Search results for: partial cement mixing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2671

Search results for: partial cement mixing

1231 An Interactive Platform Displaying Mixed Reality Media

Authors: Alfred Chen, Cheng Chieh Hsu, Yu-Pin Ma, Meng-Jie Lin, Fu Pai Chiu, Yi-Yan Sie

Abstract:

This study is attempted to construct a human-computer interactive platform system that has mainly consisted of an augmented hardware system, a software system, a display table, and mixed media. This system has provided with human-computer interaction services through an interactive platform for the tourism industry. A well designed interactive platform, integrating of augmented reality and mixed media, has potential to enhance museum display quality and diversity. Besides, it will create a comprehensive and creative display mode for most museums and historical heritages. Therefore, it is essential to let public understand what the platform is, how it functions, and most importantly how one builds an interactive augmented platform. Hence the authors try to elaborate the construction process of the platform in detail. Thus, there are three issues to be considered, i.e.1) the theory and application of augmented reality, 2) the hardware and software applied, and 3) the mixed media presented. In order to describe how the platform works, Courtesy Door of Tainan Confucius Temple has been selected as case study in this study. As a result, a developed interactive platform has been presented by showing the physical entity object, along with virtual mixing media such as text, images, animation, and video. This platform will result in providing diversified and effective information that will be delivered to the users.

Keywords: human-computer interaction, mixed reality, mixed media, tourism

Procedia PDF Downloads 484
1230 The Effect of Randomly Distributed Polypropylene Fibers and Some Additive Materials on Freezing-Thawing Durability of a Fine-Grained Soil

Authors: A. Şahin Zaimoglu

Abstract:

A number of studies have been conducted recently to investigate the influence of randomly oriented fibers on some engineering properties of cohesive and cohesionless soils. However, few studies have been carried out on freezing-thawing behavior of fine-grained soils modified with discrete fiber inclusions and additive materials. This experimental study was performed to investigate the effect of randomly distributed polypropylene fibers (PP) and some additive materials [e.g.., borogypsum (BG), fly ash (FA) and cement (C)] on freezing-thawing durability (mass losses) of a fine-grained soil for 6,12 and 18 cycles. The Taguchi method was applied to the experiments and a standard L9 orthogonal array (OA) with four factors and three levels were chosen. A series of freezing-thawing tests were conducted on each specimen. 0-20 % BG, 0-20 % FA, 0-0.25 % PP and 0-3 % of C by total dry weight of mixture were used in the preparation of specimens. Experimental results showed that the most effective materials for the freezing-thawing durability (mass losses) of the samples were borogypsum and fly ash. The values of mass losses for 6, 12 and 18 cycles in optimum conditions were 16.1%, 5.1% and 3.6%, respectively.

Keywords: freezing-thawing, additive materials, reinforced soil, optimization

Procedia PDF Downloads 304
1229 Gut Metabolite Profiling of the Ethnic Groups from Assam, India

Authors: Madhusmita Dehingia, Supriyo Sen, Bhuwan Bhaskar, Tulsi Joishy, Mojibur R. Khan

Abstract:

Human gut microbes and their metabolites are important for maintaining homeostasis in the gut and are responsible for many metabolic and immune mediated diseases. In the present study, we determined the profiles of the gut metabolites of five different ethnic groups (Bodo, Tai-Phake, Karbi, Tea tribe and Tai-Aiton) of Assam. Fecal metabolite profiling of the 39 individuals belonging to the ethnic groups was carried out using Gas chromatography – Mass spectrometry (GC-MS), and comparison was performed among the tribes for common and unique metabolites produced within their gut. Partial Least Squares Discriminant Analysis (PLS-DA) of the metabolites suggested that the individuals grouped according to their ethnicity. Among the 66 abundant metabolites, 12 metabolites were found to be common among the five ethnic groups. Additionally, ethnicity wise some unique metabolites were also detected. For example, the tea tribe of Assam contained the tea components, Aniline and Benzoate more in their gut in comparison to others. Metabolites of microbial origin were also correlated with the already published metagenomic data of the same ethnic group and functional analysis were carried out based on human metabolome database.

Keywords: ethnicity, gut microbiota, GC-MS, metabolites

Procedia PDF Downloads 417
1228 Comparative Assessment of MRR, TWR, and Surface Integrity in Rotary and Stationary Tool EDM for Machining AISI D3 Tool Steel

Authors: Anand Prakash Dwivedi, Sounak Kumar Choudhury

Abstract:

Electric Discharge Machining (EDM) is a well-established and one of the most primitive unconventional manufacturing processes, that is used world-wide for the machining of geometrically complex or hard and electrically conductive materials which are extremely difficult to cut by any other conventional machining process. One of the major flaws, over all its advantages, is its very slow Material Removal Rate (MRR). In order to eradicate this slow machining rate, various researchers have proposed various methods like; providing rotational motion to the tool or work-piece or to both, mixing of conducting additives (such as SiC, Cr, Al, graphite etc) powders in the dielectric, providing vibrations to the tool or work-piece or to both etc. Present work is a comparative study of Rotational and Stationary Tool EDM, which deals with providing rotational motion to the copper tool for the machining of AISI D3 Tool Steel and the results have been compared with stationary tool EDM. It has been found that the tool rotation substantially increases the MRR up to 28%. The average surface finish increases around 9-10% by using the rotational tool EDM. The average tool wear increment is observed to be around 19% due to the tool rotation. Apart from this, the present work also focusses on the recast layer analysis, which are being re-deposited on the work-piece surface during the operation. The recast layer thickness is less in case of Rotational EDM and more for Stationary Tool EDM. Moreover, the cracking on the re-casted surface is also more for stationary tool EDM as compared with the rotational EDM.

Keywords: EDM, MRR, Ra, TWR

Procedia PDF Downloads 314
1227 Electromagnetic Simulation Based on Drift and Diffusion Currents for Real-Time Systems

Authors: Alexander Norbach

Abstract:

The script in this paper describes the use of advanced simulation environment using electronic systems (Microcontroller, Operational Amplifiers, and FPGA). The simulation may be used for all dynamic systems with the diffusion and the ionisation behaviour also. By additionally required observer structure, the system works with parallel real-time simulation based on diffusion model and the state-space representation for other dynamics. The proposed deposited model may be used for electrodynamic effects, including ionising effects and eddy current distribution also. With the script and proposed method, it is possible to calculate the spatial distribution of the electromagnetic fields in real-time. For further purpose, the spatial temperature distribution may be used also. With upon system, the uncertainties, unknown initial states and disturbances may be determined. This provides the estimation of the more precise system states for the required system, and additionally, the estimation of the ionising disturbances that occur due to radiation effects. The results have shown that a system can be also developed and adopted specifically for space systems with the real-time calculation of the radiation effects only. Electronic systems can take damage caused by impacts with charged particle flux in space or radiation environment. In order to be able to react to these processes, it must be calculated within a shorter time that ionising radiation and dose is present. All available sensors shall be used to observe the spatial distributions. By measured value of size and known location of the sensors, the entire distribution can be calculated retroactively or more accurately. With the formation, the type of ionisation and the direct effect to the systems and thus possible prevent processes can be activated up to the shutdown. The results show possibilities to perform more qualitative and faster simulations independent of kind of systems space-systems and radiation environment also. The paper gives additionally an overview of the diffusion effects and their mechanisms. For the modelling and derivation of equations, the extended current equation is used. The size K represents the proposed charge density drifting vector. The extended diffusion equation was derived and shows the quantising character and has similar law like the Klein-Gordon equation. These kinds of PDE's (Partial Differential Equations) are analytically solvable by giving initial distribution conditions (Cauchy problem) and boundary conditions (Dirichlet boundary condition). For a simpler structure, a transfer function for B- and E- fields was analytically calculated. With known discretised responses g₁(k·Ts) and g₂(k·Ts), the electric current or voltage may be calculated using a convolution; g₁ is the direct function and g₂ is a recursive function. The analytical results are good enough for calculation of fields with diffusion effects. Within the scope of this work, a proposed model of the consideration of the electromagnetic diffusion effects of arbitrary current 'waveforms' has been developed. The advantage of the proposed calculation of diffusion is the real-time capability, which is not really possible with the FEM programs available today. It makes sense in the further course of research to use these methods and to investigate them thoroughly.

Keywords: advanced observer, electrodynamics, systems, diffusion, partial differential equations, solver

Procedia PDF Downloads 127
1226 Antiinflammatory and Wound Healing Activity of Sedum Essential Oils Growing in Kazakhstan

Authors: Dmitriy Yu. Korulkin, Raissa A. Muzychkina

Abstract:

The last decade the growth of severe and disseminated forms of inflammatory diseases is observed in Kazakhstan, in particular, septic shock, which progresses on 3-15% of patients with infectious complications of postnatal period. In terms of the rate of occurrence septic shock takes third place after hemorrhagic and cardiovascular shock, in terms of lethality it takes first place. The structure of obstetric sepsis has significantly changed. Currently the first place is taken by postabortive sepsis (40%) that is connected with usage of imperfect methods of artificial termination of pregnancy in late periods (intraamnial injection of sodium chloride, glucose). The second place is taken by postnatal sepsis (32%); the last place is taken by septic complications of caesarean section (28%). In this connection, search for and assessment of effectiveness of new medicines for treatment of postoperative infectious complications, having biostimulating effect and speeding up regeneration processes, is very promising and topical. Essential oil was obtained by the method hydrodistillation air-dry aerial part of Sedum L. plants using Clevenger apparatus. Pilot batch of plant medicinal product based on Sedum essential oils was produced by Chimpharm JSC, Santo Member of Polpharma Group (Kazakhstan). During clinical test of the plant medicinal product based on Sedum L. essential oils 37 female patients at the age from 35 to 57 with clinical signs of complicated postoperative processes and 12 new mothers with clinical signs of inflammatory process on sutures on anterior abdominal wall after caesarean section and partial disruption of surgical suture line on perineum were examined. Medicine usage methods - surgical wound treatment 2 times a day, treatment with other medicines of local action was not performed. Before and after treatment general clinical test, determination of immune status, bacterioscopic test of wound fluid was performed to all women, medical history data was taken into account, wound cleansing and healing time, full granulations, side effects and complications, satisfaction with the used medicine was assessed. On female patients with inflammatory infiltration and partial disruption of surgical suture line anesthetic wound healing effect of plant medicinal product based on Sedum L. essential oils was observed as early as on the second day after beginning of using it, wound cleansing took place, as a rule, within the first row days. Hyperemia in the area of suture line also was not observed for 2-3-d day of usage of medicine, good constant course was observed. The absence of clinical effect on this group of patients was not registered. The represented data give evidence of that clinical effect was accompanied with normalization of changed laboratory findings. No allergic responses or side effects were observed during usage of the plant medicinal products based on Sedum L. essential oils.

Keywords: antiinflammatory, bioactive substances, essential oils, isolation, sedum L., wound healing

Procedia PDF Downloads 264
1225 The Effect of Acrylic Gel Grouting on Groundwater in Porous Media

Authors: S. Wagner, C. Boley, Y. Forouzandeh

Abstract:

When digging excavations, groundwater bearing layers are often encountered. In order to allow anhydrous excavation, soil groutings are carried out, which form a water-impermeable layer. As it is injected into groundwater areas, the effects of the materials used on the environment must be known. Developing an eco-friendly, economical and low viscous acrylic gel which has a sealing effect on groundwater is therefore a significant task. At this point the study begins. Basic investigations with the rheometer and a reverse column experiment have been performed with different mixing ratios of an acrylic gel. A dynamic rheology study was conducted to determine the time at which the gel still can be processed and the maximum gel strength is reached. To examine the effect of acrylic gel grouting on determine the parameters pH value, turbidity, electric conductivity, and total organic carbon on groundwater, an acrylic gel was injected in saturated sand filled the column. The structure was rinsed with a constant flow and the eluate was subsequently examined. The results show small changes in pH values and turbidity but there is a dependency between electric conductivity and total organic carbon. The curves of the two parameters react at the same time, which means that the electrical conductivity in the eluate can be measured constantly until the maximum is reached and only then must total organic carbon (TOC) samples be taken.

Keywords: acrylic gel grouting, dynamic rheology study, electric conductivity, total organic carbon

Procedia PDF Downloads 142
1224 Deflection Behaviour of Retaining Wall with Pile for Pipeline on Slope of Soft Soil

Authors: Mutadi

Abstract:

Pipes laying on an unstable slope of soft soil are prone to movement. Pipelines that are buried in unstable slope areas will move due to lateral loads from soil movement, which can cause damage to the pipeline. A small-scale laboratory model of the reinforcement system of piles supported by retaining walls was conducted to investigate the effect of lateral load on the reinforcement. In this experiment, the lateral forces of 0.3 kN, 0.35 kN, and 0.4 kN and vertical force of 0.05 kN, 0.1 kN, and 0.15 kN were used. Lateral load from the electric jack is equipped with load cell and vertical load using the cement-steel box. To validate the experimental result, a finite element program named 2-D Plaxis was used. The experimental results showed that with an increase in lateral loading, the displacement of the reinforcement system increased. For a Vertical Load, 0.1 kN and versus a lateral load of 0.3 kN causes a horizontal displacement of 0.35 mm and an increase of 2.94% for loading of 0.35 kN and an increase of 8.82% for loading 0.4 kN. The pattern is the same in the finite element method analysis, where there was a 6.52% increase for 0.35 kN loading and an increase to 23.91 % for 0.4 kN loading. In the same Load, the Reinforcement System is reliable, as shown in Safety Factor on dry conditions were 3.3, 2.824 and 2.474, and on wet conditions were 2.98, 2.522 and 2.235.

Keywords: soft soil, deflection, wall, pipeline

Procedia PDF Downloads 161
1223 The Morphology of Sri Lankan Text Messages

Authors: Chamindi Dilkushi Senaratne

Abstract:

Communicating via a text or an SMS (Short Message Service) has become an integral part of our daily lives. With the increase in the use of mobile phones, text messaging has become a genre by itself worth researching and studying. It is undoubtedly a major phenomenon revealing language change. This paper attempts to describe the morphological processes of text language of urban bilinguals in Sri Lanka. It will be a typological study based on 500 English text messages collected from urban bilinguals residing in Colombo. The messages are selected by categorizing the deviant forms of language use apparent in text messages. These stylistic deviations are a deliberate skilled performance by the users of the language possessing an in-depth knowledge of linguistic systems to create new words and thereby convey their linguistic identity and individual and group solidarity via the message. The findings of the study solidifies arguments that the manipulation of language in text messages is both creative and appropriate. In addition, code mixing theories will be used to identify how existing morphological processes are adapted by bilingual users in Sri Lanka when texting. The study will reveal processes such as omission, initialism, insertion and alternation in addition to other identified linguistic features in text language. The corpus reveals the most common morphological processes used by Sri Lankan urban bilinguals when sending texts.

Keywords: bilingual, deviations, morphology, texts

Procedia PDF Downloads 264
1222 Microstructural Properties of the Interfacial Transition Zone and Strength Development of Concrete Incorporating Recycled Concrete Aggregate

Authors: S. Boudali, A. M. Soliman, B. Abdulsalam, K. Ayed, D. E. Kerdal, S. Poncet

Abstract:

This study investigates the potential of using crushed concrete as aggregates to produce green and sustainable concrete. Crushed concrete was sieved to powder fine recycled aggregate (PFRA) less than 80 µm and coarse recycled aggregates (CRA). Physical, mechanical, and microstructural properties for PFRA and CRA were evaluated. The effect of the additional rates of PFRA and CRA on strength development of recycled aggregate concrete (RAC) was investigated. Additionally, the characteristics of interfacial transition zone (ITZ) between cement paste and recycled aggregate were also examined. Results show that concrete mixtures made with 100% of CRA and 40% PFRA exhibited similar performance to that of the control mixture prepared with 100% natural aggregate (NA) and 40% natural pozzolan (NP). Moreover, concrete mixture incorporating recycled aggregate exhibited a slightly higher later compressive strength than that of the concrete with NA. This was confirmed by the very dense microstructure for concrete mixture incorporating recycled concrete aggregates compared to that of conventional concrete mixture.

Keywords: compressive strength, recycled concrete aggregates, microstructure, interfacial transition zone, powder fine recycled aggregate

Procedia PDF Downloads 332
1221 Heat Transfer from a Cylinder in Cross-Flow of Single and Multiphase Flows

Authors: F. A. Hamad, S. He

Abstract:

In this paper, the average heat transfer characteristics for a cross flow cylinder of 16 mm diameter in a vertical pipe has been studied for single-phase flow (water/oil) and multicomponent (non-boiling) flow (water-air, water-oil, oil-air and water-oil-air). The cylinder is uniformly heated by electrical heater placed at the centre of the element. The results show that the values of average heat transfer coefficients for water are around four times the values for oil flow. Introducing air as a second phase with water has very little effect on heat transfer rate, while the heat transfer increased by 70% in case of oil. For water–oil flow, the heat transfer coefficient values are reflecting the percentage of water up to 50%, but increasing the water more than 50% leads to a sharp increase in the heat transfer coefficients to become close to the values of pure water. The enhancement of heat transfer by mixing two phases may be attributed to the changes in flow structure near to cylinder surface which lead to thinner boundary layer and higher turbulence. For three-phase flow, the heat transfer coefficients for all cases fall within the limit of single-phase flow of water and oil and are very close to pure water values. The net effect of the turbulence augmentation due to the introduction of air and the attenuation due to the introduction of oil leads to a thinner boundary layer of oil over the cylinder surface covered by a mixture of water and air bubbles.

Keywords: circular cylinder, cross flow, hear transfer, multicomponent multiphase flow

Procedia PDF Downloads 390
1220 Properties of Compressed Earth Blocks Enhanced with Clay Pozzolana

Authors: Humphrey Danso, Seth Adu

Abstract:

The high cost of cement and its greenhouse effect on the environment have led to the use of alternative building materials in the production of block and bricks. This study seeks to investigate the properties of compressed earth blocks (CEBs) enhanced with clay pozzolana. CEBs of size 290 × 140 × 100 mm were prepared with 10, 20 and 30 % weight of clay pozzolana. The CEBs were compressed at a constant pressure of 5 MPa and cured for 28 days. The blocks, after 7, 14, 21 and 28 days of curing were tested for density, water absorption, compressive strength and erosion. It was found that amount of pozzolana content did not have much influence on blocks’ density. There was a decline in water absorption of the stabilised blocks ranged between 32.8% and 252.2% over the unstabilised blocks. The highest compressive strength (3.75MPa) of the stabilized blocks was achieved at 28th day of curing with 30% clay pozzolana content, which showed an improvement of 116.8% strength over the unstabilised blocks. Furthermore, there was a statistically significant difference in the erosion resistance between the stabilized blocks and the unstabilised blocks. The study concludes that the inclusion of the clay pozzolana increased the properties of the CEBs, and therefore recommended for use in the building of houses.

Keywords: clay pozzolana, compressed earth blocks (CEBs), compressive strength, erosion test

Procedia PDF Downloads 277
1219 Reliability Assessment Using Full Probabilistic Modelling for Carbonation and Chloride Exposures, Including Initiation and Propagation Periods

Authors: Frank Papworth, Inam Khan

Abstract:

Fib’s model code 2020 has four approaches for design life verification. Historically ‘deemed to satisfy provisions have been the principal approach, but this has limited options for materials and covers. The use of an equation in fib’s model code for service life design to predict time to corrosion initiation has become increasingly popular to justify further options, but in some cases, the analysis approaches are incorrect. Even when the equations are computed using full probabilistic analysis, there are common mistakes. This paper reviews the work of recent fib commissions on implementing the service life model to assess the reliability of durability designs, including initiation and propagation periods. The paper goes on to consider the assessment of deemed to satisfy requirements in national codes and considers the influence of various options, including different steel types, various cement systems, quality of concrete and cover, on reliability achieved. As modelling is based on achieving agreed target reliability, consideration is given to how a project might determine appropriate target reliability.

Keywords: chlorides, marine, exposure, design life, reliability, modelling

Procedia PDF Downloads 229
1218 Designing Agile Product Development Processes by Transferring Mechanisms of Action Used in Agile Software Development

Authors: Guenther Schuh, Michael Riesener, Jan Kantelberg

Abstract:

Due to the fugacity of markets and the reduction of product lifecycles, manufacturing companies from high-wage countries are nowadays faced with the challenge to place more innovative products within even shorter development time on the market. At the same time, volatile customer requirements have to be satisfied in order to successfully differentiate from market competitors. One potential approach to address the explained challenges is provided by agile values and principles. These agile values and principles already proofed their success within software development projects in the form of management frameworks like Scrum or concrete procedure models such as Extreme Programming or Crystal Clear. Those models lead to significant improvements regarding quality, costs and development time and are therefore used within most software development projects. Motivated by the success within the software industry, manufacturing companies have tried to transfer agile mechanisms of action to the development of hardware products ever since. Though first empirical studies show similar effects in the agile development of hardware products, no comprehensive procedure model for the design of development iterations has been developed for hardware development yet due to different constraints of the domains. For this reason, this paper focusses on the design of agile product development processes by transferring mechanisms of action used in agile software development towards product development. This is conducted by decomposing the individual systems 'product development' and 'agile software development' into relevant elements and symbiotically composing the elements of both systems in respect of the design of agile product development processes afterwards. In a first step, existing product development processes are described following existing approaches of the system theory. By analyzing existing case studies from industrial companies as well as academic approaches, characteristic objectives, activities and artefacts are identified within a target-, action- and object-system. In partial model two, mechanisms of action are derived from existing procedure models of agile software development. These mechanisms of action are classified in a superior strategy level, in a system level comprising characteristic, domain-independent activities and their cause-effect relationships as well as in an activity-based element level. Within partial model three, the influence of the identified agile mechanism of action towards the characteristic system elements of product development processes is analyzed. For this reason, target-, action- and object-system of the product development are compared with the strategy-, system- and element-level of agile mechanism of action by using the graph theory. Furthermore, the necessity of existence of activities within iteration can be determined by defining activity-specific degrees of freedom. Based on this analysis, agile product development processes are designed in form of different types of iterations within a last step. By defining iteration-differentiating characteristics and their interdependencies, a logic for the configuration of activities, their form of execution as well as relevant artefacts for the specific iteration is developed. Furthermore, characteristic types of iteration for the agile product development are identified.

Keywords: activity-based process model, agile mechanisms of action, agile product development, degrees of freedom

Procedia PDF Downloads 200
1217 Modeling Reflection and Transmission of Elastodiffussive Wave Sata Semiconductor Interface

Authors: Amit Sharma, J. N. Sharma

Abstract:

This paper deals with the study of reflection and transmission characteristics of acoustic waves at the interface of a semiconductor halfspace and elastic solid. The amplitude ratios (reflection and transmission coefficients) of reflected and transmitted waves to that of incident wave varying with the incident angles have been examined for the case of quasi-longitudinal wave. The special cases of normal and grazing incidence have also been derived with the help of Gauss elimination method. The mathematical model consisting of governing partial differential equations of motion and charge carriers diffusion of n-type semiconductors and elastic solid has been solved both analytically and numerically in the study. The numerical computations of reflection and transmission coefficients has been carried out by using MATLAB programming software for silicon (Si) semiconductor and copper elastic solid. The computer simulated results have been plotted graphically for Si semiconductors. The study may be useful in semiconductors, geology, and seismology in addition to surface acoustic wave (SAW) devices.

Keywords: quasilongitudinal, reflection and transmission, semiconductors, acoustics

Procedia PDF Downloads 387
1216 Understanding the Role of Alkali-Free Accelerators in Wet-Mix Shotcrete

Authors: Ezgi Yurdakul, Klaus-Alexander Rieder, Richard Sibbick

Abstract:

Most of the shotcrete projects require compliance with meeting a specified early-age strength target (e.g., reaching 1 MPa in 1 hour) that is selected based on the underground conditions. To meet the desired early-age performance characteristics, accelerators are commonly used as they increase early-age strength development rate and accelerate the setting thereby reducing sagging and rebound. The selection of accelerator type and its dosage is made by the setting time and strength required for the shotcrete application. While alkaline and alkali-free accelerators are the two main types used in wet-mix shotcrete; alkali-free admixtures increasingly substitute the alkaline accelerators to improve the performance and working safety. This paper aims to evaluate the impact of alkali-free accelerators in wet-mix on various tests including set time, early and later-age compressive strength, boiled absorption, and electrical resistivity. Furthermore, the comparison between accelerated and non-accelerated samples will be made to demonstrate the interaction between cement and accelerators. Scanning electron microscopy (SEM), fluorescent resin impregnated thin section and cut and polished surface images will be used to understand the microstructure characterization of mixes in the presence of accelerators.

Keywords: accelerators, chemical admixtures, shotcrete, sprayed concrete

Procedia PDF Downloads 166
1215 Cold Spray Coating and Its Application for High Temperature

Authors: T. S. Sidhu

Abstract:

Amongst the existing coatings methods, the cold spray is new upcoming process to deposit coatings. As from the name itself, the cold spray coating takes place at very low temperature as compare to other thermal spray coatings. In all other thermal spray coating process the partial melting of the coating powder particles takes place before deposition, but cold spray process takes place in solid state. In cold spray process, the bonding of coating power with substrate is not metallurgical as in other thermal spray processes. Due to supersonic speed and less temperature of spray particles, solid state, dense, and oxide free coatings are produced. Due to these characteristics, the cold spray coatings have been used to protect the materials against hot corrosion. In the present study, the cold spray process, cold spray fundaments, its types, and its applications for high temperatures are discussed in the light of presently available literature. In addition, the assessment of cold spray with the competitive technologies has been conferred with available literature.

Keywords: cold spray coating, hot corrosion, thermal spray coating, high-temperature materials

Procedia PDF Downloads 236
1214 Characterization of Calcined Clay Blended Self Compacting Concrete-Correlation between Super-Plasticizer Dosage and Self Compacting Concrete Properties

Authors: Kumator Josiphiah Taku

Abstract:

Sustainability in construction is essential to the economic construction and can be achieved by the use of locally available construction materials. This research work, thus, uses locally available materials –calcined clay and Sandcrete SPR-300 superplasticizer in the production of Self Compacting Concrete (SCC) by investigating the correlation between the superplasticizer dosage and the fresh and hardened states properties of a grade 50 SCC made by incorporating a Calcined Clay (CC) – Portland Limestone Cement (PLC) blend as the cementitious matter at 20% replacement of PLC with CC and using CC as filler. The superplasticizer dosage was varied from 0.4 to 3.0% by weight of cementitious material and the slump, v-funnel, L-box and strength parameters investigated. The result shows a positive correlation between the increased dosage of the superplasticizer and the fresh and hardened states properties of the SCC up to 2% dosage. The J¬Spread¬, t¬500J¬, Slump flow, L-box H¬2¬/H¬1 ¬ratio and strength, all increases with SP dosage while the V-funnel flow decreased with SP dosage. Overall, SP ratio of 0.5 to 2.0 can be used in improving the properties of SCC produced using calcined clay both as filler and cementitious material.

Keywords: calcined clay, compressive strength, fresh-state properties of SCC, self compacting concrete, superplasticizer dosage

Procedia PDF Downloads 157
1213 Comparative Study of Natural Coarse Aggregate Concrete with Recycled Concrete Aggregate Concrete

Authors: Ahmad Saadiq, Neeraj Sahu

Abstract:

The partial or full replacement of natural coarse aggregate by recycled concrete aggregate (RCA) is of great benefit to the environment, as the demand of natural coarse aggregate reduces. In the modern construction and practice, the use of RCA is limited to backfilling and road construction. The establishment of RCA for its wide application can only be done after having an understanding of the use of RCA in conventional concrete. To have an insight to this, various tests to determine the compressive strength, elastic strength, workability, durability and drying shrinkage tests can be done and the test results may be different from that obtained from natural coarse aggregates, by using natural coarse aggregate in concrete. This paper gives a comprehensive review of the said tests done on RCA concrete. The results obtained from the tests indicate that RCA concrete gives comparable compressive strength, stiffness, and workability relative to the corresponding results obtained from the natural coarse aggregates. However, the durability and drying shrinkage had more variance but well within recommended limits.

Keywords: aggregate, compressive strength, durability, modulus of elasticity, recycled concrete, shrinkage, workability

Procedia PDF Downloads 276
1212 A Hybrid Combustion Chamber Design for Diesel Engines

Authors: R. Gopakumar, G. Nagarajan

Abstract:

Both DI and IDI systems possess inherent advantages as well as disadvantages. The objective of the present work is to obtain maximum advantages of both systems by implementing a hybrid design. A hybrid combustion chamber design consists of two combustion chambers viz., the main combustion chamber and an auxiliary combustion chamber. A fuel injector supplies major quantity of fuel to the auxiliary chamber. Due to the increased swirl motion in auxiliary chamber, mixing becomes more efficient which contributes to reduction in soot/particulate emissions. Also, by increasing the fuel injection pressure, NOx emissions can be reduced. The main objective of the hybrid combustion chamber design is to merge the positive features of both DI and IDI combustion chamber designs, which provides increased swirl motion and improved thermal efficiency. Due to the efficient utilization of fuel, low specific fuel consumption can be ensured. This system also aids in increasing the power output for same compression ratio and injection timing as compared with the conventional combustion chamber designs. The present system also reduces heat transfer and fluid dynamic losses which are encountered in IDI diesel engines. Since the losses are reduced, overall efficiency of the engine increases. It also minimizes the combustion noise and NOx emissions in conventional DI diesel engines.

Keywords: DI, IDI, hybrid combustion, diesel engines

Procedia PDF Downloads 521
1211 Divalent Iron Oxidative Process for Degradation of Carbon and Nitrogen Based Pollutants from Dye Intermediate Industrial Wastewater

Authors: Nibedita Pani, Vishnu Tejani, T. S. Anantha Singh

Abstract:

Water pollution resulting from discharge of partial/not treated textile wastewater containing high carbon and nitrogen pollutants pose a huge threat to the environment, ecosystem, and human health. It is essential to remove carbon- and nitrogen-based organic pollutants more effectively from industrial wastewater before discharging. The present study focuses on removal of carbon-based pollutant in particular COD (chemical oxygen demand) and nitrogen-based pollutants, in particular, ammoniacal nitrogen by Fenton oxidation process using Fe²⁺ and H₂O₂ as reagents. The study was carried out with high strength wastewater containing initial COD 5632 mg/L and NH⁴⁺-N 1372 mg/L. The major operating condition like pH was varied between 1.0 to 4.0. The maximum degradation was obtained at pH 3.0 taking the molar ratio of Fe²⁺/H₂O₂ as 1:1. At this pH, the removal efficiencies of COD and ammoniacal nitrogen were found to be 77.27% and 74.9%, respectively. The Fenton process can be the best alternative for the simultaneous removal of COD and NH4+-N from industrial wastewater.

Keywords: ammoniacal nitrogen, COD, Fenton oxidation, industrial wastewater

Procedia PDF Downloads 197
1210 Seismic Vulnerability Assessment of High-Rise Structures in Addis Ababa, Ethiopia: Implications for Urban Resilience Along the East African Rift Margin

Authors: Birhanu Abera Kibret

Abstract:

The abstract highlights findings from a seismicity study conducted in the Ethiopian Rift Valley and adjacent cities, including Semera, Adama, and Hawasa, located in Afar and the Main Ethiopian Rift system. The region experiences high seismicity, characterized by small to moderate earthquakes situated in the mid-to-upper crust. Additionally, the capital city of Ethiopia, Addis Ababa, situated in the rift margin, experiences seismic activity, with small to relatively moderate earthquakes observed to the east and southeast of the city, alongside the rift valley. These findings underscore the seismic vulnerability of the region, emphasizing the need for comprehensive seismic risk assessment and mitigation strategies to enhance resilience and preparedness.

Keywords: seismic hazard, seismicity, crustal structure, magmatic intrusion, partial meltung

Procedia PDF Downloads 56
1209 Reburning Characteristics of Biomass Syngas in a Pilot Scale Heavy Oil Furnace

Authors: Sang Heon Han, Daejun Chang, Won Yang

Abstract:

NOx reduction characteristics of syngas fuel were numerically investigated for the 2MW pilot scale heavy oil furnace of KITECH (Korea Institute of Industrial Technology). The secondary fuel and syngas was fed into the furnace with two purposes- partial replacement of main fuel and reburning of NOx. Some portion of syngas was fed into the flame zone to partially replace the heavy oil, while the other portion was fed into the furnace downstream to reduce NOx generation. The numerical prediction was verified by comparing it with the experimental results. Syngas of KITECH’s experiment, assumed to be produced from biomass, had very low calorific value and contained 3% hydrocarbon. This study investigated the precise behavior of NOx generation and NOx reduction as well as thermo-fluidic characteristics inside the furnace, which was unavailable with experiment. In addition to 3% hydrocarbon syngas, 5%, and 7% hydrocarbon syngas were numerically tested as reburning fuels to analyze the effect of hydrocarbon proportion to NOx reduction. The prediction showed that the 3% hydrocarbon syngas is as much effective as 7% hydrocarbon syngas in reducing NOx.

Keywords: syngas, reburning, heavy oil, furnace

Procedia PDF Downloads 434
1208 Numerical Model of Crude Glycerol Autothermal Reforming to Hydrogen-Rich Syngas

Authors: A. Odoom, A. Salama, H. Ibrahim

Abstract:

Hydrogen is a clean source of energy for power production and transportation. The main source of hydrogen in this research is biodiesel. Glycerol also called glycerine is a by-product of biodiesel production by transesterification of vegetable oils and methanol. This is a reliable and environmentally-friendly source of hydrogen production than fossil fuels. A typical composition of crude glycerol comprises of glycerol, water, organic and inorganic salts, soap, methanol and small amounts of glycerides. Crude glycerol has limited industrial application due to its low purity thus, the usage of crude glycerol can significantly enhance the sustainability and production of biodiesel. Reforming techniques is an approach for hydrogen production mainly Steam Reforming (SR), Autothermal Reforming (ATR) and Partial Oxidation Reforming (POR). SR produces high hydrogen conversions and yield but is highly endothermic whereas POR is exothermic. On the downside, PO yields lower hydrogen as well as large amount of side reactions. ATR which is a fusion of partial oxidation reforming and steam reforming is thermally neutral because net reactor heat duty is zero. It has relatively high hydrogen yield, selectivity as well as limits coke formation. The complex chemical processes that take place during the production phases makes it relatively difficult to construct a reliable and robust numerical model. Numerical model is a tool to mimic reality and provide insight into the influence of the parameters. In this work, we introduce a finite volume numerical study for an 'in-house' lab-scale experiment of ATR. Previous numerical studies on this process have considered either using Comsol or nodal finite difference analysis. Since Comsol is a commercial package which is not readily available everywhere and lab-scale experiment can be considered well mixed in the radial direction. One spatial dimension suffices to capture the essential feature of ATR, in this work, we consider developing our own numerical approach using MATLAB. A continuum fixed bed reactor is modelled using MATLAB with both pseudo homogeneous and heterogeneous models. The drawback of nodal finite difference formulation is that it is not locally conservative which means that materials and momenta can be generated inside the domain as an artifact of the discretization. Control volume, on the other hand, is locally conservative and suites very well problems where materials are generated and consumed inside the domain. In this work, species mass balance, Darcy’s equation and energy equations are solved using operator splitting technique. Therefore, diffusion-like terms are discretized implicitly while advection-like terms are discretized explicitly. An upwind scheme is adapted for the advection term to ensure accuracy and positivity. Comparisons with the experimental data show very good agreements which build confidence in our modeling approach. The models obtained were validated and optimized for better results.

Keywords: autothermal reforming, crude glycerol, hydrogen, numerical model

Procedia PDF Downloads 134
1207 Durrmeyer Type Modification of q-Generalized Bernstein Operators

Authors: Ruchi, A. M. Acu, Purshottam N. Agrawal

Abstract:

The purpose of this paper to introduce the Durrmeyer type modification of q-generalized-Bernstein operators which include the Bernstein polynomials in the particular α = 0. We investigate the rate of convergence by means of the Lipschitz class and the Peetre’s K-functional. Also, we define the bivariate case of Durrmeyer type modification of q-generalized-Bernstein operators and study the degree of approximation with the aid of the partial modulus of continuity and the Peetre’s K-functional. Finally, we introduce the GBS (Generalized Boolean Sum) of the Durrmeyer type modification of q- generalized-Bernstein operators and investigate the approximation of the Bögel continuous and Bögel differentiable functions with the aid of the Lipschitz class and the mixed modulus of smoothness.

Keywords: Bögel continuous, Bögel differentiable, generalized Boolean sum, Peetre’s K-functional, Lipschitz class, mixed modulus of smoothness

Procedia PDF Downloads 207
1206 The Spherical Geometric Model of Absorbed Particles: Application to the Electron Transport Study

Authors: A. Bentabet, A. Aydin, N. Fenineche

Abstract:

The mean penetration depth has a most important in the absorption transport phenomena. Analytical model of light ion backscattering coefficients from solid targets have been made by Vicanek and Urbassek. In the present work, we showed a mathematical expression (deterministic model) for Z1/2. In advantage, in the best of our knowledge, relatively only one analytical model exit for electron or positron mean penetration depth in solid targets. In this work, we have presented a simple geometric spherical model of absorbed particles based on CSDA scheme. In advantage, we have showed an analytical expression of the mean penetration depth by combination between our model and the Vicanek and Urbassek theory. For this, we have used the Relativistic Partial Wave Expansion Method (RPWEM) and the optical dielectric model to calculate the elastic cross sections and the ranges respectively. Good agreement was found with the experimental and theoretical data.

Keywords: Bentabet spherical geometric model, continuous slowing down approximation, stopping powers, ranges, mean penetration depth

Procedia PDF Downloads 637
1205 C Vibration Analysis of a Beam on Elastic Foundation with Elastically Restrained Ends Using Spectral Element Method

Authors: Hamioud Saida, Khalfallah Salah

Abstract:

In this study, a spectral element method is employed to predict the free vibration of a Euler-Bernoulli beam resting on a Winkler foundation with elastically restrained ends. The formulation of the dynamic stiffness matrix has been established by solving the differential equation of motion, which was transformed to frequency domain. Non-dimensional natural frequencies and shape modes are obtained by solving the partial differential equations, numerically. Numerical comparisons and examples are performed to show the effectiveness of the SEM and to investigate the effects of various parameters, such as the springs at the boundaries and the elastic foundation parameter on the vibration frequencies. The obtained results demonstrate that the present method can also be applied to solve the more general problem of the dynamic analysis of structures with higher order precision.

Keywords: elastically supported Euler-Bernoulli beam, free-vibration, spectral element method, Winkler foundation

Procedia PDF Downloads 129
1204 Genotyping of G/P No Typable Group a Rotavirus Strains Revealed G2 and G9 Genotype Circulations in Moroccan Children Fully Vaccinated with Rotarix™

Authors: H. Boulahyaoui, S. Alaoui Amine, C. Loutfi, H. El Annaz, N. Touil, El M. El Fahim, S. Mrani

Abstract:

Three Moroccan children fully vaccinated with Rotarix™ have been hospitalized for Rotavirus Gastroenteritis (RVGE) in the pediatric division of the Farabi Hospital, Oujda. Rotavirus G/P genotypes could not be typed because of their delayed crossing threshold (Ct) resolute with a group A rotavirus (RVA) real time RT-PCR. These strains were adapted to cell culture. All viruses replicated and caused extensive cytopathic effects after four or five passages in MA104 cell lines. Significant improvements have been obtained in the amount of viral particles. Each virus multiplied to a high titer (7.5 TCID50/ml). VP7 and VP4 partial gene sequencing revealed distinct genotypes compared to the Rotarix(®) vaccine strain. Two strains were of G2P[4] genotype whereas the third was G9P[8] genotype. Virus isolation while labor intensive, is recommended as a second test, especially when higher sensitivity for conventional RVA genotyping RT-PCR is needed. VP7 antigenic similarities between these strains and Rotarix were determined.

Keywords: esacpe-vaccine, Morocco, Rotarix, G2P[4], G9P[8]

Procedia PDF Downloads 327
1203 Microstructure Analysis of Biopolymer Mixture (Chia-Gelatin) by Laser Confocal Microscopy

Authors: Emmanuel Flores Huicochea, Guadalupe Borja Mendiola, Jacqueline Flores Lopez, Rodolfo Rendon Villalobos

Abstract:

The usual procedure to investigate the properties of biodegradable films has been to prepare the film, measure the mechanical or transport properties and then decide whether the mixture has better properties than the individual components, instead of investigating whether the mixture has biopolymer-biopolymer interaction, then prepare the film and finally measure the properties of the film. The work investigates the presence of interaction biopolymer-biopolymer in a mixture of chia biopolymer and gelatin using Laser Confocal Microscopy (LCM). Previously, the chia biopolymer was obtained from chia seed. CML analysis of mixtures of chia biopolymer-gelatin without Na⁺ ions exhibited aggregates of different size, in the range of 100-400 μm, of defined color, for the two colors, but no mixing of color was observed. The increased of gelatin in the mixture decreases the size and number of aggregates. The tridimensional microstructure reveled that there are two layers of biopolymers, chia and gelatin well defined. The mixture chia biopolymer-gelatin with 10 mM Na⁺ and with a ratio 75:25 (chia-gelatin) showed lower aggregated size than others mixture with and without ions. This result could be explained because the chia biopolymer is a polyelectrolyte and the added sodium ions reduce the molecular rigidity by neutralizing the negative charges that the chia biopolymer possesses and therefore a better biopolymer-biopolymer interaction is allowed between the biopolymer of chia and gelatin.

Keywords: biopolymer-biopolymer interaction, confocal laser microscopy, CLM, microstructure, mixture chia-gelatin

Procedia PDF Downloads 201
1202 A Relational Data Base for Radiation Therapy

Authors: Raffaele Danilo Esposito, Domingo Planes Meseguer, Maria Del Pilar Dorado Rodriguez

Abstract:

As far as we know, it is still unavailable a commercial solution which would allow to manage, openly and configurable up to user needs, the huge amount of data generated in a modern Radiation Oncology Department. Currently, available information management systems are mainly focused on Record & Verify and clinical data, and only to a small extent on physical data. Thus, results in a partial and limited use of the actually available information. In the present work we describe the implementation at our department of a centralized information management system based on a web server. Our system manages both information generated during patient planning and treatment, and information of general interest for the whole department (i.e. treatment protocols, quality assurance protocols etc.). Our objective it to be able to analyze in a simple and efficient way all the available data and thus to obtain quantitative evaluations of our treatments. This would allow us to improve our work flow and protocols. To this end we have implemented a relational data base which would allow us to use in a practical and efficient way all the available information. As always we only use license free software.

Keywords: information management system, radiation oncology, medical physics, free software

Procedia PDF Downloads 232