. Especially, the IC50 value of EtOAc fraction was 0.03 μg/mL that is the lowest value compared with the values of other fractions. In addition, we found that the EtOAc fraction of A. yomena was showed to be better at O₂⁻ radical scavenging than other fractions. Taken together these results, we suggested that A. yomena, especially EtOAc fraction, can be used as a natural antioxidant against free radicals. Acknowledgements: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2016R1D1A1B03931593).

Keywords: Aster yomena (Kitam.) Honda (A. yomena), free radicals, antioxidant, EtOAc fraction

Procedia PDF Downloads 290
3579 Designing of Food Products Enriched With Phytonutrients Assigned for Hypertension Suffering Consumers

Authors: Anna Gramza-Michałowska, Dominik Kmiecik, Justyna Bilon, Joanna Skręty, Joanna Kobus-Cisowska, Józef Korczak, Andrzej Sidor

Abstract:

Background: Hypertension is one of the civilization diseases with a global scope. Many research showed that every day diet influences significantly our health, helping with the prophylaxis and diseases treatment. The key factor here is the presence of plant origin natural bio active components. Aim: The following research describes snack health-oriented products for hypertension sufferers enriched with selected plant ingredients. Various analytical methods have been applied to determine product’s basic composition and their antioxidant activity. Methods: Snack products was formulated from a composition of different flours, oil, yeast, plant particles and extracts. Basic composition of a product was evaluated as content of protein, lipids, fiber, ash and caloricity. Antioxidant capacity of snacks was evaluated with use radical scavenging methods (DPPH, ABTS) and ORAC value. Proposed snacks as new product was also characterized with sensory analysis. Results and discussion: Results showed that addition of phyto nutrients allowed to improve nutritional and antioxidative value of examined products. Also the anti radical potential was significantly increased, with no loss of sensory value of a snacks. Conclusions: Designed snack is rich in polyphenolics, that express high antioxidant activity, helpful in hypertension and as low calories product obesity prophylaxis.

Keywords: antioxidant, well-being, hypertension, bioactive compounds

Procedia PDF Downloads 494
3578 Industrial Wastewater Treatment Improvements Using Limestone

Authors: Mamdouh Y. Saleh, Gaber El Enany, Medhat H. Elzahar, Moustafa H. Omran

Abstract:

The discharge limits of industrial wastewater effluents are subjected to regulations which are getting more restricted with time. A former research occurred in Port Said city studied the efficiency of treating industrial wastewater using the first stage (A-stage) of the multiple-stage plant (AB-system).From the results of this former research, the effluent treated wastewater has high rates of total dissolved solids (TDS) and chemical oxygen demand (COD). The purpose of this paper is to improve the treatment process in removing TDS and COD. So a pilot plant was constructed at wastewater pump station in the industrial area in the south of Port Said. Experimental work was divided into several groups adding powdered limestone with different dosages to wastewater, and for each group wastewater was filtered after being mixed with activated carbon. pH and TSS as variables were also studied. Significant removals of TDS and COD were observed in these experiments showing that using effective adsorbents can aid such removals to a large extent.

Keywords: adsorption, filtration, synthetic wastewater, TDS removal, COD removal

Procedia PDF Downloads 441
3577 Toxicological Study of Umbilicus rupesris L. Leaves: Hematological, Biochemical, and Histopathological Studies

Authors: Afaf Benhouda, Mouloud Yahia, Hachani Khadraoui, Asma Meddour, Souhila Benbia, Abdelmoudjib Ghecham, Djahida Benhouda

Abstract:

Umbilicus rupestris (UR) is an herbal medicine traditionally applied against the ignitions of the skin. The present paper aimed to study the acute and subacute toxicity with orally administered methanolic leaves extract of Umbilicus rupestris L (URMeOH). In acute toxicity tests, four groups of rats (n = 6/group/female) were orally treated with doses of 500, 1000, 1500 and 2000 mg/kg, and general behaviour, adverse effects, and mortality were recorded for up to 14 days. In subacute toxicity study, rats received URAMeOH by gavage at the doses of 100, 200 mg/kg/day (n = 6/group) for 28 days, and biochemical, hematological, and histopathological changes in tissues (liver, kidney) were determined. URMeOH did not produce any hazardous symptoms or death and in the acute toxicity test. Subacute treatment with URMeOH did not show any change in body weight, and hematological and biochemical profiles. In addition, no change was observed either in macroscopic or microscopic aspects of vital organs in rats. Our result showed that Umbilicus rupestris extract could be safe for human use.

Keywords: acute toxicity, biochemical parameters, hematological parameters, Umbilicus rupestris, subacute toxicity

Procedia PDF Downloads 336
3576 Radish Sprout Growth Dependency on LED Color in Plant Factory Experiment

Authors: Tatsuya Kasuga, Hidehisa Shimada, Kimio Oguchi

Abstract:

Recent rapid progress in ICT (Information and Communication Technology) has advanced the penetration of sensor networks (SNs) and their attractive applications. Agriculture is one of the fields well able to benefit from ICT. Plant factories control several parameters related to plant growth in closed areas such as air temperature, humidity, water, culture medium concentration, and artificial lighting by using computers and AI (Artificial Intelligence) is being researched in order to obtain stable and safe production of vegetables and medicinal plants all year anywhere, and attain self-sufficiency in food. By providing isolation from the natural environment, a plant factory can achieve higher productivity and safe products. However, the biggest issue with plant factories is the return on investment. Profits are tenuous because of the large initial investments and running costs, i.e. electric power, incurred. At present, LED (Light Emitting Diode) lights are being adopted because they are more energy-efficient and encourage photosynthesis better than the fluorescent lamps used in the past. However, further cost reduction is essential. This paper introduces experiments that reveal which color of LED lighting best enhances the growth of cultured radish sprouts. Radish sprouts were cultivated in the experimental environment formed by a hydroponics kit with three cultivation shelves (28 samples per shelf) each with an artificial lighting rack. Seven LED arrays of different color (white, blue, yellow green, green, yellow, orange, and red) were compared with a fluorescent lamp as the control. Lighting duration was set to 12 hours a day. Normal water with no fertilizer was circulated. Seven days after germination, the length, weight and area of leaf of each sample were measured. Electrical power consumption for all lighting arrangements was also measured. Results and discussions: As to average sample length, no clear difference was observed in terms of color. As regards weight, orange LED was less effective and the difference was significant (p < 0.05). As to leaf area, blue, yellow and orange LEDs were significantly less effective. However, all LEDs offered higher productivity per W consumed than the fluorescent lamp. Of the LEDs, the blue LED array attained the best results in terms of length, weight and area of leaf per W consumed. Conclusion and future works: An experiment on radish sprout cultivation under 7 different color LED arrays showed no clear difference in terms of sample size. However, if electrical power consumption is considered, LEDs offered about twice the growth rate of the fluorescent lamp. Among them, blue LEDs showed the best performance. Further cost reduction e.g. low power lighting remains a big issue for actual system deployment. An automatic plant monitoring system with sensors is another study target.

Keywords: electric power consumption, LED color, LED lighting, plant factory

Procedia PDF Downloads 184
3575 Chemical Composition and Antibacterial Activity of Ceratonia siliqua L. Growing in Boumerdes, Algeria

Authors: N. Meziou-Chebouti, A. Merabet, Y. Chebouti N. Behidj

Abstract:

This work is a contribution to the knowledge of physicochemical characteristics of mature carob followed by evaluation of the activity, antimicrobial phenolics leaves and green pods of Ceratonia siliqua L. physicochemical study shows that mature carob it has a considerable content of sugar (50.90%), but poor in proteins (7%), fat (8%) and also has a high mineral content. The results obtained from phenolic extracts of leaves and green pods of Ceratonia siliqua L. show a wealth leaf phenolic extract especially flavonoids (0,545 mg EqQ/g) relative to the extract of green pods (0,226 mgEqQ/g). Polyphenols leaves have a slightly inhibitory effect on the growth of strains: Staphylococcus aureus, Escherichia coli, Klebsiella pneumoiae, Streptococcus sp and Sanmonella enteritidis, a strong inhibitory effect on the growth of Pseudomonas strain aerogenosa. Moreover, polyphenols pod have a slightly inhibitory effect on the growth of Streptococcus sp strains, Pseudomonas and aerogenosa Sanmonella enteritidis, a slightly inhibitory effect on the growth of Klebsiella pneumoniae strains, E. coli and Staphylococcus aureus.

Keywords: antimicrobial activity, bacteria, clove, Ceratonia siliqua, polyphenols

Procedia PDF Downloads 345
3574 Population Diversity of Dalmatian Pyrethrum Based on Pyrethrin Content and Composition

Authors: Filip Varga, Nina Jeran, Martina Biosic, Zlatko Satovic, Martina Grdisa

Abstract:

Dalmatian pyrethrum (Tanacetum cinerariifolium /Trevir./ Sch. Bip.), a species endemic to the eastern Adriatic coastline, is the source of natural insecticide pyrethrin. Pyrethrin is a mixture of six compounds (pyrethrin I and II, cinerin I and II, jasmolin I and II) that exhibits high insecticidal activity with no detrimental effects to the environment. A recently optimized matrix-solid phase dispersion method (MSPD), using florisil as the sorbent, acetone-ethyl acetate (1:1, v/v) as the elution solvent, and sodium sulfate anhydrous as the drying agent was utilized to extract the pyrethrins from 10 wild populations (20 individuals per population) distributed along the Croatian coast. All six components in the extracts were qualitatively and quantitatively determined by high-performance liquid chromatography with a diode array detector (HPLC-DAD). Pearson’s correlation index was calculated between pyrethrin compounds, and differences between the populations using the analysis of variance were tested. Additionally, the correlation of each pyrethrin component with spatio-ecological variables (bioclimate, soil properties, elevation, solar radiation, and distance from the coastline) was calculated. Total pyrethrin content ranged from 0.10% to 1.35% of dry flower weight, averaging 0.58% across all individuals. Analysis of variance revealed significant differences between populations based on all six pyrethrin compounds and total pyrethrin content. On average, the lowest total pyrethrin content was found in the population from Pelješac peninsula (0.22% of dry flower weight) in which total pyrethrin content lower than 0.18% was detected in 55% of the individuals. The highest average total pyrethrin content was observed in the population from island Zlarin (0.87% of dry flower weight), in which total pyrethrin content higher than 1.00% was recorded in only 30% of the individuals. Pyrethrin I/pyrethrin II ratio as a measure of extract quality ranged from 0.21 (population from the island Čiovo) to 5.88 (population from island Mali Lošinj) with an average of 1.77 across all individuals. By far, the lowest quality of extracts was found in the population from Mt. Biokovo (pyrethrin I/II ratio lower than 0.72 in 40% of individuals) due to the high pyrethrin II content typical for this population. Pearson’s correlation index revealed a highly significant positive correlation between pyrethrin I content and total pyrethrin content and a strong negative correlation between pyrethrin I and pyrethrin II. The results of this research clearly indicate high intra- and interpopulation diversity of Dalmatian pyrethrum with regards to pyrethrin content and composition. The information obtained has potential use in plant genetic resources conservation and biodiversity monitoring. Possibly the largest potential lies in designing breeding programs aimed at increasing pyrethrin content in commercial breeding lines and reintroduction in agriculture in Croatia. Acknowledgment: This work has been fully supported by the Croatian Science Foundation under the project ‘Genetic background of Dalmatian pyrethrum (Tanacetum cinerariifolium /Trevir/ Sch. Bip.) insecticidal potential’ - (PyrDiv) (IP-06-2016-9034).

Keywords: Dalmatian pyrethrum, HPLC, MSPD, pyrethrin

Procedia PDF Downloads 134