Search results for: home network
4699 A Genetic-Neural-Network Modeling Approach for Self-Heating in GaN High Electron Mobility Transistors
Authors: Anwar Jarndal
Abstract:
In this paper, a genetic-neural-network (GNN) based large-signal model for GaN HEMTs is presented along with its parameters extraction procedure. The model is easy to construct and implement in CAD software and requires only DC and S-parameter measurements. An improved decomposition technique is used to model self-heating effect. Two GNN models are constructed to simulate isothermal drain current and power dissipation, respectively. The two model are then composed to simulate the drain current. The modeling procedure was applied to a packaged GaN-on-Si HEMT and the developed model is validated by comparing its large-signal simulation with measured data. A very good agreement between the simulation and measurement is obtained.Keywords: GaN HEMT, computer-aided design and modeling, neural networks, genetic optimization
Procedia PDF Downloads 3844698 A Study on Improvement of Performance of Anti-Splash Device for Cargo Oil Tank Vent Pipe Using CFD Simulation and Artificial Neural Network
Authors: Min-Woo Kim, Ok-Kyun Na, Jun-Ho Byun, Jong-Hwan Park, Seung-Hwa Yang, Joon-Hong Park, Young-Chul Park
Abstract:
This study is focused on the comparative analysis and improvement to grasp the flow characteristic of the Anti-Splash Device located under the P/V Valve and new concept design models using the CFD analysis and Artificial Neural Network. The P/V valve located upper deck to solve the pressure rising and vacuum condition of inner tank of the liquid cargo ships occurred oil outflow accident by transverse and longitudinal sloshing force. Anti-Splash Device is fitted to improve and prevent this problem in the shipbuilding industry. But the oil outflow accidents are still reported by ship owners. Thus, four types of new design model are presented by study. Then, comparative analysis is conducted with new models and existing model. Mostly the key criterion of this problem is flux in the outlet of the Anti-Splash Device. Therefore, the flow and velocity are grasped by transient analysis. And then it decided optimum model and design parameters to develop model. Later, it needs to develop an Anti-Splash Device by Flow Test to get certification and verification using experiment equipment.Keywords: anti-splash device, P/V valve, sloshing, artificial neural network
Procedia PDF Downloads 5904697 Community Empowerment: The Contribution of Network Urbanism on Urban Poverty Reduction
Authors: Lucia Antonela Mitidieri
Abstract:
This research analyzes the application of a model of settlements management based on networks of territorial integration that advocates planning as a cyclical and participatory process that engages early on with civic society, the private sector and the state. Through qualitative methods such as participant observation, interviews with snowball technique and an active research on territories, concrete results of community empowerment are obtained from the promotion of productive enterprises and community spaces of encounter and exchange. Studying the cultural and organizational dimensions of empowerment allows building indicators such as increase of capacities or community cohesion that can lead to support local governments in achieving sustainable urban development for a reduction of urban poverty.Keywords: community spaces, empowerment, network urbanism, participatory process
Procedia PDF Downloads 3324696 Finding Viable Pollution Routes in an Urban Network under a Predefined Cost
Authors: Dimitra Alexiou, Stefanos Katsavounis, Ria Kalfakakou
Abstract:
In an urban area the determination of transportation routes should be planned so as to minimize the provoked pollution taking into account the cost of such routes. In the sequel these routes are cited as pollution routes. The transportation network is expressed by a weighted graph G= (V, E, D, P) where every vertex represents a location to be served and E contains unordered pairs (edges) of elements in V that indicate a simple road. The distances/cost and a weight that depict the provoked air pollution by a vehicle transition at every road are assigned to each road as well. These are the items of set D and P respectively. Furthermore the investigated pollution routes must not exceed predefined corresponding values concerning the route cost and the route pollution level during the vehicle transition. In this paper we present an algorithm that generates such routes in order that the decision maker selects the most appropriate one.Keywords: bi-criteria, pollution, shortest paths, computation
Procedia PDF Downloads 3754695 Assessment of the Bataan Peninsula State University Food Technology Situation
Authors: Rosemarie P. Ongoco, Rowena S. Badua, Kristine Joy S. Simpao, Ria L. Dizon
Abstract:
Food Technology (FT) has become a very powerful field in dealing with the processing of food making it available, safe, tasty and convenient. Bataan Peninsula State University (BPSU) has been offering FT as a major of the Bachelor of Science in Industrial Technology, both in the Main and Orani campuses since the 1970s. With the different orientation of FT offered in state universities and colleges, whether it is skill or science-based, this study aims to assess the current FT situation in BPSU. Curriculum, faculty profile and facilities of FT in BPSU were assessed and compared to the other FT related program in three state universities in Region III; Nueva Ecija University of Science and Technology, Pampanga Agricultural College, and Central Luzon State University. Data were gathered through structured interview, ocular inspection for the facilities and questionnaires for the teacher and students’ personal interest. Results show that BPSU’s FT program is more likely similar to the one offered in NEUST. PAC is offering a similar course but is more business and management-oriented BS Home Economics while CLSU is offering a science and technology-related course, BS Home Economics while CLSU is offering a science and technology-related course, BS Food Technology. BPSU students more intercede in cooking and baking while doing sales report, dishwashing and food packaging are the activities faculty and students are least interested. Mechanized machines in cooking and baking are also suggested by the majority of the students in BPSU. In conclusion, BPSU’s program in BS IT major in Food Technology must be improved in the aspects of curriculum, faculty profile, and facilities. It is recommended for the department to consider the curriculum, faculty profile, and facilities. It is recommended for the department to consider the curriculum of NEUST in the BS IT major in Food Technology.Keywords: food technology, curriculum, technology, assessment
Procedia PDF Downloads 3464694 Acute Respiratory Infections in a Rural Area of the Southwestern Region of Bangladesh: Perceptions, Practices and the Role of First-Time Mothers
Authors: Sonia Mannan
Abstract:
A qualitative study was conducted in a rural area of the southwestern region of Bangladesh to identify perceptions, practices, and the role of first-time mothers surrounding acute respiratory infections (ARI) in infants and children aged under four years. The study reveals that all mothers had knowledge of ARI and were able to identify a number of signs and symptoms. They also recognized pneumonia and thought it to be caused by exposure to cold or weather change, supernatural causes, evil influences, mothers’ negligence, and failure to observe ‘purdah’. They were able to identify chest retractions, difficult breathing, and inability to feed as signs of severe disease needing treatment outside the home. In these cases, spiritual healers were sought, and allopathic treatment was delayed or avoided. Home care practices involved massaging the child with oil and avoiding 'cooling' foods, including water. With the presence of fever and breathing difficulty, mothers tended to increase the number and diversity of medicines, although more concern was expressed about fever than about breathing difficulty. Effective medical care was more likely to be delayed for infants than for older children (they often waited 2-5 days after signs of illness appeared); infants were also more likely to be taken to a spiritual healer as the first-choice provider. The reasons for these perceptions and practices and their implications on the ARI of infants and young children are discussed. Community intervention is identified as viable, effective, and practical to address the body of local socio-cultural knowledge about family practices and the role of the mother regarding the mitigation of ARI in infants and young children.Keywords: acute respiratory infections , public health, pneumonia, Bangladesh
Procedia PDF Downloads 1144693 Analysis of Travel Behavior Patterns of Frequent Passengers after the Section Shutdown of Urban Rail Transit - Taking the Huaqiao Section of Shanghai Metro Line 11 Shutdown During the COVID-19 Epidemic as an Example
Authors: Hongyun Li, Zhibin Jiang
Abstract:
The travel of passengers in the urban rail transit network is influenced by changes in network structure and operational status, and the response of individual travel preferences to these changes also varies. Firstly, the influence of the suspension of urban rail transit line sections on passenger travel along the line is analyzed. Secondly, passenger travel trajectories containing multi-dimensional semantics are described based on network UD data. Next, passenger panel data based on spatio-temporal sequences is constructed to achieve frequent passenger clustering. Then, the Graph Convolutional Network (GCN) is used to model and identify the changes in travel modes of different types of frequent passengers. Finally, taking Shanghai Metro Line 11 as an example, the travel behavior patterns of frequent passengers after the Huaqiao section shutdown during the COVID-19 epidemic are analyzed. The results showed that after the section shutdown, most passengers would transfer to the nearest Anting station for boarding, while some passengers would transfer to other stations for boarding or cancel their travels directly. Among the passengers who transferred to Anting station for boarding, most of passengers maintained the original normalized travel mode, a small number of passengers waited for a few days before transferring to Anting station for boarding, and only a few number of passengers stopped traveling at Anting station or transferred to other stations after a few days of boarding on Anting station. The results can provide a basis for understanding urban rail transit passenger travel patterns and improving the accuracy of passenger flow prediction in abnormal operation scenarios.Keywords: urban rail transit, section shutdown, frequent passenger, travel behavior pattern
Procedia PDF Downloads 864692 Neural Networks with Different Initialization Methods for Depression Detection
Authors: Tianle Yang
Abstract:
As a common mental disorder, depression is a leading cause of various diseases worldwide. Early detection and treatment of depression can dramatically promote remission and prevent relapse. However, conventional ways of depression diagnosis require considerable human effort and cause economic burden, while still being prone to misdiagnosis. On the other hand, recent studies report that physical characteristics are major contributors to the diagnosis of depression, which inspires us to mine the internal relationship by neural networks instead of relying on clinical experiences. In this paper, neural networks are constructed to predict depression from physical characteristics. Two initialization methods are examined - Xaiver and Kaiming initialization. Experimental results show that a 3-layers neural network with Kaiming initialization achieves 83% accuracy.Keywords: depression, neural network, Xavier initialization, Kaiming initialization
Procedia PDF Downloads 1294691 A Neural Network Classifier for Estimation of the Degree of Infestation by Late Blight on Tomato Leaves
Authors: Gizelle K. Vianna, Gabriel V. Cunha, Gustavo S. Oliveira
Abstract:
Foliage diseases in plants can cause a reduction in both quality and quantity of agricultural production. Intelligent detection of plant diseases is an essential research topic as it may help monitoring large fields of crops by automatically detecting the symptoms of foliage diseases. This work investigates ways to recognize the late blight disease from the analysis of tomato digital images, collected directly from the field. A pair of multilayer perceptron neural network analyzes the digital images, using data from both RGB and HSL color models, and classifies each image pixel. One neural network is responsible for the identification of healthy regions of the tomato leaf, while the other identifies the injured regions. The outputs of both networks are combined to generate the final classification of each pixel from the image and the pixel classes are used to repaint the original tomato images by using a color representation that highlights the injuries on the plant. The new images will have only green, red or black pixels, if they came from healthy or injured portions of the leaf, or from the background of the image, respectively. The system presented an accuracy of 97% in detection and estimation of the level of damage on the tomato leaves caused by late blight.Keywords: artificial neural networks, digital image processing, pattern recognition, phytosanitary
Procedia PDF Downloads 3314690 Performance Study of ZigBee-Based Wireless Sensor Networks
Authors: Afif Saleh Abugharsa
Abstract:
The IEEE 802.15.4 standard is designed for low-rate wireless personal area networks (LR-WPAN) with focus on enabling wireless sensor networks. It aims to give a low data rate, low power consumption, and low cost wireless networking on the device-level communication. The objective of this study is to investigate the performance of IEEE 802.15.4 based networks using simulation tool. In this project the network simulator 2 NS2 was used to several performance measures of wireless sensor networks. Three scenarios were considered, multi hop network with a single coordinator, star topology, and an ad hoc on demand distance vector AODV. Results such as packet delivery ratio, hop delay, and number of collisions are obtained from these scenarios.Keywords: ZigBee, wireless sensor networks, IEEE 802.15.4, low power, low data rate
Procedia PDF Downloads 4354689 Neural Network Modelling for Turkey Railway Load Carrying Demand
Authors: Humeyra Bolakar Tosun
Abstract:
The transport sector has an undisputed place in human life. People need transport access to continuous increase day by day with growing population. The number of rail network, urban transport planning, infrastructure improvements, transportation management and other related areas is a key factor affecting our country made it quite necessary to improve the work of transportation. In this context, it plays an important role in domestic rail freight demand planning. Alternatives that the increase in the transportation field and has made it mandatory requirements such as the demand for improving transport quality. In this study generally is known and used in studies by the definition, rail freight transport, railway line length, population, energy consumption. In this study, Iron Road Load Net Demand was modeled by multiple regression and ANN methods. In this study, model dependent variable (Output) is Iron Road Load Net demand and 6 entries variable was determined. These outcome values extracted from the model using ANN and regression model results. In the regression model, some parameters are considered as determinative parameters, and the coefficients of the determinants give meaningful results. As a result, ANN model has been shown to be more successful than traditional regression model.Keywords: railway load carrying, neural network, modelling transport, transportation
Procedia PDF Downloads 1444688 Context, Challenges, Constraints and Strategies of Non-Profit Organisations in Responding to the Needs of Asylum Seekers and Refugees in Cape Town, South Africa
Authors: C. O’Brien, Chloe Reiss
Abstract:
While South Africa has been the chosen host country for over 1,2 million asylum seekers/refugees it has at the same time, been struggling to address the needs of its own people who are still trapped in poverty with little prospects of employment. This limited exploratory, qualitative study was undertaken in Cape Town with a purposive sample of 21 key personnel from various NPOs providing a service to asylum seekers/refugees. Individual in-depth face to face interviews were carried out and the main findings were: Some of the officials at the Department of Home Affairs, health personnel, landlords, school principals, employers, bank officials and police officers were prejudicial in their practices towards asylum seekers/ refugees. The major constraints experienced by NPOs in this study were linked to a lack of funding and minimal government support, strained relationship with the Department of Home Affairs and difficulties in accessing refugees. And finally, the strategies adopted by these NPOs included networking with other service providers, engaging in advocacy, raising community awareness and liaising with government. Thus, more focused intervention strategies are needed to build social cohesion, address prejudices which fuels xenophobic attacks and raise awareness/educate various sectors about refugee rights. Given this burgeoning global problem, social work education and training should include curriculum content on migrant issues. Furthermore, larger studies using mixed methodology approaches would yield more nuanced data and provide for more strategic interventions.Keywords: refugees and asylum seekers, constraints of service delivery, non-profit organisations, refugee challenges
Procedia PDF Downloads 2074687 Turbulent Channel Flow Synthesis using Generative Adversarial Networks
Authors: John M. Lyne, K. Andrea Scott
Abstract:
In fluid dynamics, direct numerical simulations (DNS) of turbulent flows require large amounts of nodes to appropriately resolve all scales of energy transfer. Due to the size of these databases, sharing these datasets amongst the academic community is a challenge. Recent work has been done to investigate the use of super-resolution to enable database sharing, where a low-resolution flow field is super-resolved to high resolutions using a neural network. Recently, Generative Adversarial Networks (GAN) have grown in popularity with impressive results in the generation of faces, landscapes, and more. This work investigates the generation of unique high-resolution channel flow velocity fields from a low-dimensional latent space using a GAN. The training objective of the GAN is to generate samples in which the distribution of the generated samplesis ideally indistinguishable from the distribution of the training data. In this study, the network is trained using samples drawn from a statistically stationary channel flow at a Reynolds number of 560. Results show that the turbulent statistics and energy spectra of the generated flow fields are within reasonable agreement with those of the DNS data, demonstrating that GANscan produce the intricate multi-scale phenomena of turbulence.Keywords: computational fluid dynamics, channel flow, turbulence, generative adversarial network
Procedia PDF Downloads 2074686 Document-level Sentiment Analysis: An Exploratory Case Study of Low-resource Language Urdu
Authors: Ammarah Irum, Muhammad Ali Tahir
Abstract:
Document-level sentiment analysis in Urdu is a challenging Natural Language Processing (NLP) task due to the difficulty of working with lengthy texts in a language with constrained resources. Deep learning models, which are complex neural network architectures, are well-suited to text-based applications in addition to data formats like audio, image, and video. To investigate the potential of deep learning for Urdu sentiment analysis, we implemented five different deep learning models, including Bidirectional Long Short Term Memory (BiLSTM), Convolutional Neural Network (CNN), Convolutional Neural Network with Bidirectional Long Short Term Memory (CNN-BiLSTM), and Bidirectional Encoder Representation from Transformer (BERT). In this study, we developed a hybrid deep learning model called BiLSTM-Single Layer Multi Filter Convolutional Neural Network (BiLSTM-SLMFCNN) by fusing BiLSTM and CNN architecture. The proposed and baseline techniques are applied on Urdu Customer Support data set and IMDB Urdu movie review data set by using pre-trained Urdu word embedding that are suitable for sentiment analysis at the document level. Results of these techniques are evaluated and our proposed model outperforms all other deep learning techniques for Urdu sentiment analysis. BiLSTM-SLMFCNN outperformed the baseline deep learning models and achieved 83%, 79%, 83% and 94% accuracy on small, medium and large sized IMDB Urdu movie review data set and Urdu Customer Support data set respectively.Keywords: urdu sentiment analysis, deep learning, natural language processing, opinion mining, low-resource language
Procedia PDF Downloads 744685 Analyzing the Effect of Multilingualism, Language 1, and Language 2 on Reading Comprehension
Authors: Judith Hanke
Abstract:
Due to the increase of students with reading difficulties, digital reading support with diagnostics was developed to foster the individual student's reading comprehension. The digital reading support focused on the reading comprehension of elementary school students. The digital reading packages consist of literary texts with aligned reading exercises. The number of students with German as a second language is growing in Germany. Students with multilingualism, language 1, and language 2 learn German together in school. The research's focus is on determining whether and to what extent multilingualism, language 1, and language 2 affect reading comprehension. For the methodology, an ABA design was selected for the intervention study to examine the reading support. The study was expedited from April 2023 until July 2023 and collected quantitative data of individuals, groups, and classes. It comprised a survey group (N = 58) and a control group (N = 53). The quantitative data was collected from 3 classes of 3 teachers and 47 students for all three test times. To show differences between the groups, a standardized reading comprehension test was used for the three test times, pretest, posttest, and follow-up. The standardized test consists of three subtests regarding word comprehension, sentence comprehension, and text comprehension. The main findings include that students who spoke German as their first language had the best test scores. Interestingly, students with a different language had better testing scores than students with German as the first language and (an) other language/s. Also, the students with another language outperformed the native language speakers in one of the subtests of the post-testing. The variables of spoken language at home and German as a second language were also examined and correlated with the test results. One significant correlation was found between spoken language at home and the text comprehension test of the pretesting. Additionally, the variable German as a second language had multiple significant correlations in the pretest, posttest and follow-up. The study's significance is to understand the influence of several languages, language 1, and language 2, on reading comprehension.Keywords: multilingualism, language 1, language 2, reading comprehension, second language
Procedia PDF Downloads 334684 GRCNN: Graph Recognition Convolutional Neural Network for Synthesizing Programs from Flow Charts
Authors: Lin Cheng, Zijiang Yang
Abstract:
Program synthesis is the task to automatically generate programs based on user specification. In this paper, we present a framework that synthesizes programs from flow charts that serve as accurate and intuitive specification. In order doing so, we propose a deep neural network called GRCNN that recognizes graph structure from its image. GRCNN is trained end-to-end, which can predict edge and node information of the flow chart simultaneously. Experiments show that the accuracy rate to synthesize a program is 66.4%, and the accuracy rates to recognize edge and node are 94.1% and 67.9%, respectively. On average, it takes about 60 milliseconds to synthesize a program.Keywords: program synthesis, flow chart, specification, graph recognition, CNN
Procedia PDF Downloads 1204683 Learning Aid for Kids in India
Authors: Prabir Mukhopadhyay, Atul Kohale
Abstract:
Going to school for Indian kids is a panic situation. Many of them are unable to adjust themselves to the confinement of the school building and this problem is compounded by other factors like unknown people in the vicinity, absence of either parents etc. This project aims at addressing these issues by exposing the kids at home to the learning environment. The purpose is to design a physical model with interfaces at each surface. The model would be like a cube with interactive surfaces where the child would be able to draw, paint, complete a picture and do such fun activities.Keywords: interface, kids, play, computer systems engineering
Procedia PDF Downloads 2144682 Presenting Research-Based Mindfulness Tools for Corporate Wellness
Authors: Dana Zelicha
Abstract:
The objective of this paper is to present innovative mindfulness tools specifically designed by OWBA—The Well Being Agency for organisations and corporate wellness programmes. The OWBA Mindfulness Tools (OWBA-MT) consist of practical mindfulness exercises to educate and train employees and business leaders to think, feel, and act more mindfully. Among these cutting-edge interventions are Mindful Meetings, Mindful Decision Making and Unitasking activities, intended to cultivate mindful communication and compassion in the workplace and transform organisational culture. In addition to targeting CEO’s and leaders within large corporations, OWBA-MT is also directed at the needs of specific populations such as entrepreneurs’ resilience and women empowerment. The goals of the OWBA-MT are threefold: to inform, inspire and implement. The first goal is to inform participants about the relationship between workplace stress, distractibility and miscommunication in the framework of mindfulness. The second goal is for the audience to be inspired to share those practices with other members of their organisation. The final objective is to equip participants with the tools to foster a compassionate, mindful and well-balanced work environment. To assess these tools, a 6-week case study was conducted as part of an employee wellness programme for a large international corporation. The OWBA-MT were introduced in a workshop forum once-a-week, with participants practicing these tools both in the office and at home. The workshops occurred 1 day a week (2 hours each), with themes and exercises varying weekly. To reinforce practice at home, participants received reflection forms and guided meditations online. Materials were sent via-email at the same time each day to ensure consistency and participation. To evaluate the effectiveness of the mindfulness intervention, improvements in four categories were measured: listening skills, mindfulness levels, prioritising skills and happiness levels. These factors were assessed using online self-reported questionnaires administered at the start of the intervention, and then again 4-weeks following completion. The measures included the Mindfulness Attention Awareness Scale (MAAS), Listening Skills Inventory (LSI), Time Management Behaviour Scale (TMBS) and a modified version of the Oxford Happiness Questionnaire (OHQ). All four parameters showed significant improvements from the start of the programme to the 4-week follow-up. Participant testimonials exhibited high levels of satisfaction and the overall results indicate that the OWBA-MT intervention substantially impacted the corporation in a positive way. The implications of these results suggest that OWBA-MT can improve employees’ capacities to listen and work well with others, to manage time effectively, and to experience enhanced satisfaction both at work and in life. Although corporate mindfulness programmes have proven to be effective, the challenge remains the low engagement levels at home in between training sessions and to implement the tools beyond the scope of the intervention. OWBA-MT has offered an innovative approach to enforce engagement levels at home by sending daily online materials outside the workshop forum with a personalised response. The limitations also noteworthy to consider for future research include the afterglow effect and lack of generalisability, as this study was conducted on a small and fairly homogenous sample.Keywords: corporate mindfulness, listening skills, mindful leadership, mindfulness tools, organisational well being
Procedia PDF Downloads 2454681 6D Posture Estimation of Road Vehicles from Color Images
Authors: Yoshimoto Kurihara, Tad Gonsalves
Abstract:
Currently, in the field of object posture estimation, there is research on estimating the position and angle of an object by storing a 3D model of the object to be estimated in advance in a computer and matching it with the model. However, in this research, we have succeeded in creating a module that is much simpler, smaller in scale, and faster in operation. Our 6D pose estimation model consists of two different networks – a classification network and a regression network. From a single RGB image, the trained model estimates the class of the object in the image, the coordinates of the object, and its rotation angle in 3D space. In addition, we compared the estimation accuracy of each camera position, i.e., the angle from which the object was captured. The highest accuracy was recorded when the camera position was 75°, the accuracy of the classification was about 87.3%, and that of regression was about 98.9%.Keywords: 6D posture estimation, image recognition, deep learning, AlexNet
Procedia PDF Downloads 1574680 Strategic Planning in South African Higher Education
Authors: Noxolo Mafu
Abstract:
This study presents an overview of strategic planning in South African higher education institutions by tracing its trends and mystique in order to identify its impact. Over the democratic decades, strategic planning has become integral to institutional survival. It has been used as a potent tool by several institutions to catch up and surpass counterparts. While planning has always been part of higher education, strategic planning should be considered different. Strategic planning is primarily about development and maintenance of a strategic fitting between an institution and its dynamic opportunities. This presupposes existence of sets of stages that institutions pursue of which, can be regarded for assessment of the impact of strategic planning in an institution. The network theory serves guides the study in demystifying apparent organisational networks in strategic planning processes.Keywords: network theory, strategy, planning, strategic planning, assessment, impact
Procedia PDF Downloads 5634679 Decarbonising Urban Building Heating: A Case Study on the Benefits and Challenges of Fifth-Generation District Heating Networks
Authors: Mazarine Roquet, Pierre Dewallef
Abstract:
The building sector, both residential and tertiary, accounts for a significant share of greenhouse gas emissions. In Belgium, partly due to poor insulation of the building stock, but certainly because of the massive use of fossil fuels for heating buildings, this share reaches almost 30%. To reduce carbon emissions from urban building heating, district heating networks emerge as a promising solution as they offer various assets such as improving the load factor, integrating combined heat and power systems, and enabling energy source diversification, including renewable sources and waste heat recovery. However, mainly for sake of simple operation, most existing district heating networks still operate at high or medium temperatures ranging between 120°C and 60°C (the socalled second and third-generations district heating networks). Although these district heating networks offer energy savings in comparison with individual boilers, such temperature levels generally require the use of fossil fuels (mainly natural gas) with combined heat and power. The fourth-generation district heating networks improve the transport and energy conversion efficiency by decreasing the operating temperature between 50°C and 30°C. Yet, to decarbonise the building heating one must increase the waste heat recovery and use mainly wind, solar or geothermal sources for the remaining heat supply. Fifth-generation networks operating between 35°C and 15°C offer the possibility to decrease even more the transport losses, to increase the share of waste heat recovery and to use electricity from renewable resources through the use of heat pumps to generate low temperature heat. The main objective of this contribution is to exhibit on a real-life test case the benefits of replacing an existing third-generation network by a fifth-generation one and to decarbonise the heat supply of the building stock. The second objective of the study is to highlight the difficulties resulting from the use of a fifth-generation, low-temperature, district heating network. To do so, a simulation model of the district heating network including its regulation is implemented in the modelling language Modelica. This model is applied to the test case of the heating network on the University of Liège's Sart Tilman campus, consisting of around sixty buildings. This model is validated with monitoring data and then adapted for low-temperature networks. A comparison of primary energy consumptions as well as CO2 emissions is done between the two cases to underline the benefits in term of energy independency and GHG emissions. To highlight the complexity of operating a lowtemperature network, the difficulty of adapting the mass flow rate to the heat demand is considered. This shows the difficult balance between the thermal comfort and the electrical consumption of the circulation pumps. Several control strategies are considered and compared to the global energy savings. The developed model can be used to assess the potential for energy and CO2 emissions savings retrofitting an existing network or when designing a new one.Keywords: building simulation, fifth-generation district heating network, low-temperature district heating network, urban building heating
Procedia PDF Downloads 854678 A Comparative Study on Automatic Feature Classification Methods of Remote Sensing Images
Authors: Lee Jeong Min, Lee Mi Hee, Eo Yang Dam
Abstract:
Geospatial feature extraction is a very important issue in the remote sensing research. In the meantime, the image classification based on statistical techniques, but, in recent years, data mining and machine learning techniques for automated image processing technology is being applied to remote sensing it has focused on improved results generated possibility. In this study, artificial neural network and decision tree technique is applied to classify the high-resolution satellite images, as compared to the MLC processing result is a statistical technique and an analysis of the pros and cons between each of the techniques.Keywords: remote sensing, artificial neural network, decision tree, maximum likelihood classification
Procedia PDF Downloads 3474677 The Effects of Street Network Layout on Walking to School
Authors: Ayse Ozbil, Gorsev Argin, Demet Yesiltepe
Abstract:
Data for this cross-sectional study were drawn from questionnaires conducted in 10 elementary schools (1000 students, ages 12-14) located in Istanbul, Turkey. School environments (1600 meter buffers around the school) were evaluated through GIS-based land-use data (parcel level land use density) and street-level topography. Street networks within the same buffers were evaluated by using angular segment analysis (Integration and Choice) implemented in Depthmap as well as two segment-based connectivity measures, namely Metric and Directional Reach implemented in GIS. Segment Angular Integration measures how accessible each space from all the others within the radius using the least angle measure of distance. Segment Angular Choice which measures how many times a space is selected on journeys between all pairs of origins and destinations. Metric Reach captures the density of streets and street connections accessible from each individual road segment. Directional Reach measures the extent to which the entire street network is accessible with few direction changes. In addition, socio-economic characteristics (annual income, car ownership, education-level) of parents, obtained from parental questionnaires, were also included in the analysis. It is shown that surrounding street network configuration is strongly associated with both walk-mode shares and average walking distances to/from schools when controlling for parental socio-demographic attributes as well as land-use compositions and topographic features in school environments. More specifically, findings suggest that the scale at which urban form has an impact on pedestrian travel is considerably larger than a few blocks around the school.Keywords: Istanbul, street network layout, urban form, walking to/from school
Procedia PDF Downloads 4094676 Prediction of Temperature Distribution during Drilling Process Using Artificial Neural Network
Authors: Ali Reza Tahavvor, Saeed Hosseini, Nazli Jowkar, Afshin Karimzadeh Fard
Abstract:
Experimental & numeral study of temperature distribution during milling process, is important in milling quality and tools life aspects. In the present study the milling cross-section temperature is determined by using Artificial Neural Networks (ANN) according to the temperature of certain points of the work piece and the points specifications and the milling rotational speed of the blade. In the present work, at first three-dimensional model of the work piece is provided and then by using the Computational Heat Transfer (CHT) simulations, temperature in different nods of the work piece are specified in steady-state conditions. Results obtained from CHT are used for training and testing the ANN approach. Using reverse engineering and setting the desired x, y, z and the milling rotational speed of the blade as input data to the network, the milling surface temperature determined by neural network is presented as output data. The desired points temperature for different milling blade rotational speed are obtained experimentally and by extrapolation method for the milling surface temperature is obtained and a comparison is performed among the soft programming ANN, CHT results and experimental data and it is observed that ANN soft programming code can be used more efficiently to determine the temperature in a milling process.Keywords: artificial neural networks, milling process, rotational speed, temperature
Procedia PDF Downloads 4074675 Enhancing Scalability in Ethereum Network Analysis: Methods and Techniques
Authors: Stefan K. Behfar
Abstract:
The rapid growth of the Ethereum network has brought forth the urgent need for scalable analysis methods to handle the increasing volume of blockchain data. In this research, we propose efficient methodologies for making Ethereum network analysis scalable. Our approach leverages a combination of graph-based data representation, probabilistic sampling, and parallel processing techniques to achieve unprecedented scalability while preserving critical network insights. Data Representation: We develop a graph-based data representation that captures the underlying structure of the Ethereum network. Each block transaction is represented as a node in the graph, while the edges signify temporal relationships. This representation ensures efficient querying and traversal of the blockchain data. Probabilistic Sampling: To cope with the vastness of the Ethereum blockchain, we introduce a probabilistic sampling technique. This method strategically selects a representative subset of transactions and blocks, allowing for concise yet statistically significant analysis. The sampling approach maintains the integrity of the network properties while significantly reducing the computational burden. Graph Convolutional Networks (GCNs): We incorporate GCNs to process the graph-based data representation efficiently. The GCN architecture enables the extraction of complex spatial and temporal patterns from the sampled data. This combination of graph representation and GCNs facilitates parallel processing and scalable analysis. Distributed Computing: To further enhance scalability, we adopt distributed computing frameworks such as Apache Hadoop and Apache Spark. By distributing computation across multiple nodes, we achieve a significant reduction in processing time and enhanced memory utilization. Our methodology harnesses the power of parallelism, making it well-suited for large-scale Ethereum network analysis. Evaluation and Results: We extensively evaluate our methodology on real-world Ethereum datasets covering diverse time periods and transaction volumes. The results demonstrate its superior scalability, outperforming traditional analysis methods. Our approach successfully handles the ever-growing Ethereum data, empowering researchers and developers with actionable insights from the blockchain. Case Studies: We apply our methodology to real-world Ethereum use cases, including detecting transaction patterns, analyzing smart contract interactions, and predicting network congestion. The results showcase the accuracy and efficiency of our approach, emphasizing its practical applicability in real-world scenarios. Security and Robustness: To ensure the reliability of our methodology, we conduct thorough security and robustness evaluations. Our approach demonstrates high resilience against adversarial attacks and perturbations, reaffirming its suitability for security-critical blockchain applications. Conclusion: By integrating graph-based data representation, GCNs, probabilistic sampling, and distributed computing, we achieve network scalability without compromising analytical precision. This approach addresses the pressing challenges posed by the expanding Ethereum network, opening new avenues for research and enabling real-time insights into decentralized ecosystems. Our work contributes to the development of scalable blockchain analytics, laying the foundation for sustainable growth and advancement in the domain of blockchain research and application.Keywords: Ethereum, scalable network, GCN, probabilistic sampling, distributed computing
Procedia PDF Downloads 784674 Dynamic Economic Load Dispatch Using Quadratic Programming: Application to Algerian Electrical Network
Authors: A. Graa, I. Ziane, F. Benhamida, S. Souag
Abstract:
This paper presents a comparative analysis study of an efficient and reliable quadratic programming (QP) to solve economic load dispatch (ELD) problem with considering transmission losses in a power system. The proposed QP method takes care of different unit and system constraints to find optimal solution. To validate the effectiveness of the proposed QP solution, simulations have been performed using Algerian test system. Results obtained with the QP method have been compared with other existing relevant approaches available in literatures. Experimental results show a proficiency of the QP method over other existing techniques in terms of robustness and its optimal search.Keywords: economic dispatch, quadratic programming, Algerian network, dynamic load
Procedia PDF Downloads 5654673 Evaluation of the Internal Quality for Pineapple Based on the Spectroscopy Approach and Neural Network
Authors: Nonlapun Meenil, Pisitpong Intarapong, Thitima Wongsheree, Pranchalee Samanpiboon
Abstract:
In Thailand, once pineapples are harvested, they must be classified into two classes based on their sweetness: sweet and unsweet. This paper has studied and developed the assessment of internal quality of pineapples using a low-cost compact spectroscopy sensor according to the Spectroscopy approach and Neural Network (NN). During the experiments, Batavia pineapples were utilized, generating 100 samples. The extracted pineapple juice of each sample was used to determine the Soluble Solid Content (SSC) labeling into sweet and unsweet classes. In terms of experimental equipment, the sensor cover was specifically designed to install the sensor and light source to read the reflectance at a five mm depth from pineapple flesh. By using a spectroscopy sensor, data on visible and near-infrared reflectance (Vis-NIR) were collected. The NN was used to classify the pineapple classes. Before the classification step, the preprocessing methods, which are Class balancing, Data shuffling, and Standardization were applied. The 510 nm and 900 nm reflectance values of the middle parts of pineapples were used as features of the NN. With the Sequential model and Relu activation function, 100% accuracy of the training set and 76.67% accuracy of the test set were achieved. According to the abovementioned information, using a low-cost compact spectroscopy sensor has achieved favorable results in classifying the sweetness of the two classes of pineapples.Keywords: neural network, pineapple, soluble solid content, spectroscopy
Procedia PDF Downloads 794672 Conventional Four Steps Travel Demand Modeling for Kabul New City
Authors: Ahmad Mansoor Stanikzai, Yoshitaka Kajita
Abstract:
This research is a very essential towards transportation planning of Kabul New City. In this research, the travel demand of Kabul metropolitan area (Existing and Kabul New City) are evaluated for three different target years (2015, current, 2025, mid-term, 2040, long-term). The outcome of this study indicates that, though currently the vehicle volume is less the capacity of existing road networks, Kabul city is suffering from daily traffic congestions. This is mainly due to lack of transportation management, the absence of proper policies, improper public transportation system and violation of traffic rules and regulations by inhabitants. On the other hand, the observed result indicates that the current vehicle to capacity ratio (VCR) which is the most used index to judge traffic status in the city is around 0.79. This indicates the inappropriate traffic condition of the city. Moreover, by the growth of population in mid-term (2025) and long-term (2040) and in the case of no development in the road network and transportation system, the VCR value will dramatically increase to 1.40 (2025) and 2.5 (2040). This can be a critical situation for an urban area from an urban transportation perspective. Thus, by introducing high-capacity public transportation system and the development of road network in Kabul New City and integrating these links with the existing city road network, significant improvements were observed in the value of VCR.Keywords: Afghanistan, Kabul new city, planning, policy, urban transportation
Procedia PDF Downloads 3324671 RV-YOLOX: Object Detection on Inland Waterways Based on Optimized YOLOX Through Fusion of Vision and 3+1D Millimeter Wave Radar
Authors: Zixian Zhang, Shanliang Yao, Zile Huang, Zhaodong Wu, Xiaohui Zhu, Yong Yue, Jieming Ma
Abstract:
Unmanned Surface Vehicles (USVs) are valuable due to their ability to perform dangerous and time-consuming tasks on the water. Object detection tasks are significant in these applications. However, inherent challenges, such as the complex distribution of obstacles, reflections from shore structures, water surface fog, etc., hinder the performance of object detection of USVs. To address these problems, this paper provides a fusion method for USVs to effectively detect objects in the inland surface environment, utilizing vision sensors and 3+1D Millimeter-wave radar. MMW radar is complementary to vision sensors, providing robust environmental information. The radar 3D point cloud is transferred to 2D radar pseudo image to unify radar and vision information format by utilizing the point transformer. We propose a multi-source object detection network (RV-YOLOX )based on radar-vision fusion for inland waterways environment. The performance is evaluated on our self-recording waterways dataset. Compared with the YOLOX network, our fusion network significantly improves detection accuracy, especially for objects with bad light conditions.Keywords: inland waterways, YOLO, sensor fusion, self-attention
Procedia PDF Downloads 1274670 Harrison’s Stolen: Addressing Aboriginal and Indigenous Islanders Human Rights
Authors: M. Shukry
Abstract:
According to the United Nations Declaration of Human Rights in 1948, every human being is entitled to rights in life that should be respected by others and protected by the state and community. Such rights are inherent regardless of colour, ethnicity, gender, religion or otherwise, and it is expected that all humans alike have the right to live without discrimination of any sort. However, that has not been the case with Aborigines in Australia. Over a long period of time, the governments of the State and the Territories and the Australian Commonwealth denied the Aboriginal and Indigenous inhabitants of the Torres Strait Islands such rights. Past Australian governments set policies and laws that enabled them to forcefully remove Indigenous children from their parents, which resulted in creating lost generations living the trauma of the loss of cultural identity, alienation and even their own selfhood. Intending to reduce that population of natives and their Aboriginal culture while, on the other hand, assimilate them into mainstream society, they gave themselves the right to remove them from their families with no hope of return. That practice has led to tragic consequences due to the trauma that has affected those children, an experience that is depicted by Jane Harrison in her play Stolen. The drama is the outcome of a six-year project on lost children and which was first performed in 1997 in Melbourne. Five actors only appear on the stage, playing the role of all the different characters, whether the main protagonists or the remaining cast, present or non-present ones as voices. The play outlines the life of five children who have been taken from their parents at an early age, entailing a disastrous negative impact that differs from one to the other. Unknown to each other, what connects between them is being put in a children’s home. The purpose of this paper is to analyse the play’s text in light of the 1948 Declaration of Human Rights, using it as a lens that reflects the atrocities practiced against the Aborigines. It highlights how such practices formed an outrageous violation of those natives’ rights as human beings. Harrison’s dramatic technique in conveying the children’s experiences is through a non-linear structure, fluctuating between past and present that are linked together within each of the five characters, reflecting their suffering and pain to create an emotional link between them and the audience. Her dramatic handling of the issue by fusing tragedy with humour as well as symbolism is a successful technique in revealing the traumatic memory of those children and their present life. The play has made a difference in commencing to address the problem of the right of all children to be with their families, which renders the real meaning of having a home and an identity as people.Keywords: aboriginal, audience, Australia, children, culture, drama, home, human rights, identity, Indigenous, Jane Harrison, memory, scenic effects, setting, stage, stage directions, Stolen, trauma
Procedia PDF Downloads 300