Search results for: mine pollution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2102

Search results for: mine pollution

662 Modeling the Present Economic and Social Alienation of Working Class in South Africa in the Musical Production ‘from Marikana to Mahagonny’ at Durban University of Technology (DUT)

Authors: Pamela Tancsik

Abstract:

The stage production in 2018, titled ‘From‘Marikana to Mahagonny’, began with a prologue in the form of the award-winning documentary ‘Miners Shot Down' by Rehad Desai, followed by Brecht/Weill’s song play or scenic cantata ‘Mahagonny’, premièred in Baden-Baden 1927. The central directorial concept of the DUT musical production ‘From Marikana to Mahagonny’ was to show a connection between the socio-political alienation of mineworkers in present-day South Africa and Brecht’s alienation effect in his scenic cantata ‘Mahagonny’. Marikana is a mining town about 50 km west of South Africa’s capital Pretoria. Mahagonny is a fantasy name for a utopian mining town in the United States. The characters, setting, and lyrics refer to America with of songs like ‘Benares’ and ‘Moon of Alabama’ and the use of typical American inventions such as dollars, saloons, and the telephone. The six singing characters in ‘Mahagonny’ all have typical American names: Charlie, Billy, Bobby, Jimmy, and the two girls they meet later are called Jessie and Bessie. The four men set off to seek Mahagonny. For them, it is the ultimate dream destination promising the fulfilment of all their desires, such as girls, alcohol, and dollars – in short, materialistic goals. Instead of finding a paradise, they experience how money and the practice of exploitive capitalism, and the lack of any moral and humanity is destroying their lives. In the end, Mahagonny gets demolished by a hurricane, an event which happened in 1926 in the United States. ‘God’ in person arrives disillusioned and bitter, complaining about violent and immoral mankind. In the end, he sends them all to hell. Charlie, Billy, Bobby, and Jimmy reply that this punishment does not mean anything to them because they have already been in hell for a long time – hell on earth is a reality, so the threat of hell after life is meaningless. Human life was also taken during the stand-off between striking mineworkers and the South African police on 16 August 2012. Miners from the Lonmin Platinum Mine went on an illegal strike, equipped with bush knives and spears. They were striking because their living conditions had never improved; they still lived in muddy shacks with no running water and electricity. Wages were as low as R4,000 (South African Rands), equivalent to just over 200 Euro per month. By August 2012, the negotiations between Lonmin management and the mineworkers’ unions, asking for a minimum wage of R12,500 per month, had failed. Police were sent in by the Government, and when the miners did not withdraw, the police shot at them. 34 were killed, some by bullets in their backs while running away and trying to hide behind rocks. In the musical play ‘From Marikana to Mahagonny’ audiences in South Africa are confronted with a documentary about Marikana, followed by Brecht/Weill’s scenic cantata, highlighting the tragic parallels between the Mahagonny story and characters from 1927 America and the Lonmin workers today in South Africa, showing that in 95 years, capitalism has not changed.

Keywords: alienation, brecht/Weill, mahagonny, marikana/South Africa, musical theatre

Procedia PDF Downloads 97
661 New Applications of Essential Oils: Edible Packaging Material for Food Supplements

Authors: Roxana Gheorghita, Gheorghe Gutt

Abstract:

Environmental pollution due to non-degradation of packaging from the food and pharmaceutical industry is reaching increasingly alarming levels. The packaging used for food supplements is usually composed of successive layers of synthetic materials, conventional, glue, and paint. The situation is becoming more and more problematic as the population, according to statistics, uses food supplements more and more often. The solution can be represented by edible packaging, completely biodegradable, and compostable. The tested materials were obtained from biopolymers, agar, carrageenan, and alginate, in well-established quantities and plasticized with glycerol. Rosemary, thyme, and oregano essential oils have been added in varying proportions. The obtained films are completely water-soluble in hot liquids (with a temperature of about 80° C) and can be consumed with the product contained. The films were glossy, pleasant to the touch, thin (thicknesses between 32.8 and 52.8 μm), transparent, and with a pleasant smell, specific to the added essential oil. Tested for microbial evaluation, none of the films indicated the presence of E. coli, S. aureus, enterobacteria, coliform bacteria, yeasts, or molds. This aspect can also be helped by the low values of the water activity index (located between 0.546 and 0.576). The mechanical properties indicated that the material became more resistant with the addition of essential oil, the best values being recorded by the addition of oregano. The results obtained indicate the possibility of using biopolymer-based films with the addition of rosemary, thyme, and oregano essential oil, for wrapping food supplements, thus replacing conventional packaging, multilayer, impossible to sort and recycle.

Keywords: edible films, food supplements, oregano, rosemary, thyme

Procedia PDF Downloads 133
660 Hydrodeoxygenation of Furfural over RU Sub-Nano Particles Supported on Al₂O₃-SIO₂ Mixed Oxides

Authors: Chaima Zoulikha Tabet Zatla, Nihel Dib, Sumeya Bedrane, Juan Carlos Hernandez Garrido, Redouane Bachir, Miguel Angel Cauqui, Jose Juan Calvino Gamez

Abstract:

These last year's our planet has witnessed global warming, which is a serious threat to our lives; it has many causes, such as the CO₂ excess in the atmosphere that results from our activity, for the purpose of living in a neater and better environment, working and improving an eco-responsible energy system is a must. Valorization of biomass to produce biofuels is among the most compelling routes to decrease air pollution without considerable modification in current vehicle technology. Effective transformation of lignocellulosic biomass-derived compounds into liquid fuels and value-added chemicals is an economically viable solution. Presently, very competitive technics for the conversion of lignocellulosic biomass into platform chemicals, such as furfural and Hydroxymethylfurfural (HMF), are used. Furfural (C₅H₄O₂) is a major hemi cellulosic biomass-derived platform molecule. In our work, we focus on the valorization of lignocellulosic biomass derivative furfural that is transformed into biofuel through a hydrodeoxygenation reaction in general and involving a catalytic process. In order to get to this point, we are synthesizing and characterizing a series of catalysts with different amounts of Ru (0.5%, 1% and 2%) supported on alumina-silica mixed oxides with various molar ratios (Si/Al = 2.5; 5; 7; 10; 15). These catalysts will be characterized by numerous technics such as N₂ adsorption/desorption, Pyridine adsorption (acidity measure), FTIR, X-rays diffraction, AAS, TEM and SEM.

Keywords: furfural, ruthenium, silica-alumina, biomass, biofuel

Procedia PDF Downloads 84
659 Chemistry and Sources of Solid Biofuel Derived Ambient Aerosols during Cooking and Non-Cooking Hours in Rural Area of Khairatpur, North-Central India

Authors: Sudha Shukla, Bablu Kumar, Gyan Prakash Gupta, U. C. Kulshrestha

Abstract:

Air pollutants emitted from solid biofuels during cooking are the major contributors to poor air quality, respiratory problems, and radiative forcing, etc. in rural areas of most of developing countries. The present study reports the chemical characteristics and sources of ambient aerosols and traces gases during cooking and non-cooking hours emitted during biofuel combustion in a village in North-Central India. Fine aerosol samples along with gaseous species (Sox, NOx, and NH₃) were collected during September 2010-March 2011 at Khairatpur village (KPV) which is located in the Uttar Pradesh state in North-Central India. Results indicated that most of the major ions in aerosols and Sox, NOx, and NH₃ gases were found to be higher during cooking hours as compared to non-cooking hours suggesting that solid biofuel combustion is an important source of air pollution. Results of Principal Component Analysis (PCA) revealed that combustion of solid biofuel, vehicular emissions, and brick kilns were the major sources of fine aerosols and trace gases in the village. A health survey was conducted to find out the relation between users of biofuels and their health effects and the results revealed that most of the women in the village were suffering from diseases associated with biofuel combustion during cooking.

Keywords: ambient aerosols, biofuel combustion, cooking, health survey, rural area

Procedia PDF Downloads 240
658 Partial Replacement of GGBS in Concrete for Prevention of Natural Resources

Authors: M. Murmu, Govardhan, J. Satya Eswari

Abstract:

Concrete is the most common and widely used building material. Concrete is basically made of aggregates, both fine and coarse, glued by a cement paste which is made of cement and water. Each one of these constituents of concrete has a negative environmental impact and gives rise to different sustainability issues. The current concrete construction practice is unsustainable because, not only it consumes enormous quantities of stones, sand, and drinking water, but also one billion tons a year of cement, which is not an environment friendly material. Preventing the reduction of natural resources and enhancing the usage of waste materials has become a challenge to the scientist and engineers. A number of studies have been conducted concerning the protection of natural resources, prevention of environmental pollution and contribution to the economy by using this waste material. This paper outlines the influence of Ground Granulated Blast furnace Slag (GGBS) as partial replacement of fine aggregate on mechanical properties of concrete. The strength of concrete is determined having OPC binder, replaced the fine aggregate with15%, 30%, 45% respectively. For this purpose, characteristics concrete mix of M25 with partial replacement of cement with GGBS is used and the strength of concrete cubes and cylinder have determined. The strength of concrete specimens has been compared with the reference specimen. Also X-ray diffraction (XRD) and scanning electron microscope (SEM) tests have been performed to examine the hydration products and the microstructure of the tested specimens. A correlation has been established between the developmental strength concrete with and without GGBS through analysis of hydration products and the microstructure.

Keywords: GGBS, sand, concrete, workability

Procedia PDF Downloads 503
657 Urban Renewal from the Perspective of Industrial Heritage Protection: Taking the Qiaokou District of Wuhan as an Example

Authors: Yue Sun, Yuan Wang

Abstract:

Most of the earliest national industries in Wuhan are located along the Hanjiang River, and Qiaokou is considered to be a gathering place for Dahankou old industrial base. Zongguan Waterworks, Pacific Soap Factory, Fuxin Flour Factory, Nanyang Tobacco Factory and other hundred-year-old factories are located along Hanjiang River in Qiaokou District, especially the Gutian Industrial Zone, which was listed as one of 156 national restoration projects at the beginning of the founding of the People’s Republic of China. After decades of development, Qiaokou has become the gathering place of the chemical industry and secondary industry, causing damage to the city and serious pollution, becoming a marginalized area forgotten by the central city. In recent years, with the accelerated pace of urban renewal, Qiaokou has been constantly reforming and innovating, and has begun drastic changes in the transformation of old cities and the development of new districts. These factories have been listed as key reconstruction projects, and a large number of industrial heritage with historical value and full urban memory have been relocated, demolished and reformed, with only a few factory buildings preserved. Through the methods of industrial archaeology, image analysis, typology and field investigation, this paper analyzes and summarizes the spatial characteristics of industrial heritage in Qiaokou District, explores urban renewal from the perspective of industrial heritage protection, and provides design strategies for the regeneration of urban industrial sites and industrial heritage.

Keywords: industrial heritage, urban renewal, protection, urban memory

Procedia PDF Downloads 145
656 Removal of Gaseous Pollutant from the Flue Gas in a Submerged Self-Priming Venturi Scrubber

Authors: Manisha Bal, B. C. Meikap

Abstract:

Hydrogen chloride is the most common acid gas emitted by the industries. HCl gas is listed as Title III hazardous air pollutant. It causes severe threat to the human health as well as environment. So, removal of HCl from flue gases is very imperative. In the present study, submerged self-priming venturi scrubber is chosen to remove the HCl gas with water as a scrubbing liquid. Venturi scrubber is the most popular device for the removal of gaseous pollutants. Main mechanism behind the venturi scrubber is the polluted gas stream enters at converging section which accelerated to maximum velocity at throat section. A very interesting thing in case of submerged condition, venturi scrubber is submerged inside the liquid tank and liquid is entered at throat section because of suction created due to large pressure drop generated at the throat section. Maximized throat gas velocity atomizes the entered liquid into number of tiny droplets. Gaseous pollutant HCl is absorbed from gas to liquid droplets inside the venturi scrubber due to interaction between the gas and water. Experiments were conducted at different throat gas velocity, water level and inlet concentration of HCl to enhance the HCl removal efficiency. The effect of throat gas velocity, inlet concentration of HCl, and water level on removal efficiency of venturi scrubber has been evaluated. Present system yielded very high removal efficiency for the scrubbing of HCl gas which is more than 90%. It is also concluded that the removal efficiency of HCl increases with increasing throat gas velocity, inlet HCl concentration, and water level height.

Keywords: air pollution, HCl scrubbing, mass transfer, self-priming venturi scrubber

Procedia PDF Downloads 141
655 Efficient Mercury Sorbent: Activated Carbon and Metal Organic Framework Hybrid

Authors: Yongseok Hong, Kurt Louis Solis

Abstract:

In the present study, a hybrid sorbent using the metal organic framework (MOF), UiO-66, and powdered activated carbon (pAC) is synthesized to remove cationic and anionic metals simultaneously. UiO-66 is an octahedron-shaped MOF with a Zr₆O₄(OH)₄ metal node and 1,4-benzene dicarboxylic acid (BDC) organic linker. Zr-based MOFs are attractive for trace element remediation in wastewaters, because Zr is relatively non-toxic as compared to other classes of MOF and, therefore, it will not cause secondary pollution. Most remediation studies with UiO-66 target anions such as fluoride, but trace element oxyanions such as arsenic, selenium, and antimony have also been investigated. There have also been studies involving mercury removal by UiO-66 derivatives, however these require post-synthetic modifications or have lower effective surface areas. Activated carbon is known for being a readily available, well-studied, effective adsorbent for metal contaminants. Solvothermal method was employed to prepare hybrid sorbent from UiO66 and activated carbon, which could be used to remove mercury and selenium simultaneously. The hybrid sorbent was characterized using FSEM-EDS, FT-IR, XRD, and TGA. The results showed that UiO66 and activated carbon are successfully composited. From BET studies, the hybrid sorbent has a SBET of 1051 m² g⁻¹. Adsorption studies were performed, where the hybrid showed maximum adsorption of 204.63 mg g⁻¹ and 168 mg g⁻¹ for Hg (II) and selenite, respectively, and follows the Langmuir model for both species. Kinetics studies have revealed that the Hg uptake of the hybrid is pseudo-2nd order and has rate constant of 5.6E-05 g mg⁻¹ min⁻¹ and the selenite uptake follows the simplified Elovich model with α = 2.99 mg g⁻¹ min⁻¹, β = 0.032 g mg⁻¹.

Keywords: adsorption, flue gas wastewater, mercury, selenite, metal organic framework

Procedia PDF Downloads 174
654 Behavioral Changes and Gill Histopathological Alterations of Red Hybrid Tilapia (Oreochromis sp.) Exposed to Glyphosate Herbicide

Authors: Abubakar Muhammad Umar, Nur Adeela Yasid, Hassan Mohd Daud, Mohd Yunus Abd Shukor

Abstract:

Glyphosate [N-(phosphonomethyl) glycine] is among the most broadly and generally recognised broad-spectrum herbicides used in agriculture due to its low cost and effectiveness in weed management. The pollution of glyphosate in the aquatic environment can be via water run-off from agricultural lands, or by spray drift, aerial spraying or due to industrial discharge, which may be seen as a threat to aquatic biota. Fish is one of the best organisms to study the toxicological aspects of glyphosate. A 49 days experiment was conducted under laboratory conditions to ascertain the effects of technical grade glyphosate on behaviour and histopathological conditions in the gills of red hybrid tilapia using a light inverted microscope. Air gasping, erratic swimming, fin movement, mucus secretion, hemorrhages, and loss of scales were observed as behavioural changes in the exposed fish. There was no histopathological complication observed in the gill of the control fish, but various levels of alterations were seen in the gills of the fish exposed to glyphosate herbicide. These include lifting of primary lamella, congestion of secondary lamella, as well as hyperplasia in both primary and secondary gill lamella, and hypertrophy of secondary gill lamella. Based on the findings of this study, glyphosate herbicide exerts behavioural and histopathological changes in the gill of red hybrid tilapia, and therefore, the fish is considered a good bioindicator in aquatic environment monitoring. Excessive usage of glyphosate herbicide near aquatic habitats should be discouraged.

Keywords: behavioural, histopathological, Oreochromis niloticus, glyphosate

Procedia PDF Downloads 47
653 Production of Biogas from Organic Wastes Using Plastic Biodigesternoura

Authors: Oladipo Oluwaseun Peter

Abstract:

Daily consumption of crude oil is alarming as a result of increasing demand for energy. Waste generation tends to rise with the level of economic advancement of a nation. Hence, this project work researches how wastes which could pose toxic if left unattended to can be processed through biodigestion in order to generate biofuel which could serve as a good substitute for petroleum, a non renewable energy source, so as to reduce over-dependence on petroleum and to prevent environmental pollution. Anaerobic digestion was carried out on organic wastes comprising brewery spent grains, rice husks and poultry droppings in a plastic biodigester of 1000 liters volume using the poultry droppings as a natural inoculums source. The feed composition in ratio 5:3:2, spent grain, rice husks and poultry droppings were mixed with water in the ratio 1:6. Thus, 600 Kg of water was used to prepare the slurry with 100 Kg of feed materials. A plastic biodigester was successfully constructed, and the problem of corrosion and rusting were completely overcome as a result of the use of non-corroding materials of construction. A reasonable quantity of biogas, 33.63m3, was generated over a period of 60 days of biodigestion. The bioslurry was processed through two different process routes; evaporation and filteration. Evaporation process of analysis shows high values of 0.64%, 2.11% and 0.034% for nitrogen, phosphorous and potassium respectively, while filteration process gives 00.61%, 1.93% and 0.026% for nitrogen, phosphorous and potassium respectively.

Keywords: biodigestion, biofuel, digestion, slurry, biogas

Procedia PDF Downloads 376
652 Electrochemical Sensor Based on Poly(Pyrogallol) for the Simultaneous Detection of Phenolic Compounds and Nitrite in Wastewater

Authors: Majid Farsadrooh, Najmeh Sabbaghi, Seyed Mohammad Mostashari, Abolhasan Moradi

Abstract:

Phenolic compounds are chief environmental contaminants on account of their hazardous and toxic nature on human health. The preparation of sensitive and potent chemosensors to monitor emerging pollution in water and effluent samples has received great consideration. A novel and versatile nanocomposite sensor based on poly pyrogallol is presented for the first time in this study, and its electrochemical behavior for simultaneous detection of hydroquinone (HQ), catechol (CT), and resorcinol (RS) in the presence of nitrite is evaluated. The physicochemical characteristics of the fabricated nanocomposite were investigated by emission-scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and Brunauer-Emmett-Teller (BET). The electrochemical response of the proposed sensor to the detection of HQ, CT, RS, and nitrite is studied using cyclic voltammetry (CV), chronoamperometry (CA), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). The kinetic characterization of the prepared sensor showed that both adsorption and diffusion processes can control reactions at the electrode. In the optimized conditions, the new chemosensor provides a wide linear range of 0.5-236.3, 0.8-236.3, 0.9-236.3, and 1.2-236.3 μM with a low limit of detection of 21.1, 51.4, 98.9, and 110.8 nM (S/N = 3) for HQ, CT and RS, and nitrite, respectively. Remarkably, the electrochemical sensor has outstanding selectivity, repeatability, and stability and is successfully employed for the detection of RS, CT, HQ, and nitrite in real water samples with the recovery of 96.2%–102.4%, 97.8%-102.6%, 98.0%–102.4% and 98.4%–103.2% for RS, CT, HQ, and nitrite, respectively. These outcomes illustrate that poly pyrogallol is a promising candidate for effective electrochemical detection of dihydroxybenzene isomers in the presence of nitrite.

Keywords: electrochemical sensor, poly pyrogallol, phenolic compounds, simultaneous determination

Procedia PDF Downloads 68
651 A Moroccan Natural Solution for Treating Industrial Effluents: Evaluating the Effectiveness of Using Date Kernel Residues for Purification

Authors: Ahmed Salim, A. El Bouari, M. Tahiri, O. Tanane

Abstract:

This research aims to develop and comprehensively characterize a cost-effective activated carbon derived from date residues, with a focus on optimizing its physicochemical properties to achieve superior performance in a variety of applications. The samples were synthesized via a chemical activation process utilizing phosphoric acid (H₃PO₄) as the activating agent. Activated carbon, produced through this method, functions as a vital adsorbent for the removal of contaminants, with a specific focus on methylene blue, from industrial wastewater. This study meticulously examined the influence of various parameters, including carbonization temperature and duration, on both the combustion properties and adsorption efficiency of the resultant material. Through extensive analysis, the optimal conditions for synthesizing the activated carbon were identified as a carbonization temperature of 600°C and a duration of 2 hours. The activated carbon synthesized under optimized conditions demonstrated an exceptional carbonization yield and methylene blue adsorption efficiency of 99.71%. The produced carbon was subsequently characterized using X-ray diffraction (XRD) analysis. Its effectiveness in the adsorption of methylene blue from contaminated water was then evaluated. A comprehensive assessment of the adsorption capacity was conducted by varying parameters such as carbon dosage, contact time, initial methylene blue concentration, and pH levels.

Keywords: environmental pollution, adsorbent, activated carbon, phosphoric acid, date Kernels, pollutants, adsorption

Procedia PDF Downloads 44
650 An Active Solar Energy System to Supply Heating Demands of the Teaching Staff Dormitory of Islamic Azad University Ramhormoz Branch

Authors: M. Talebzadegan, S. Bina, I. Riazi

Abstract:

The purpose of this paper is to present an active solar energy system to supply heating demands of the teaching staff dormitory of the Islamic Azad University of Ramhormoz. The design takes into account the solar radiations and climate data of Ramhormoz town and is based on the daily warm water consumption for health demands of 450 residents of the dormitory, which is equal to 27000 lit of 50-C° water, and building heating requirements with an area of 3500 m² well-protected by heatproof materials. First, heating demands of the building were calculated, then a hybrid system made up of solar and fossil energies was developed and finally, the design was economically evaluated. Since there is only roof space for using 110 flat solar water heaters, the calculations were made to hybridize solar water heating system with heat pumping system in which solar energy contributes 67% of the heat generated. According to calculations, the net present value “N.P.V.” of revenue stream exceeds “N.P.V.” of cash paid off in this project over three years, which makes economically quite promising. The return of investment and payback period of the project is 4 years. Also, the internal rate of return (IRR) of the project was 25%, which exceeds bank rate of interest in Iran and emphasizes the desirability of the project.

Keywords: Solar energy, Heat Demand, Renewable , Pollution

Procedia PDF Downloads 252
649 Synthesis of Modified Cellulose for the Capture of Uranyl Ions from Aqueous Solutions

Authors: Claudia Vergara, Oscar Valdes, Jaime Tapia, Leonardo Santos

Abstract:

The poly(amidoamine) dendrimers (PAMAM) are a class of material introduced by D. Tomalia. Modifications of the PAMAM dendrimer with several functional groups have attracted the attention for new interesting properties and new applications in many fields such as chemistry, physics, biology, and medicine. However, in the last few years, the use of dendrimers in environmental applications has increased due to pollution concerns. In this contribution, we report the synthesis of three new PAMAM derivates modified with asparagine aminoacid supported in cellulose: PG0-Asn (PAMAM-asparagine), PG0-Asn-Trt (with trityl group) and PG0-Asn-Boc-Trt (with tert-butyl oxycarbonyl group). The functionalization of generation 0 PAMAM dendrimer was carried out by amidation reaction by using an EDC/HOBt protocol. In a second step, functionalized dendrimer was covalently supported to the cellulose surface and used to study the capture of uranyl ions from aqueous solution by fluorescence spectroscopy. The structure and purity of the desired products were confirmed by conventional techniques such as FT-IR, MALDI, elemental analysis, and ESI-MS. Batch experiments were carried out to determine the affinity of uranyl ions with the dendrimer in aqueous solution. Firstly, the optimal conditions for uranyl capture were obtained, where the optimum pH for the removal was 6, the contact time was 4 hours, the initial concentration of uranyl was 100 ppm, and the amount of the adsorbent to be used was 2.5 mg. PAMAM significantly increased the capture of uranyl ions with respect to cellulose as the starting substrate, reaching 94.8% of capture (PG0), followed by 91.2% corresponding to PG0-Asn-Trt, then 70.3% PG0-Asn and 24.2% PG0-Asn-Boc-Trt. These results show that the PAMAM dendrimer is a good option to remove uranyl ions from aqueous solutions.

Keywords: asparagine, cellulose, PAMAM dendrimer, uranyl ions

Procedia PDF Downloads 139
648 Experimental Studies on Fly Ash-Waste Sludge Mix Reinforced with Geofibres

Authors: Malik Shoeb Ahmad

Abstract:

The aim of the present study is to carry out investigations on Class F fly ash obtained from NTPC thermal power plant, Dadri, U.P. (India) and electroplating waste sludge from Aligarh, U.P. (India) along with geofibre for its subsequent utilization in various geotechnical and highway engineering applications. The experimental studies such as California bearing ratio (CBR) tests were carried out to evaluate the strength of plain fly ash as well as fly ash-waste sludge mix reinforced with geofibre, as the CBR value is the vital parameters used in the design of flexible and rigid pavements. Results of the study show that the strength of the mix is highly dependent on the curing period and the sludge and geofibre content. The CBR values were determined for mix containing fly ash (83.5-93.5%), waste sludge (5-15%) and 1-2% geofibre. However, out of the various combinations of mixes the CBR value of the mix 88.5%FA+10%S+1.5%GF at 28 days of curing was found to be 53.52% when compared with the strength of plain fly ash. It has been observed that the fibre inclusion increases the strength of the plain fly ash and fly ash-waste sludge specimens by changing their brittle to ductile behavior. The TCLP leaching test was also conducted to determine the heavy metal concentration in the optimized mix. The results of TCLP test show that the heavy metal concentration in the mix 88.5%FA+10%S+1.5%G at 28 days of curing reduced substantially from 24 to 98% when compared with the concentration of heavy metals in the waste sludge collected from source. It has also been observed that the pH of the leachate of this mix is between 9-11, which ensures the proper stabilization of the heavy metals present in the mix. Hence, this study will certainly help in mass scale utilization of two industrial wastes viz., electroplating waste and fly ash, which are causing pollution to the environment to a great extent.

Keywords: Dadri fly ash, geofibre, electroplating waste sludge, CBR, TCLP

Procedia PDF Downloads 341
647 An Analysis of The Philippines' Legal Transition from Open Dumpsites to Solid Waste Management Facilities

Authors: Mary Elenor Adagio, John Roben Ambas, Ramilyn Bertolano, Julie Ann Garcia

Abstract:

Ecological Solid Waste Management has been a long-time concern in both national and international spheres. The exponential growth of waste generation is not properly matched with a waste management system that is cost-effective. As a result, governments and their communities within inevitably resort to the old ways of opening dumpsites to serve as a giant garbage bin. However, due to the environmental and public health problems these unmanaged dumpsites caused, countries like the Philippines mandated the closure of these dumpsites and converted them into or opened new sanitary landfills. This study aims to determine how the transition from open dumpsites to Solid Waste Management Facilities improve the implementation of the Solid Waste Management Framework of the government pursuant to Republic Act 9003. To test the hypothesis that the mandatory closure of dumpsites is better in the management of wastes in local government units, a review of related literature on analysis reports, news, and case studies was conducted. The results suggest that advocating for the transition of dumpsites to sanitary landfills would not only prevent environmental risks caused by pollution but also reduce problems regarding public health. Although this transition can be effective, data also show that with a lack of funding and resources, many local government units still find it difficult to provide their solid waste management plans and to adapt to the transition to sanitary landfills.

Keywords: solid waste management, environmental law, solid waste management facilities, open dumpsites

Procedia PDF Downloads 157
646 PM10 Chemical Characteristics in a Background Site at the Universidad Libre Bogotá

Authors: Laura X. Martinez, Andrés F. Rodríguez, Ruth A. Catacoli

Abstract:

One of the most important factors for air pollution is that the concentrations of PM10 maintain a constant trend, with the exception of some places where that frequently surpasses the allowed ranges established by Colombian legislation. The community that surrounds the Universidad Libre Bogotá is inhabited by a considerable number of students and workers, all of whom are possibly being exposed to PM10 for long periods of time while on campus. Thus, the chemical characterization of PM10 found in the ambient air at the Universidad Libre Bogotá was identified as a problem. A Hi-Vol sampler and EPA Test Method 5 were used to determine if the quality of air is adequate for the human respiratory system. Additionally, quartz fiber filters were utilized during sampling. Samples were taken three days a week during a dry period throughout the months of November and December 2015. The gravimetric analysis method was used to determine PM10 concentrations. The chemical characterization includes non-conventional carcinogenic pollutants. Atomic absorption spectrophotometry (AAS) was used for the determination of metals and VOCs were analyzed using the FTIR (Fourier transform infrared spectroscopy) method. In this way, concentrations of PM10, ranging from values of 13 µg/m3 to 66 µg/m3, were obtained; these values were below standard conditions. This evidence concludes that the PM10 concentrations during an exposure period of 24 hours are lower than the values established by Colombian law, Resolution 610 of 2010; however, when comparing these with the limits set by the World Health Organization (WHO), these concentrations could possibly exceed permissible levels.

Keywords: air quality, atomic absorption spectrophotometry, gas chromatography, particulate matter

Procedia PDF Downloads 256
645 Breakthrough Highly-Effective Extraction of Perfluoroctanoic Acid Using Natural Deep Eutectic Solvents

Authors: Sana Eid, Ahmad S. Darwish, Tarek Lemaoui, Maguy Abi Jaoude, Fawzi Banat, Shadi W. Hasan, Inas M. AlNashef

Abstract:

Addressing the growing challenge of per- and polyfluoroalkyl substances (PFAS) pollution in water bodies, this study introduces natural deep eutectic solvents (NADESs) as a pioneering solution for the efficient extraction of perfluorooctanoic acid (PFOA), one of the most persistent and concerning PFAS pollutants. Among the tested NADESs, trioctylphosphine oxide: lauric acid (TOPO:LauA) in a 1:1 molar ratio was distinguished as the most effective, achieving an extraction efficiency of approximately 99.52% at a solvent-to-feed (S:F) ratio of 1:2, room temperature, and neutral pH. This efficiency is achieved within a notably short mixing time of only one min, which is significantly less than the time required by conventional methods, underscoring the potential of TOPO:LauA for rapid and effective PFAS remediation. TOPO:LauA maintained consistent performance across various operational parameters, including a range of initial PFOA concentrations (0.1 ppm to 1000 ppm), temperatures (15 °C to 100 °C), pH values (3 to 9), and S:F ratios (2:3 to 1:7), demonstrating its versatility and robustness. Furthermore, its effectiveness was consistently high over seven consecutive extraction cycles, highlighting TOPO:LauA as a sustainable, environmentally friendly alternative to hazardous organic solvents, with promising applications for reliable, repeatable use in combating persistent water pollutants such as PFOA.

Keywords: deep eutectic solvents, natural deep eutectic solvents, perfluorooctanoic acid, water remediation

Procedia PDF Downloads 61
644 Effect of Highway Construction on Soil Properties and Soil Organic Carbon (Soc) Along Lagos-Badagry Expressway, Lagos, Nigeria

Authors: Fatai Olakunle Ogundele

Abstract:

Road construction is increasingly common in today's world as human development expands and people increasingly rely on cars for transportation on a daily basis. The construction of a large network of roads has dramatically altered the landscape and impacted well-being in a number of deleterious ways. In addition, the road can also shift population demographics and be a source of pollution into the environment. Road construction activities normally result in changes in alteration of the soil's physical properties through soil compaction on the road itself and on adjacent areas and chemical and biological properties, among other effects. Understanding roadside soil properties that are influenced by road construction activities can serve as a basis for formulating conservation-based management strategies. Therefore, this study examined the effects of road construction on soil properties and soil organic carbon along Lagos Badagry Expressway, Lagos, Nigeria. The study adopted purposive sampling techniques and 40 soil samples were collected at a depth of 0 – 30cm from each of the identified road intersections and infrastructures using a soil auger. The soil samples collected were taken to the laboratory for soil properties and carbon stock analysis using standard methods. Both descriptive and inferential statistical techniques were applied to analyze the data obtained. The results revealed that soil compaction inhibits ecological succession on roadsides in that increased compaction suppresses plant growth as well as causes changes in soil quality.

Keywords: highway, soil properties, organic carbon, road construction, land degradation

Procedia PDF Downloads 80
643 Investigation of Influence of Maize Stover Components and Urea Treatment on Dry Matter Digestibility and Fermentation Kinetics Using in vitro Gas Techniques

Authors: Anon Paserakung, Chaloemphon Muangyen, Suban Foiklang, Yanin Opatpatanakit

Abstract:

Improving nutritive values and digestibility of maize stover is an alternative way to increase their utilization in ruminant and reduce air pollution from open burning of maize stover in the northern Thailand. The present study, 2x3 factorial arrangements in completely randomized design was conducted to investigate the effect of maize stover components (whole and upper stover; cut above 5th node). Urea treatment at levels 0, 3, and 6% DM on dry matter digestibility and fermentation kinetics of maize stover using in vitro gas production. After 21 days of urea treatment, results illustrated that there was no interaction between maize stover components and urea treatment on 48h in vitro dry matter digestibility (IVDMD). IVDMD was unaffected by maize stover components (P > 0.05), average IVDMD was 55%. However, using whole maize stover gave higher cumulative gas and gas kinetic parameters than those of upper stover (P<0.05). Treating maize stover by ensiling with urea resulted in a significant linear increase in IVDMD (P<0.05). IVDMD increased from 42.6% to 53.9% when increased urea concentration from 0 to 3% and maximum IVDMD (65.1%) was observed when maize stover was ensiled with 6% urea. Maize stover treated with urea at levels of 0, 3, and 6% linearly increased cumulative gas production at 96h (31.1 vs 50.5 and 59.1 ml, respectively) and all gas kinetic parameters excepted the gas production from the immediately soluble fraction (P<0.50). The results indicate that maize stover treated with 6% urea enhance in vitro dry matter digestibility and fermentation kinetics. This study provides a practical approach to increasing utilization of maize stover in feeding ruminant animals.

Keywords: maize stover, urea treatment, ruminant feed, gas production

Procedia PDF Downloads 224
642 Embracing Circular Economy: Unlocking Sustainable Growth in Emerging Markets

Authors: Mario Jose Paillacho Silva, José Ángel Pérez López

Abstract:

This article delves into the critical role of circular economy principles in unlocking sustainable growth and addressing environmental inequalities in emerging markets. Circular economy practices, rooted in regenerative systems and resource conservation, offer a transformative pathway for dynamic economies to achieve prosperity while minimizing environmental impact. The article comprehensively explores the understanding of the circular economy in emerging markets, emphasizing its economic benefits, social implications, and environmental advantages. It highlights key challenges and opportunities faced by these markets and emphasizes the crucial role of governments in creating supportive policy frameworks. It emphasizes how circular economy practices empower local communities and promote social inclusion and equality. Furthermore, the article underscores how the adoption of circular economy practices can mitigate waste, pollution, and resource scarcity, thus contributing to climate change mitigation and adaptation. Integrating circular economy principles with the United Nations' sustainable development goals (SDGs), the article showcases the potential of circularity in fostering responsible consumption and production, sustainable economic growth, and environmental protection. Overall, the article advocates for cross-sector collaboration and knowledge sharing to overcome barriers and scale circular economy practices in emerging markets, ultimately leading to a more equitable, prosperous, and environmentally sustainable future.

Keywords: circular economy, sustainability, emerging markets, circularity

Procedia PDF Downloads 81
641 Efficient Use of Power Light-Emitting Diode Chips in the Main Lighting System and in Generating Heat in Intelligent Buildings

Authors: Siamak Eskandari, Neda Ebadi

Abstract:

Among common electronic parts which have been invented and have made a great revolution in the lighting system through the world, certainly LEDs have no rival. These small parts with their very low power consumption, very dazzling and powerful light and small size and with their extremely high lifetime- compared to incandescent bulbs and compact fluorescent lamp (CFLs) have undoubtedly revolutionized the lighting industry of the world. Based on conducted studies and experiments, in addition to their acceptable light and low power consumption -compared to incandescent bulbs and CFLs-, they have very low and in some cases zero environmental pollution and negative effects on human beings. Because of their longevity, in the case of using high-quality circuits and proper and consistent use of LEDs in conventional and intelligent buildings, there will be no need to replace the burnout lamps, for a long time (10 years). In this study which was conducted on 10-watt power LEDs with suitable heatsink/cooling, considerable amount of heat was generated during lighting after 5 minutes and 45 seconds. The temperature rose to above 99 degrees Celsius and this amount of heat can raise the water temperature to 60 degrees Celsius and more. Based on conducted experiments, this can provide the heat required for bathing, washing, radiators (in cold seasons) easily and only by imposing very low cost and it will be a big step in the optimization of energy consumption in the future.

Keywords: energy, light, water, optimization of power LED

Procedia PDF Downloads 153
640 Design and Analysis of Crankshaft Using Al-Al2O3 Composite Material

Authors: Palanisamy Samyraj, Sriram Yogesh, Kishore Kumar, Vaishak Cibi

Abstract:

The project is about design and analysis of crankshaft using Al-Al2O3 composite material. The project is mainly concentrated across two areas one is to design and analyze the composite material, and the other is to work on the practical model. Growing competition and the growing concern for the environment has forced the automobile manufactures to meet conflicting demands such as increased power and performance, lower fuel consumption, lower pollution emission and decrease noise and vibration. Metal matrix composites offer good properties for a number of automotive components. The work reports on studies on Al-Al2O3 as the possible alternative material for a crank shaft. These material have been considered for use in various components in engines due to the high amount of strength to weight ratio. These materials are significantly taken into account for their light weight, high strength, high specific modulus, low co-efficient of thermal expansion, good air resistance properties. In addition high specific stiffness, superior high temperature, mechanical properties and oxidation resistance of Al2O3 have developed some advanced materials that are Al-Al2O3 composites. Crankshafts are used in automobile industries. Crankshaft is connected to the connecting rod for the movement of the piston which is subjected to high stresses which cause the wear of the crankshaft. Hence using composite material in crankshaft gives good fuel efficiency, low manufacturing cost, less weight.

Keywords: metal matrix composites, Al-Al2O3, high specific modulus, strength to weight ratio

Procedia PDF Downloads 273
639 Feasibility Study of Constructed Wetlands for Wastewater Treatment and Reuse in Asmara, Eritrea

Authors: Hagos Gebrehiwet Bahta

Abstract:

Asmara, the capital city of Eritrea, is facing a sanitation challenge because the city discharges its wastewater to the environment without any kind of treatment. The aim of this research is to conduct a pre-feasibility study of using constructed wetlands in the peri-urban areas of Asmara for wastewater treatment and reuse. It was found that around 15,000 m³ of wastewater is used daily for agricultural activities, and products are sold in the city's markets, which are claimed to cause some health effects. In this study, three potential sites were investigated around Mai-Bela and an optimum location was selected on the basis of land availability, topography, and geotechnical information. Some types of local microphytes that can be used in constructed wetlands have been identified and documented for further studies. It was found that subsurface constructed wetlands can provide a sufficient pollutant removal with careful planning and design. Following the feasibility study, a preliminary design of screening, grit chamber and subsurface constructed wetland was prepared and cost estimation was done. In the cost estimation part, the filter media was found to be the most expensive part and consists of around 30% percent of the overall cost. The city wastewater drainage runs in two directions and the selected site is located in the southern sub-system, which only carries sewage (separate system). The wastewater analysis conducted particularly around this area (Sembel) indicates high heavy metal levels and organic concentrations, which reveals that there is a high level of industrial pollution in addition to the domestic sewage.

Keywords: agriculture, constructed wetland, Mai-Bela, wastewater reuse

Procedia PDF Downloads 216
638 Phytoplankton Diversity and Abundance in Burullus Lagoon, Southern Mediterranean Coast, Egypt

Authors: Shymaa S. Zaher, Hesham M. Abd El-Fatah, Dina M. Ali

Abstract:

Burullus Lagoon is the second largest lake, along the Mediterranean seashore. It exposed to over nutrient enrichment from fish farming and agricultural drainage wastes. This study assesses the present status phytoplankton response to different flow events, including domestic, agricultural, industrial, and fish farms discharge in the three main sectors of Burullus Lagoon, to focus on the influence of environmental variables on phytoplankton species composition inhabiting the Lagoon. Twelve sites representing the eastern, central, and western basin were selected during winter and summer 2018. Among the most abundant group, Chlorophyceae came in the first rank by 37.9% of the total phytoplankton densities, Bacillariophyceae (29.31%), Cyanophyceae (20.7%), Euglenophyceae (8.63%) and Dinophyceae (3.4%). Cyclotella menenghiana was the most abundant diatoms, while Scenedesmus quadricauda, S. acuminatus, and S. bijuga were highly recorded nearby the drains (in the middle sector). Phytoplankton in Burullus Lagoon attained the lowest values during the winter season and the highest ones during the summer season. The total count of phytoplankton in the middle and western basin of the lake was higher than that of the eastern part. Excessive use of chemical fertilizers, pesticides, and washing out of nutrients loaded to the drainage water, leading to a significant pronounced decrease in community composition and standing crop of phytoplankton in Burullus Lake from year to year, hold the danger of shifting the lagoon ecosystem.

Keywords: Burullus Lagoon, environmental variables, phytoplankton, water pollution

Procedia PDF Downloads 124
637 Radical Degradation of Acetaminophen with Peroxymonosulfate-Based Oxidation Processes

Authors: Chaoqun Tan, Naiyun Gao, Xiaoyan Xin

Abstract:

Perxymonosulfate (PMS)-based oxidation processes, as an alternative of hydrogen peroxide-based oxidation processes, are more and more popular because of reactive radical species (SO4-•, OH•) produced in systems. Magnetic nano-scaled particles Fe3O4 and ferrous anion (Fe2+) were studied for the activation of PMS for degradation of acetaminophen (APAP) in water. The Fe3O4 MNPs were found to effectively catalyze PMS for APAP and the reactions well followed a pseudo-first-order kinetics pattern (R2>0.95). While the degradation of APAP in PMS-Fe2+ system proceeds through two stages: a fast stage and a much slower stage. Within 5 min, approximately 7% and 18% of 10 ppm APAP was accomplished by 0.2 mM PMS in Fe3O4 (0.8g/L) and Fe2+ (0.1mM) activation process. However, as reaction proceed to 120 min, approximately 75% and 35% of APAP was removed in Fe3O4 activation process and Fe2+ activation process, respectively. Within 120 min, the mineralization of APAP was about 7.5% and 5.0% (initial APAP of 10 ppm and [PMS]0 of 0.2 mM) in Fe3O4-PMS and Fe2+-PMS system, while the mineralization could be greatly increased to about 31% and 40% as [PMS]0 increased to 2.0 mM in in Fe3O4-PMS and Fe2+-PMS system, respectively. At last, the production of reactive radical species were validated directly from Electron Paramagnetic Resonance (ESR) tests with 0.1 M 5,5-Dimethyl-1-pyrrolidine N-oxide (DMPO). Plausible mechanisms on the radical generation from Fe3O4 and Fe2+ activation of PMS are proposed on the results of radial identification tests. The results demonstrated that Fe3O4 MNPs activated PMS and Fe2+ anion activated PMS systems are promising technologies for water pollution caused by contaminants such as pharmaceutical. Fe3O4-PMS system is more suitable for slowly remediation, while Fe2+-PMS system is more suitable for fast remediation.

Keywords: acetaminophen, peroxymonosulfate, radicals, Electron Paramagnetic Resonance (ESR)

Procedia PDF Downloads 350
636 Incentive Policies to Promote Green Infrastructure in Urban Jordan

Authors: Zayed Freah Zeadat

Abstract:

The wellbeing of urban dwellers is strongly associated with the quality and quantity of green infrastructure. Nevertheless, urban green infrastructure is still lagging in many Arab cities, and Jordan is no exception. The capital city of Jordan, Amman, is becoming more urban dense with limited green spaces. The unplanned urban growth in Amman has caused several environmental problems such as urban heat islands, air pollution, and lack of green spaces. This study aims to investigate the most suitable drivers to leverage the implementation of urban green infrastructure in Jordan through qualitative and quantitative analysis. The qualitative research includes an extensive literature review to discuss the most common drivers used internationally to promote urban green infrastructure implementation in the literature. The quantitative study employs a questionnaire survey to rank the suitability of each driver. Consultants, contractors, and policymakers were invited to fill the research questionnaire according to their judgments and opinions. Relative Importance Index has been used to calculate the weighted average of all drivers and the Kruskal-Wallis test to check the degree of agreement among groups. This study finds that research participants agreed that indirect financial incentives (i.e., tax reductions, reduction in stormwater utility fee, reduction of interest rate, density bonus, etc.) are the most effective incentive policy whilst granting sustainability certificate policy is the least effective driver to ensure widespread of UGI is elements in Jordan.

Keywords: urban green infrastructure, relative importance index, sustainable urban development, urban Jordan

Procedia PDF Downloads 154
635 Estimation of PM10 Concentration Using Ground Measurements and Landsat 8 OLI Satellite Image

Authors: Salah Abdul Hameed Saleh, Ghada Hasan

Abstract:

The aim of this work is to produce an empirical model for the determination of particulate matter (PM10) concentration in the atmosphere using visible bands of Landsat 8 OLI satellite image over Kirkuk city- IRAQ. The suggested algorithm is established on the aerosol optical reflectance model. The reflectance model is a function of the optical properties of the atmosphere, which can be related to its concentrations. The concentration of PM10 measurements was collected using Particle Mass Profiler and Counter in a Single Handheld Unit (Aerocet 531) meter simultaneously by the Landsat 8 OLI satellite image date. The PM10 measurement locations were defined by a handheld global positioning system (GPS). The obtained reflectance values for visible bands (Coastal aerosol, Blue, Green and blue bands) of landsat 8 OLI image were correlated with in-suite measured PM10. The feasibility of the proposed algorithms was investigated based on the correlation coefficient (R) and root-mean-square error (RMSE) compared with the PM10 ground measurement data. A choice of our proposed multispectral model was founded on the highest value correlation coefficient (R) and lowest value of the root mean square error (RMSE) with PM10 ground data. The outcomes of this research showed that visible bands of Landsat 8 OLI were capable of calculating PM10 concentration with an acceptable level of accuracy.

Keywords: air pollution, PM10 concentration, Lansat8 OLI image, reflectance, multispectral algorithms, Kirkuk area

Procedia PDF Downloads 442
634 Fish Scales as a Nonlethal Screening Tools for Assessing the Effects of Surface Water Contaminants in Cyprinus Carpio

Authors: Shahid Mahboob, Hafiz Muhammad Ashraf, Salma Sultana, Tayyaba Sultana, Khalid Al-Ghanim, Fahid Al-Misned, Zubair Ahmedd

Abstract:

There is an increasing need for an effective tool to estimate the risks derived from the large number of pollutants released to the environment by human activities. Typical screening procedures are highly invasive or lethal to the fish. Recent studies show that fish scales biochemically respond to a range of contaminants, including toxic metals, organic compounds, and endocrine disruptors. The present study evaluated the effects of the surface water contaminants on Cyprinus carpio in the Ravi River by comparing DNA extracted non-lethally from their scales to DNA extracted from the scales of fish collected from a controlled fish farm. A single, random sampling was conducted. Fish were broadly categorised into three weight categories (W1, W2 and W3). The experimental samples in the W1, W2 and W3 categories had an average DNA concentration (µg/µl) that was lower than the control samples. All control samples had a single DNA band; whereas the experimental samples in W1 fish had 1 to 2 bands, the experimental samples in W2 fish had two bands and the experimental samples in W3 fish had fragmentation in the form of three bands. These bands exhibit the effects of pollution on fish in the Ravi River. On the basis findings of this study, we propose that fish scales can be successfully employed as a new non-lethal tool for the evaluation of the effect of surface water contaminants.

Keywords: fish scales, Cyprinus carpio, heavy metals, non-invasive, DNA fragmentation

Procedia PDF Downloads 414
633 Power Supply by Soil Battery and Production of Hydrogen Fuel for Greenhouse and Space Heating

Authors: Mohsen Azarmjoo, Yasaman Azarmjoo, Zahra Alikhani Koopaei

Abstract:

The increasing global population and continued growth in energy consumption underscore the need for renewable and sustainable energy sources more than ever. Soil batteries are a method for generating electrical energy by using recycled materials. Recycled materials include galvanized and copper sheets and recycled tires. Additionally, hydrogen, being a clean and efficient fuel, has the potential to replace fossil fuels. Consequently, hydrogen production from water presents a sustainable solution for energy supply. By utilizing aged materials, hydrogen production becomes more cost-effective and environmentally friendly. This article focuses on energy-deprived agricultural lands, explaining how soil batteries and hydrogen can provide the necessary energy for agricultural equipment, such as irrigation, lighting, greenhouse ventilation, and heating. The article explores the benefits of utilizing this method, emphasizing its potential to reduce environmental pollution through the use of recyclable materials. It is worth mentioning that these technologies face challenges, but their progress toward achieving zero-energy consumer standards positions them as promising future technologies for electricity generation. This article provides detailed insights into emerging technologies using a constructed case study involving soil batteries and a hydrogen fuel production device.

Keywords: electricity generation, soil batteries, tires, hydrogen, heat supply, water, aged materials, recycling, agricultural lands

Procedia PDF Downloads 64