Search results for: adaptive stiffness
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1811

Search results for: adaptive stiffness

371 Correlation Study between Clinical and Radiological Findings in Knee Osteoarthritis

Authors: Nabil A. A. Mohamed, Alaa A. A. Balbaa, Khaled E. Ayad

Abstract:

Osteoarthritis (OA) of the knee is the most common form of arthritis and leads to more activity limitations (e.g., disability in walking and stair climbing) than any other disease, especially in the elderly. Recently, impaired proprioceptive accuracy of the knee has been proposed as a local factor in the onset and progression of radiographic knee OA (ROA). Purpose: To compare the clinical and radiological findings in healthy with that of knee OA. Also, to determine if there is a correlation between the clinical and radiological findings in patients with knee OA. Subjects: Fifty one patients diagnosed as unilateral or bilateral knee OA with age ranged between 35-70 years, from both gender without any previous history of knee trauma or surgery, and twenty one normal subjects with age ranged from 35 - 68 years. METHODS: peak torque/body weight (PT/BW) was recorded from knee extensors at isokinetic isometric mode at angle of 45 degree. Also, the Absolute Angular Error was recorded at 45O and 30O to measure joint position sense (JPS). They made anteroposterior (AP) plain X-rays from standing semiflexed knee position and their average score of Timed Up and Go test(TUG) and WOMAC were recorded as a measure of knee pain, stiffness and function. Comparison between the mean values of different variables in the two groups was performed using unpaired student t test. The P value less or equal to 0.05 was considered significant. Results: There were significant differences between the studied variables between the experimental and control groups except the values of AAE at 30O. Also, there were no significant correlation between the clinical findings (pain, function, muscle strength and proprioception) and the severity of arthritic changes in X-rays. CONCLUSION: From the finding of the current study we can conclude that there were a significant difference between the both groups in all studied parameters (the WOMAC, functional level, quadriceps muscle strength and the joint proprioception). Also this study did not support the dependency on radiological findings in management of knee OA as the radiological features did not necessarily indicate the level of structural damage of patients with knee OA and we should consider the clinical features in our treatment plan.

Keywords: joint position sense, peak torque, proprioception, radiological knee osteoarthritis

Procedia PDF Downloads 302
370 Inflammatory Changes in Postmenopausal Women including Th17 and Treg

Authors: Ae Ra Han, Seoung Eun Huh, Ji Yeon Kim, Joanne Kwak-Kim, Sung Ki Lee

Abstract:

Objective: Prevalence of osteoporosis, cardiovascular disorders, and Alzheimer's disease rapidly increase after menopause. Immune activation and inflammation are suggested as an important pathogenesis of these serious diseases. Several pro-inflammatory cytokines are increased in women with surgical or natural menopause. However, the little is known about IL-17 producing T cells and Foxp3+ regulatory T (Treg) cells in post-menopause. Methods: A total of 34 postmenopausal women, who had no active cardiovascular, endocrine and infectious disorders were recruited as study group and healthy premenopausal women participated as controls. Peripheral blood mononuclear cells were isolated. Immuno-morphologic (CD3, CD4, CD8, CD19, CD56/CD16), intracellular cytokine (TNF-alpha, IFN-gamma, IL-10, IL-17), and Treg cell (Foxp3) studies were carried out using flow cytometry. The proportion of peripheral lymphocytes, including IL-17 producing and Foxp3+ Treg cells immune cell in each group were statistically analyzed. Results: The proportion of NK cells was significantly increased in menopausal women as compared to that of controls (P=.005). The ratios of TNF-alpha/IL-10 producing CD3+CD4+ T cells were increased in postmenopausal women. CD3+IL-17+ T cell level was higher in postmenopausal women and CD4+ Foxp3+ Treg cells was lower than that of controls. The ratios of CD3+IL-17+ T cell to CD3+Foxp3+ and to CD4+Foxp3+ Treg cells were significantly increased in postmenopausal women (P=.001). Conclusions: We found enhanced innate immunity and Th1- and Th17-mediated adaptive immunity in postmenopausal women. This may explain increasing prevalence of chronic inflammatory diseases after menopause. Further studies are needed to elucidate what factors contribute to this inflammatory shift in the postmenopause.

Keywords: inflammation, immune cell, menopause, Th17, regulatory T cell

Procedia PDF Downloads 323
369 Application of Design Thinking for Technology Transfer of Remotely Piloted Aircraft Systems for the Creative Industry

Authors: V. Santamarina Campos, M. de Miguel Molina, B. de Miguel Molina, M. Á. Carabal Montagud

Abstract:

With this contribution, we want to show a successful example of the application of the Design Thinking methodology, in the European project 'Technology transfer of Remotely Piloted Aircraft Systems (RPAS) for the creative industry'. The use of this methodology has allowed us to design and build a drone, based on the real needs of prospective users. It has demonstrated that this is a powerful tool for generating innovative ideas in the field of robotics, by focusing its effectiveness on understanding and solving real user needs. In this way, with the support of an interdisciplinary team, comprised of creatives, engineers and economists, together with the collaboration of prospective users from three European countries, a non-linear work dynamic has been created. This teamwork has generated a sense of appreciation towards the creative industries, through continuously adaptive, inventive, and playful collaboration and communication, which has facilitated the development of prototypes. These have been designed to enable filming and photography in interior spaces, within 13 sectors of European creative industries: Advertising, Architecture, Fashion, Film, Antiques and Museums, Music, Photography, Televison, Performing Arts, Publishing, Arts and Crafts, Design and Software. Furthermore, it has married the real needs of the creative industries, with what is technologically and commercially viable. As a result, a product of great value has been obtained, which offers new business opportunities for small companies across this sector.

Keywords: design thinking, design for effectiveness, methodology, active toolkit, storyboards, PAR, focus group, innovation, RPAS, indoor drone, aerial film, creative industry, end users, stakeholder

Procedia PDF Downloads 204
368 Bioinformatic Approaches in Population Genetics and Phylogenetic Studies

Authors: Masoud Sheidai

Abstract:

Biologists with a special field of population genetics and phylogeny have different research tasks such as populations’ genetic variability and divergence, species relatedness, the evolution of genetic and morphological characters, and identification of DNA SNPs with adaptive potential. To tackle these problems and reach a concise conclusion, they must use the proper and efficient statistical and bioinformatic methods as well as suitable genetic and morphological characteristics. In recent years application of different bioinformatic and statistical methods, which are based on various well-documented assumptions, are the proper analytical tools in the hands of researchers. The species delineation is usually carried out with the use of different clustering methods like K-means clustering based on proper distance measures according to the studied features of organisms. A well-defined species are assumed to be separated from the other taxa by molecular barcodes. The species relationships are studied by using molecular markers, which are analyzed by different analytical methods like multidimensional scaling (MDS) and principal coordinate analysis (PCoA). The species population structuring and genetic divergence are usually investigated by PCoA and PCA methods and a network diagram. These are based on bootstrapping of data. The Association of different genes and DNA sequences to ecological and geographical variables is determined by LFMM (Latent factor mixed model) and redundancy analysis (RDA), which are based on Bayesian and distance methods. Molecular and morphological differentiating characters in the studied species may be identified by linear discriminant analysis (DA) and discriminant analysis of principal components (DAPC). We shall illustrate these methods and related conclusions by giving examples from different edible and medicinal plant species.

Keywords: GWAS analysis, K-Means clustering, LFMM, multidimensional scaling, redundancy analysis

Procedia PDF Downloads 126
367 Structural Morphing on High Performance Composite Hydrofoil to Postpone Cavitation

Authors: Fatiha Mohammed Arab, Benoit Augier, Francois Deniset, Pascal Casari, Jacques Andre Astolfi

Abstract:

For the top high performance foiling yachts, cavitation is often a limiting factor for take-off and top speed. This work investigates solutions to delay the onset of cavitation thanks to structural morphing. The structural morphing is based on compliant leading and trailing edge, with effect similar to flaps. It is shown here that the commonly accepted effect of flaps regarding the control of lift and drag forces can also be used to postpone the inception of cavitation. A numerical and experimental study is conducted in order to assess the effect of the geometric parameters of hydrofoil on their hydrodynamic performances and in cavitation inception. The effect of a 70% trailing edge and a 30% leading edge of NACA 0012 is investigated using Xfoil software at a constant Reynolds number 106. The simulations carried out for a range flaps deflections and various angles of attack. So, the result showed that the lift coefficient increase with the increase of flap deflection, but also with the increase of angle of attack and enlarged the bucket cavitation. To evaluate the efficiency of the Xfoil software, a 2D analysis flow over a NACA 0012 with leading and trailing edge flap was studied using Fluent software. The results of the two methods are in a good agreement. To validate the numerical approach, a passive adaptive composite model is built and tested in the hydrodynamic tunnel at the Research Institute of French Naval Academy. The model shows the ability to simulate the effect of flap by a LE and TE structural morphing due to hydrodynamic loading.

Keywords: cavitation, flaps, hydrofoil, panel method, xfoil

Procedia PDF Downloads 176
366 User Authentication Using Graphical Password with Sound Signature

Authors: Devi Srinivas, K. Sindhuja

Abstract:

This paper presents architecture to improve surveillance applications based on the usage of the service oriented paradigm, with smart phones as user terminals, allowing application dynamic composition and increasing the flexibility of the system. According to the result of moving object detection research on video sequences, the movement of the people is tracked using video surveillance. The moving object is identified using the image subtraction method. The background image is subtracted from the foreground image, from that the moving object is derived. So the Background subtraction algorithm and the threshold value is calculated to find the moving image by using background subtraction algorithm the moving frame is identified. Then, by the threshold value the movement of the frame is identified and tracked. Hence, the movement of the object is identified accurately. This paper deals with low-cost intelligent mobile phone-based wireless video surveillance solution using moving object recognition technology. The proposed solution can be useful in various security systems and environmental surveillance. The fundamental rule of moving object detecting is given in the paper, then, a self-adaptive background representation that can update automatically and timely to adapt to the slow and slight changes of normal surroundings is detailed. While the subtraction of the present captured image and the background reaches a certain threshold, a moving object is measured to be in the current view, and the mobile phone will automatically notify the central control unit or the user through SMS (Short Message System). The main advantage of this system is when an unknown image is captured by the system it will alert the user automatically by sending an SMS to user’s mobile.

Keywords: security, graphical password, persuasive cued click points

Procedia PDF Downloads 537
365 Experimental Simulation Set-Up for Validating Out-Of-The-Loop Mitigation when Monitoring High Levels of Automation in Air Traffic Control

Authors: Oliver Ohneiser, Francesca De Crescenzio, Gianluca Di Flumeri, Jan Kraemer, Bruno Berberian, Sara Bagassi, Nicolina Sciaraffa, Pietro Aricò, Gianluca Borghini, Fabio Babiloni

Abstract:

An increasing degree of automation in air traffic will also change the role of the air traffic controller (ATCO). ATCOs will fulfill significantly more monitoring tasks compared to today. However, this rather passive role may lead to Out-Of-The-Loop (OOTL) effects comprising vigilance decrement and less situation awareness. The project MINIMA (Mitigating Negative Impacts of Monitoring high levels of Automation) has conceived a system to control and mitigate such OOTL phenomena. In order to demonstrate the MINIMA concept, an experimental simulation set-up has been designed. This set-up consists of two parts: 1) a Task Environment (TE) comprising a Terminal Maneuvering Area (TMA) simulator as well as 2) a Vigilance and Attention Controller (VAC) based on neurophysiological data recording such as electroencephalography (EEG) and eye-tracking devices. The current vigilance level and the attention focus of the controller are measured during the ATCO’s active work in front of the human machine interface (HMI). The derived vigilance level and attention trigger adaptive automation functionalities in the TE to avoid OOTL effects. This paper describes the full-scale experimental set-up and the component development work towards it. Hence, it encompasses a pre-test whose results influenced the development of the VAC as well as the functionalities of the final TE and the two VAC’s sub-components.

Keywords: automation, human factors, air traffic controller, MINIMA, OOTL (Out-Of-The-Loop), EEG (Electroencephalography), HMI (Human Machine Interface)

Procedia PDF Downloads 384
364 Nonlinear Estimation Model for Rail Track Deterioration

Authors: M. Karimpour, L. Hitihamillage, N. Elkhoury, S. Moridpour, R. Hesami

Abstract:

Rail transport authorities around the world have been facing a significant challenge when predicting rail infrastructure maintenance work for a long period of time. Generally, maintenance monitoring and prediction is conducted manually. With the restrictions in economy, the rail transport authorities are in pursuit of improved modern methods, which can provide precise prediction of rail maintenance time and location. The expectation from such a method is to develop models to minimize the human error that is strongly related to manual prediction. Such models will help them in understanding how the track degradation occurs overtime under the change in different conditions (e.g. rail load, rail type, rail profile). They need a well-structured technique to identify the precise time that rail tracks fail in order to minimize the maintenance cost/time and secure the vehicles. The rail track characteristics that have been collected over the years will be used in developing rail track degradation prediction models. Since these data have been collected in large volumes and the data collection is done both electronically and manually, it is possible to have some errors. Sometimes these errors make it impossible to use them in prediction model development. This is one of the major drawbacks in rail track degradation prediction. An accurate model can play a key role in the estimation of the long-term behavior of rail tracks. Accurate models increase the track safety and decrease the cost of maintenance in long term. In this research, a short review of rail track degradation prediction models has been discussed before estimating rail track degradation for the curve sections of Melbourne tram track system using Adaptive Network-based Fuzzy Inference System (ANFIS) model.

Keywords: ANFIS, MGT, prediction modeling, rail track degradation

Procedia PDF Downloads 337
363 [Keynote Talk]: Unlocking Transformational Resilience in the Aftermath of a Flood Disaster: A Case Study from Cumbria

Authors: Kate Crinion, Martin Haran, Stanley McGreal, David McIlhatton

Abstract:

Past research has demonstrated that disasters are continuing to escalate in frequency and magnitude worldwide, representing a key concern for the global community. Understanding and responding to the increasing risk posed by disaster events has become a key concern for disaster managers. An emerging trend within literature, acknowledges the need to move beyond a state of coping and reinstatement of the status quo, towards incremental adaptive change and transformational actions for long-term sustainable development. As such, a growing interest in research concerns the understanding of the change required to address ever increasing and unpredictable disaster events. Capturing transformational capacity and resilience, however is not without its difficulties and explains the dearth in attempts to capture this capacity. Adopting a case study approach, this research seeks to enhance an awareness of transformational resilience by identifying key components and indicators that determine the resilience of flood-affected communities within Cumbria. Grounding and testing a theoretical resilience framework within the case studies, permits the identification of how perceptions of risk influence community resilience actions. Further, it assesses how levels of social capital and connectedness impacts upon the extent of interplay between resources and capacities that drive transformational resilience. Thus, this research seeks to expand the existing body of knowledge by enhancing the awareness of resilience in post-disaster affected communities, by investigating indicators of community capacity building and resilience actions that facilitate transformational resilience during the recovery and reconstruction phase of a flood disaster.

Keywords: capacity building, community, flooding, transformational resilience

Procedia PDF Downloads 289
362 Parental Involvement and Students' Outcomes: A Study in a Special Education School in Singapore

Authors: E. Er, Y. S. Cheng

Abstract:

The role of parents and caregivers in their children’s education is pivotal. Parental involvement (PI) is often associated with a range of student outcomes. This includes academic achievements, socioemotional development, adaptive skills, physical fitness and school attendance. This study is the first in Singapore to (1) explore the relationship between parental involvement and student outcomes; (2) determine the effects of family structure and socioeconomic status (SES) on parental involvement and (3) investigate factors that inform involvement in parents of children with specific developmental disabilities. Approval for the study was obtained from Nanyang Technological University’s Institutional Review Board in Singapore. The revised version of a comprehensive theoretical model on parental involvement was used as the theoretical framework in this study. Parents were recruited from a SPED school in Singapore which caters to school-aged children (7 to 21 years old). Pearson’s product moment correlation, analysis of variance and multiple regression analyses were used as statistical techniques in this study. Results indicate that there are significant associations between parental involvement and educational outcomes in students with developmental disabilities. Next, SES has a significant impact on levels of parental involvement. In addition, parents in the current study reported being more involved at home, in school activities and the community, when teachers specifically requested their involvement. Home-based involvement was also predicted by parents’ perceptions of their time and energy, efficacy and beliefs in supporting their child’s education, as well as their children’s invitations to be more involved. An interesting and counterintuitive inverse relationship was found between general school invitations and parental involvement at home. Research findings are further discussed, and suggestions are put forth to increase involvement for this specific group of parents.

Keywords: autism, developmental disabilities, intellectual disabilities, parental involvement, Singapore

Procedia PDF Downloads 203
361 A Real-Time Moving Object Detection and Tracking Scheme and Its Implementation for Video Surveillance System

Authors: Mulugeta K. Tefera, Xiaolong Yang, Jian Liu

Abstract:

Detection and tracking of moving objects are very important in many application contexts such as detection and recognition of people, visual surveillance and automatic generation of video effect and so on. However, the task of detecting a real shape of an object in motion becomes tricky due to various challenges like dynamic scene changes, presence of shadow, and illumination variations due to light switch. For such systems, once the moving object is detected, tracking is also a crucial step for those applications that used in military defense, video surveillance, human computer interaction, and medical diagnostics as well as in commercial fields such as video games. In this paper, an object presents in dynamic background is detected using adaptive mixture of Gaussian based analysis of the video sequences. Then the detected moving object is tracked using the region based moving object tracking and inter-frame differential mechanisms to address the partial overlapping and occlusion problems. Firstly, the detection algorithm effectively detects and extracts the moving object target by enhancing and post processing morphological operations. Secondly, the extracted object uses region based moving object tracking and inter-frame difference to improve the tracking speed of real-time moving objects in different video frames. Finally, the plotting method was applied to detect the moving objects effectively and describes the object’s motion being tracked. The experiment has been performed on image sequences acquired both indoor and outdoor environments and one stationary and web camera has been used.

Keywords: background modeling, Gaussian mixture model, inter-frame difference, object detection and tracking, video surveillance

Procedia PDF Downloads 477
360 Vulnerability of People to Climate Change: Influence of Methods and Computation Approaches on Assessment Outcomes

Authors: Adandé Belarmain Fandohan

Abstract:

Climate change has become a major concern globally, particularly in rural communities that have to find rapid coping solutions. Several vulnerability assessment approaches have been developed in the last decades. This comes along with a higher risk for different methods to result in different conclusions, thereby making comparisons difficult and decision-making non-consistent across areas. The effect of methods and computational approaches on estimates of people’s vulnerability was assessed using data collected from the Gambia. Twenty-four indicators reflecting vulnerability components: (exposure, sensitivity, and adaptive capacity) were selected for this purpose. Data were collected through household surveys and key informant interviews. One hundred and fifteen respondents were surveyed across six communities and two administrative districts. Results were compared over three computational approaches: the maximum value transformation normalization, the z-score transformation normalization, and simple averaging. Regardless of the approaches used, communities that have high exposure to climate change and extreme events were the most vulnerable. Furthermore, the vulnerability was strongly related to the socio-economic characteristics of farmers. The survey evidenced variability in vulnerability among communities and administrative districts. Comparing output across approaches, overall, people in the study area were found to be highly vulnerable using the simple average and maximum value transformation, whereas they were only moderately vulnerable using the z-score transformation approach. It is suggested that assessment approach-induced discrepancies be accounted for in international debates to harmonize/standardize assessment approaches to the end of making outputs comparable across regions. This will also likely increase the relevance of decision-making for adaptation policies.

Keywords: maximum value transformation, simple averaging, vulnerability assessment, West Africa, z-score transformation

Procedia PDF Downloads 105
359 Determination of Influence Lines for Train Crossings on a Tied Arch Bridge to Optimize the Construction of the Hangers

Authors: Martin Mensinger, Marjolaine Pfaffinger, Matthias Haslbeck

Abstract:

The maintenance and expansion of the railway network represents a central task for transport planning in the future. In addition to the ultimate limit states, the aspects of resource conservation and sustainability are increasingly more necessary to include in the basic engineering. Therefore, as part of the AiF research project, ‘Integrated assessment of steel and composite railway bridges in accordance with sustainability criteria’, the entire lifecycle of engineering structures is involved in planning and evaluation, offering a way to optimize the design of steel bridges. In order to reduce the life cycle costs and increase the profitability of steel structures, it is particularly necessary to consider the demands on hanger connections resulting from fatigue. In order for accurate analysis, a number simulations were conducted as part of the research project on a finite element model of a reference bridge, which gives an indication of the internal forces of the individual structural components of a tied arch bridge, depending on the stress incurred by various types of trains. The calculations were carried out on a detailed FE-model, which allows an extraordinarily accurate modeling of the stiffness of all parts of the constructions as it is made up surface elements. The results point to a large impact of the formation of details on fatigue-related changes in stress, on the one hand, and on the other, they could depict construction-specific specifics over the course of adding stress. Comparative calculations with varied axle-stress distribution also provide information about the sensitivity of the results compared to the imposition of stress and axel distribution on the stress-resultant development. The calculated diagrams help to achieve an optimized hanger connection design through improved durability, which helps to reduce the maintenance costs of rail networks and to give practical application notes for the formation of details.

Keywords: fatigue, influence line, life cycle, tied arch bridge

Procedia PDF Downloads 331
358 An Experimental Study on the Thermal Properties of Concrete Aggregates in Relation to Their Mineral Composition

Authors: Kyung Suk Cho, Heung Youl Kim

Abstract:

The analysis of the petrologic characteristics and thermal properties of crushed aggregates for concrete such as granite, gneiss, dolomite, shale and andesite found that rock-forming minerals decided the thermal properties of the aggregates. The thermal expansion coefficients of aggregates containing lots of quartz increased rapidly at 573 degrees due to quartz transition. The mass of aggregate containing carbonate minerals decreased rapidly at 750 degrees due to decarboxylation, while its specific heat capacity increased relatively. The mass of aggregates containing hydrated silicate minerals decreased more significantly, and their specific heat capacities were greater when compared with aggregates containing feldspar or quartz. It is deduced that the hydroxyl group (OH) in hydrated silicate dissolved as its bond became loose at high temperatures. Aggregates containing mafic minerals turned red at high temperatures due to oxidation response. Moreover, the comparison of cooling methods showed that rapid cooling using water resulted in more reduction in aggregate mass than slow cooling at room temperatures. In order to observe the fire resistance performance of concrete composed of the identical but coarse aggregate, mass loss and compressive strength reduction factor at 200, 400, 600 and 800 degrees were measured. It was found from the analysis of granite and gneiss that the difference in thermal expansion coefficients between cement paste and aggregates caused by quartz transit at 573 degrees resulted in thermal stress inside the concrete and thus triggered concrete cracking. The ferromagnesian hydrated silicate in andesite and shale caused greater reduction in both initial stiffness and mass compared with other aggregates. However, the thermal expansion coefficient of andesite and shale was similar to that of cement paste. Since they were low in thermal conductivity and high in specific heat capacity, concrete cracking was relatively less severe. Being slow in heat transfer, they were judged to be materials of high heat capacity.

Keywords: crush-aggregates, fire resistance, thermal expansion, heat transfer

Procedia PDF Downloads 228
357 Seismic Isolation of Existing Masonry Buildings: Recent Case Studies in Italy

Authors: Stefano Barone

Abstract:

Seismic retrofit of buildings through base isolation represents a consolidated protection strategy against earthquakes. It consists in decoupling the ground motion from that of the structure and introducing anti-seismic devices at the base of the building, characterized by high horizontal flexibility and medium/high dissipative capacity. This allows to protect structural elements and to limit damages to non-structural ones. For these reasons, full functionality is guaranteed after an earthquake event. Base isolation is applied extensively to both new and existing buildings. For the latter, it usually does not require any interruption of the structure use and occupants evacuation, a special advantage for strategic buildings such as schools, hospitals, and military buildings. This paper describes the application of seismic isolation to three existing masonry buildings in Italy: Villa “La Maddalena” in Macerata (Marche region), “Giacomo Matteotti” and “Plinio Il Giovane” school buildings in Perugia (Umbria region). The seismic hazard of the sites is characterized by a Peak Ground Acceleration (PGA) of 0.213g-0.287g for the Life Safety Limit State and between 0.271g-0.359g for the Collapse Limit State. All the buildings are isolated with a combination of free sliders type TETRON® CD with confined elastomeric disk and anti-seismic rubber isolators type ISOSISM® HDRB to reduce the eccentricity between the center of mass and stiffness, thus limiting torsional effects during a seismic event. The isolation systems are designed to lengthen the original period of vibration (i.e., without isolators) by at least three times and to guarantee medium/high levels of energy dissipation capacity (equivalent viscous damping between 12.5% and 16%). This allows the structures to resist 100% of the seismic design action. This article shows the performances of the supplied anti-seismic devices with particular attention to the experimental dynamic response. Finally, a special focus is given to the main site activities required to isolate a masonry building.

Keywords: retrofit, masonry buildings, seismic isolation, energy dissipation, anti-seismic devices

Procedia PDF Downloads 73
356 Amplitude Versus Offset (AVO) Modeling as a Tool for Seismic Reservoir Characterization of the Semliki Basin

Authors: Hillary Mwongyera

Abstract:

The Semliki basin has become a frontier for petroleum exploration in recent years. Exploration efforts have resulted into extensive seismic data acquisition and drilling of three wells namely; Turaco 1, Turaco 2 and Turaco 3. A petrophysical analysis of the Turaco 1 well was carried out to identify two reservoir zones on which AVO modeling was performed. A combination of seismic modeling and rock physics modeling was applied during reservoir characterization and monitoring to determine variations of seismic responses with amplitude characteristics. AVO intercept gradient analysis applied on AVO synthetic CDP gathers classified AVO anomalies associated with both reservoir zones as Class 1 AVO anomalies. Fluid replacement modeling was carried out on both reservoir zones using homogeneous mixing and patchy saturation patterns to determine effects of fluid substitution on rock property interactions. For both homogeneous mixing and saturation patterns, density (ρ) showed an increasing trend with increasing brine substitution while Shear wave velocity (Vs) decreased with increasing brine substitution. A study of compressional wave velocity (Vp) with increasing brine substitution for both homogeneous mixing and patchy saturation gave quite interesting results. During patchy saturation, Vp increased with increasing brine substitution. During homogeneous mixing however, Vp showed a slightly decreasing trend with increasing brine substitution but increased tremendously towards and at full brine saturation. A sensitivity analysis carried out showed that density was a very sensitive rock property responding to brine saturation except at full brine saturation during homogeneous mixing where Vp showed greater sensitivity with brine saturation. Rock physics modeling was performed to predict diagnostics of reservoir quality using an inverse deterministic approach which showed low shale content and a high degree of shale stiffness within reservoir zones.

Keywords: Amplitude Versus Offset (AVO), fluid replacement modelling, reservoir characterization, AVO attributes, rock physics modelling, reservoir monitoring

Procedia PDF Downloads 533
355 Experimental Study of Sand-Silt Mixtures with Torsional and Flexural Resonant Column Tests

Authors: Meghdad Payan, Kostas Senetakis, Arman Khoshghalb, Nasser Khalili

Abstract:

Dynamic properties of soils, especially at the range of very small strains, are of particular interest in geotechnical engineering practice for characterization of the behavior of geo-structures subjected to a variety of stress states. This study reports on the small-strain dynamic properties of sand-silt mixtures with particular emphasis on the effect of non-plastic fines content on the small strain shear modulus (Gmax), Young’s Modulus (Emax), material damping (Ds,min) and Poisson’s Ratio (v). Several clean sands with a wide range of grain size characteristics and particle shape are mixed with variable percentages of a silica non-plastic silt as fines content. Prepared specimens of sand-silt mixtures at different initial void ratios are subjected to sequential torsional and flexural resonant column tests with elastic dynamic properties measured along an isotropic stress path up to 800 kPa. It is shown that while at low percentages of fines content, there is a significant difference between the dynamic properties of the various samples due to the different characteristics of the sand portion of the mixtures, this variance diminishes as the fines content increases and the soil behavior becomes mainly silt-dominant, rendering no significant influence of sand properties on the elastic dynamic parameters. Indeed, beyond a specific portion of fines content, around 20% to 30% typically denoted as threshold fines content, silt is controlling the behavior of the mixture. Using the experimental results, new expressions for the prediction of small-strain dynamic properties of sand-silt mixtures are developed accounting for the percentage of silt and the characteristics of the sand portion. These expressions are general in nature and are capable of evaluating the elastic dynamic properties of sand-silt mixtures with any types of parent sand in the whole range of silt percentage. The inefficiency of skeleton void ratio concept in the estimation of small-strain stiffness of sand-silt mixtures is also illustrated.

Keywords: damping ratio, Poisson’s ratio, resonant column, sand-silt mixture, shear modulus, Young’s modulus

Procedia PDF Downloads 250
354 O-LEACH: The Problem of Orphan Nodes in the LEACH of Routing Protocol for Wireless Sensor Networks

Authors: Wassim Jerbi, Abderrahmen Guermazi, Hafedh Trabelsi

Abstract:

The optimum use of coverage in wireless sensor networks (WSNs) is very important. LEACH protocol called Low Energy Adaptive Clustering Hierarchy, presents a hierarchical clustering algorithm for wireless sensor networks. LEACH is a protocol that allows the formation of distributed cluster. In each cluster, LEACH randomly selects some sensor nodes called cluster heads (CHs). The selection of CHs is made with a probabilistic calculation. It is supposed that each non-CH node joins a cluster and becomes a cluster member. Nevertheless, some CHs can be concentrated in a specific part of the network. Thus, several sensor nodes cannot reach any CH. to solve this problem. We created an O-LEACH Orphan nodes protocol, its role is to reduce the sensor nodes which do not belong the cluster. The cluster member called Gateway receives messages from neighboring orphan nodes. The gateway informs CH having the neighboring nodes that not belong to any group. However, Gateway called (CH') attaches the orphaned nodes to the cluster and then collected the data. O-Leach enables the formation of a new method of cluster, leads to a long life and minimal energy consumption. Orphan nodes possess enough energy and seeks to be covered by the network. The principal novel contribution of the proposed work is O-LEACH protocol which provides coverage of the whole network with a minimum number of orphaned nodes and has a very high connectivity rates.As a result, the WSN application receives data from the entire network including orphan nodes. The proper functioning of the Application requires, therefore, management of intelligent resources present within each the network sensor. The simulation results show that O-LEACH performs better than LEACH in terms of coverage, connectivity rate, energy and scalability.

Keywords: WSNs; routing; LEACH; O-LEACH; Orphan nodes; sub-cluster; gateway; CH’

Procedia PDF Downloads 372
353 Design and Modeling of Human Middle Ear for Harmonic Response Analysis

Authors: Shende Suraj Balu, A. B. Deoghare, K. M. Pandey

Abstract:

The human middle ear (ME) is a delicate and vital organ. It has a complex structure that performs various functions such as receiving sound pressure and producing vibrations of eardrum and propagating it to inner ear. It consists of Tympanic Membrane (TM), three auditory ossicles, various ligament structures and muscles. Incidents such as traumata, infections, ossification of ossicular structures and other pathologies may damage the ME organs. The conditions can be surgically treated by employing prosthesis. However, the suitability of the prosthesis needs to be examined in advance prior to the surgery. Few decades ago, this issue was addressed and analyzed by developing an equivalent representation either in the form of spring mass system, electrical system using R-L-C circuit or developing an approximated CAD model. But, nowadays a three-dimensional ME model can be constructed using micro X-Ray Computed Tomography (μCT) scan data. Moreover, the concern about patient specific integrity pertaining to the disease can be examined well in advance. The current research work emphasizes to develop the ME model from the stacks of μCT images which are used as input file to MIMICS Research 19.0 (Materialise Interactive Medical Image Control System) software. A stack of CT images is converted into geometrical surface model to build accurate morphology of ME. The work is further extended to understand the dynamic behaviour of Harmonic response of the stapes footplate and umbo for different sound pressure levels applied at lateral side of eardrum using finite element approach. The pathological condition Cholesteatoma of ME is investigated to obtain peak to peak displacement of stapes footplate and umbo. Apart from this condition, other pathologies, mainly, changes in the stiffness of stapedial ligament, TM thickness and ossicular chain separation and fixation are also explored. The developed model of ME for pathologies is validated by comparing the results available in the literatures and also with the results of a normal ME to calculate the percentage loss in hearing capability.

Keywords: computed tomography (μCT), human middle ear (ME), harmonic response, pathologies, tympanic membrane (TM)

Procedia PDF Downloads 176
352 Performance of Reinforced Concrete Wall with Opening Using Analytical Model

Authors: Alaa Morsy, Youssef Ibrahim

Abstract:

Earthquake is one of the most catastrophic events, which makes enormous harm to properties and human lives. As a piece of a safe building configuration, reinforced concrete walls are given in structures to decrease horizontal displacements under seismic load. Shear walls are additionally used to oppose the horizontal loads that might be incited by the impact of wind. Reinforced concrete walls in residential buildings might have openings that are required for windows in outside walls or for doors in inside walls or different states of openings due to architectural purposes. The size, position, and area of openings may fluctuate from an engineering perspective. Shear walls can encounter harm around corners of entryways and windows because of advancement of stress concentration under the impact of vertical or horizontal loads. The openings cause a diminishing in shear wall capacity. It might have an unfavorable impact on the stiffness of reinforced concrete wall and on the seismic reaction of structures. Finite Element Method using software package ‘ANSYS ver. 12’ becomes an essential approach in analyzing civil engineering problems numerically. Now we can make various models with different parameters in short time by using ANSYS instead of doing it experimentally, which consumes a lot of time and money. Finite element modeling approach has been conducted to study the effect of opening shape, size and position in RC wall with different thicknesses under axial and lateral static loads. The proposed finite element approach has been verified with experimental programme conducted by the researchers and validated by their variables. A very good correlation has been observed between the model and experimental results including load capacity, failure mode, and lateral displacement. A parametric study is applied to investigate the effect of opening size, shape, position on different reinforced concrete wall thicknesses. The results may be useful for improving existing design models and to be applied in practice, as it satisfies both the architectural and the structural requirements.

Keywords: Ansys, concrete walls, openings, out of plane behavior, seismic, shear wall

Procedia PDF Downloads 169
351 Screening Diversity: Artificial Intelligence and Virtual Reality Strategies for Elevating Endangered African Languages in the Film and Television Industry

Authors: Samuel Ntsanwisi

Abstract:

This study investigates the transformative role of Artificial Intelligence (AI) and Virtual Reality (VR) in the preservation of endangered African languages. The study is contextualized within the film and television industry, highlighting disparities in screen representation for certain languages in South Africa, underscoring the need for increased visibility and preservation efforts; with globalization and cultural shifts posing significant threats to linguistic diversity, this research explores approaches to language preservation. By leveraging AI technologies, such as speech recognition, translation, and adaptive learning applications, and integrating VR for immersive and interactive experiences, the study aims to create a framework for teaching and passing on endangered African languages. Through digital documentation, interactive language learning applications, storytelling, and community engagement, the research demonstrates how these technologies can empower communities to revitalize their linguistic heritage. This study employs a dual-method approach, combining a rigorous literature review to analyse existing research on the convergence of AI, VR, and language preservation with primary data collection through interviews and surveys with ten filmmakers. The literature review establishes a solid foundation for understanding the current landscape, while interviews with filmmakers provide crucial real-world insights, enriching the study's depth. This balanced methodology ensures a comprehensive exploration of the intersection between AI, VR, and language preservation, offering both theoretical insights and practical perspectives from industry professionals.

Keywords: language preservation, endangered languages, artificial intelligence, virtual reality, interactive learning

Procedia PDF Downloads 62
350 Successful Rehabilitation of Recalcitrant Knee Pain Due to Anterior Cruciate Ligament Injury Masked by Extensive Skin Graft: A Case Report

Authors: Geum Yeon Sim, Tyler Pigott, Julio Vasquez

Abstract:

A 38-year-old obese female with no apparent past medical history presented with left knee pain. Six months ago, she sustained a left knee dislocation in a motor vehicle accident that was managed with a skin graft over the left lower extremity without any reconstructive surgery. She developed persistent pain and stiffness in her left knee that worsened with walking and stair climbing. Examination revealed healed extensive skin graft over the left lower extremity, including the left knee. Palpation showed moderate tenderness along the superior border of the patella, exquisite tenderness over MCL, and mild tenderness on the tibial tuberosity. There was normal sensation, reflexes, and strength in her lower extremities. There was limited active and passive range of motion of her left knee during flexion. There was instability noted upon the valgus stress test of the left knee. Left knee magnetic resonance imaging showed high-grade (grade 2-3) injury of the proximal superficial fibers of the MCL and diffuse thickening and signal abnormality of the cruciate ligaments, as well as edema-like subchondral marrow signal change in the anterolateral aspect of the lateral femoral condyle weight-bearing surface. There was also notable extensive scarring and edema of the skin, subcutaneous soft tissues, and musculature surrounding the knee. The patient was managed with left knee immobilization for five months, which was complicated by limited knee flexion. Physical therapy consisting of quadriceps, hamstrings, gastrocnemius stretching and strengthening, range of motion exercises, scar/soft tissue mobilization, and gait training was given with marked improvement in pain and range of motion. The patient experienced a further reduction in pain as well as an improvement in function with home exercises consisting of continued strengthening and stretching.

Keywords: ligamentous injury, trauma, rehabilitation, knee pain

Procedia PDF Downloads 111
349 The Effect of Manual Acupuncture-induced Injury as a Mechanism Contributing to Muscle Regeneration

Authors: Kamal Ameis

Abstract:

This study aims to further improve our understanding of the underlying mechanism of local injury that occurs after manual acupuncture needle manipulation, and that initiates the muscle regeneration process, which is essential for muscle maintenance and adaptation. Skeletal muscle is maintained by resident stem cells called muscle satellite cells. These cells are normally in quiescent state, but following muscle injury, they re-enter the cell cycle and execute a myogenic program resulting in muscle fiber regeneration. Our previous work in young rats demonstrated that acupuncture treatment induced injury that activated resident satellite (stem) cells, which leads to muscle regeneration. Skeletal muscle regeneration is an adaptive response to injury that requires a tightly orchestrated event between signaling pathways activated by growth factor and intrinsic regulatory program controlled by myogenic transcription factor. We identified several gene expressions uniquely important for muscle regeneration in response to acupuncture treatment at different time course using different biological techniques, including Immunocytochemistry, western blotting, and Real Time PCR. This study uses a novel but non-invasive model of injury induced by manual acupuncture to further our current understanding of regenerative mechanism of muscle stem cells. From a clinical perspective, this model of injury induced by manual acupuncture may be easily translatable into a clinical tool that can be used as an alternative to physical exercise for patients challenged by bed rest or forced inactivity. Finally, the knowledge gained from this research could be useful for studies of the local effects of various modalities of induced injury, such as the traditional method of healing by cupping (hijamah), which may enhanced muscle stem cells and muscle fiber regeneration.

Keywords: acupuncture, injury, regeneration, muscle stem cells

Procedia PDF Downloads 148
348 Tool Wear of Metal Matrix Composite 10wt% AlN Reinforcement Using TiB2 Cutting Tool

Authors: M. S. Said, J. A. Ghani, C. H. Che Hassan, N. N. Wan, M. A. Selamat, R. Othman

Abstract:

Metal Matrix Composite (MMCs) have attracted considerable attention as a result of their ability to provide high strength, high modulus, high toughness, high impact properties, improved wear resistance and good corrosion resistance than unreinforced alloy. Aluminium Silicon (Al/Si) alloys Metal Matrix composite (MMC) has been widely used in various industrial sectors such as transportation, domestic equipment, aerospace, military, construction, etc. Aluminium silicon alloy is MMC reinforced with aluminium nitride (AlN) particle and becomes a new generation material for automotive and aerospace applications. The AlN material is one of the advanced materials with light weight, high strength, high hardness and stiffness qualities which have good future prospects. However, the high degree of ceramic particles reinforcement and the irregular nature of the particles along the matrix material that contribute to its low density, is the main problem that leads to the machining difficulties. This paper examines tool wear when milling AlSi/AlN Metal Matrix Composite using a TiB2 coated carbide cutting tool. The volume of the AlN reinforced particle was 10%. The milling process was carried out under dry cutting condition. The TiB2 coated carbide insert parameters used were the cutting speed of (230 m/min, feed rate 0.4mm tooth, DOC 0.5mm, 300 m/min, feed rate 0.8mm/tooth, DOC 0.5mm and 370 m/min, feed rate 0.8, DOC 0.4m). The Sometech SV-35 video microscope system was used for tool wear measurements respectively. The results have revealed that the tool life increases with the cutting speed (370 m/min, feed rate 0.8 mm/tooth and depth of cut 0.4mm) constituted the optimum condition for longer tool life which is 123.2 min. While at medium cutting speed, it is found that the cutting speed of 300m/min, feed rate 0.8 mm/tooth and depth of cut 0.5mm only 119.86 min for tool wear mean while the low cutting speed give 119.66 min. The high cutting speed gives the best parameter for cutting AlSi/AlN MMCs materials. The result will help manufacture to machining the AlSi/AlN MMCs materials.

Keywords: AlSi/AlN Metal Matrix Composite milling process, tool wear, TiB2 coated carbide tool, manufacturing engineering

Procedia PDF Downloads 427
347 Modelling Tyre Rubber Materials for High Frequency FE Analysis

Authors: Bharath Anantharamaiah, Tomas Bouda, Elke Deckers, Stijn Jonckheere, Wim Desmet, Juan J. Garcia

Abstract:

Automotive tyres are gaining importance recently in terms of their noise emission, not only with respect to reduction in noise, but also their perception and detection. Tyres exhibit a mechanical noise generation mechanism up to 1 kHz. However, owing to the fact that tyre is a composite of several materials, it has been difficult to model it using finite elements to predict noise at high frequencies. The currently available FE models have a reliability of about 500 Hz, the limit which, however, is not enough to perceive the roughness or sharpness of noise from tyre. These noise components are important in order to alert pedestrians on the street about passing by slow, especially electric vehicles. In order to model tyre noise behaviour up to 1 kHz, its dynamic behaviour must be accurately developed up to a 1 kHz limit using finite elements. Materials play a vital role in modelling the dynamic tyre behaviour precisely. Since tyre is a composition of several components, their precise definition in finite element simulations is necessary. However, during the tyre manufacturing process, these components are subjected to various pressures and temperatures, due to which these properties could change. Hence, material definitions are better described based on the tyre responses. In this work, the hyperelasticity of tyre component rubbers is calibrated, using the design of experiments technique from the tyre characteristic responses that are measured on a stiffness measurement machine. The viscoelasticity of rubbers are defined by the Prony series for rubbers, which are determined from the loss factor relationship between the loss and storage moduli, assuming that the rubbers are excited within the linear viscoelasticity ranges. These values of loss factor are measured and theoretically expressed as a function of rubber shore hardness or hyperelasticities. From the results of the work, there exists a good correlation between test and simulation vibrational transfer function up to 1 kHz. The model also allows flexibility, i.e., the frequency limit can also be extended, if required, by calibrating the Prony parameters of rubbers corresponding to the frequency of interest. As future work, these tyre models are used for noise generation at high frequencies and thus for tyre noise perception.

Keywords: tyre dynamics, rubber materials, prony series, hyperelasticity

Procedia PDF Downloads 196
346 Plastic Deformation Behavior of a Pre-Bored Pile Filler Material Due to Lateral Cyclic Loading in Sandy Soil

Authors: A. Y. Purnama, N. Yasufuku

Abstract:

The bridge structure is a building that has to be maintained, especially for the elastomeric bearing. The girder of the bridge needs to be lifted upward to maintain this elastomeric bearing, that needs high cost. Nowadays, integral abutment bridges are becoming popular. The integral abutment bridge is less costly because the elastomeric bearings are eliminated, which reduces the construction cost and maintenance costs. However, when this elastomeric bearing removed, the girder movement due to environmental thermal forces directly support by pile foundation, and it needs to be considered in the design. In case of pile foundation in a stiff soil, in the top area of the pile cannot move freely due to the fixed condition by soil stiffness. Pre-bored pile system can be used to increase the flexibility of pile foundation using a pre-bored hole that filled with elastic materials, but the behavior of soil-pile interaction and soil response due to this system is still rarely explained. In this paper, an experimental study using small-scale laboratory model test conducted in a half size model. Single flexible pile model embedded in sandy soil with the pre-bored ring, which filled with the filler material. The testing box made from an acrylic glass panel as observation area of the pile shaft to monitor the displacement of the pile during the lateral loading. The failure behavior of the soil inside the pre-bored ring and around the pile shaft was investigated to determine the point of pile rotation and the movement of this point due to the pre-bored ring system along the pile shaft. Digital images were used to capture the deformations of the soil and pile foundation during the loading from the acrylic glass on the side of the testing box. The results were presented in the form of lateral load resistance charts against the pile shaft displacement. The failure pattern result also established due to the cyclic lateral loading. The movement of the rotational point was measured due to the pre-bored system filled with appropriate filler material. Based on the findings, design considerations for pre-bored pile system due to cyclic lateral loading can be introduced.

Keywords: failure behavior, pre-bored pile system, cyclic lateral loading, sandy soil

Procedia PDF Downloads 234
345 TessPy – Spatial Tessellation Made Easy

Authors: Jonas Hamann, Siavash Saki, Tobias Hagen

Abstract:

Discretization of urban areas is a crucial aspect in many spatial analyses. The process of discretization of space into subspaces without overlaps and gaps is called tessellation. It helps understanding spatial space and provides a framework for analyzing geospatial data. Tessellation methods can be divided into two groups: regular tessellations and irregular tessellations. While regular tessellation methods, like squares-grids or hexagons-grids, are suitable for addressing pure geometry problems, they cannot take the unique characteristics of different subareas into account. However, irregular tessellation methods allow the border between the subareas to be defined more realistically based on urban features like a road network or Points of Interest (POI). Even though Python is one of the most used programming languages when it comes to spatial analysis, there is currently no library that combines different tessellation methods to enable users and researchers to compare different techniques. To close this gap, we are proposing TessPy, an open-source Python package, which combines all above-mentioned tessellation methods and makes them easily accessible to everyone. The core functions of TessPy represent the five different tessellation methods: squares, hexagons, adaptive squares, Voronoi polygons, and city blocks. By using regular methods, users can set the resolution of the tessellation which defines the finesse of the discretization and the desired number of tiles. Irregular tessellation methods allow users to define which spatial data to consider (e.g., amenity, building, office) and how fine the tessellation should be. The spatial data used is open-source and provided by OpenStreetMap. This data can be easily extracted and used for further analyses. Besides the methodology of the different techniques, the state-of-the-art, including examples and future work, will be discussed. All dependencies can be installed using conda or pip; however, the former is more recommended.

Keywords: geospatial data science, geospatial data analysis, tessellations, urban studies

Procedia PDF Downloads 128
344 Relationships Between the Petrophysical and Mechanical Properties of Rocks and Shear Wave Velocity

Authors: Anamika Sahu

Abstract:

The Himalayas, like many mountainous regions, is susceptible to multiple hazards. In recent times, the frequency of such disasters is continuously increasing due to extreme weather phenomena. These natural hazards are responsible for irreparable human and economic loss. The Indian Himalayas has repeatedly been ruptured by great earthquakes in the past and has the potential for a future large seismic event as it falls under the seismic gap. Damages caused by earthquakes are different in different localities. It is well known that, during earthquakes, damage to the structure is associated with the subsurface conditions and the quality of construction materials. So, for sustainable mountain development, prior estimation of site characterization will be valuable for designing and constructing the space area and for efficient mitigation of the seismic risk. Both geotechnical and geophysical investigation of the subsurface is required to describe the subsurface complexity. In mountainous regions, geophysical methods are gaining popularity as areas can be studied without disturbing the ground surface, and also these methods are time and cost-effective. The MASW method is used to calculate the Vs30. Vs30 is the average shear wave velocity for the top 30m of soil. Shear wave velocity is considered the best stiffness indicator, and the average of shear wave velocity up to 30 m is used in National Earthquake Hazards Reduction Program (NEHRP) provisions (BSSC,1994) and Uniform Building Code (UBC), 1997 classification. Parameters obtained through geotechnical investigation have been integrated with findings obtained through the subsurface geophysical survey. Joint interpretation has been used to establish inter-relationships among mineral constituents, various textural parameters, and unconfined compressive strength (UCS) with shear wave velocity. It is found that results obtained through the MASW method fitted well with the laboratory test. In both conditions, mineral constituents and textural parameters (grain size, grain shape, grain orientation, and degree of interlocking) control the petrophysical and mechanical properties of rocks and the behavior of shear wave velocity.

Keywords: MASW, mechanical, petrophysical, site characterization

Procedia PDF Downloads 86
343 Review of Strategies for Hybrid Energy Storage Management System in Electric Vehicle Application

Authors: Kayode A. Olaniyi, Adeola A. Ogunleye, Tola M. Osifeko

Abstract:

Electric Vehicles (EV) appear to be gaining increasing patronage as a feasible alternative to Internal Combustion Engine Vehicles (ICEVs) for having low emission and high operation efficiency. The EV energy storage systems are required to handle high energy and power density capacity constrained by limited space, operating temperature, weight and cost. The choice of strategies for energy storage evaluation, monitoring and control remains a challenging task. This paper presents review of various energy storage technologies and recent researches in battery evaluation techniques used in EV applications. It also underscores strategies for the hybrid energy storage management and control schemes for the improvement of EV stability and reliability. The study reveals that despite the advances recorded in battery technologies there is still no cell which possess both the optimum power and energy densities among other requirements, for EV application. However combination of two or more energy storages as hybrid and allowing the advantageous attributes from each device to be utilized is a promising solution. The review also reveals that State-of-Charge (SoC) is the most crucial method for battery estimation. The conventional method of SoC measurement is however questioned in the literature and adaptive algorithms that include all model of disturbances are being proposed. The review further suggests that heuristic-based approach is commonly adopted in the development of strategies for hybrid energy storage system management. The alternative approach which is optimization-based is found to be more accurate but is memory and computational intensive and as such not recommended in most real-time applications.

Keywords: battery state estimation, hybrid electric vehicle, hybrid energy storage, state of charge, state of health

Procedia PDF Downloads 242
342 Multiple Institutional Logics and the Ability of Institutional Entrepreneurs: An Analysis in the Turkish Education Field

Authors: Miraç Savaş Turhan, Ali Danişman

Abstract:

Recently scholars of new institutional theory have used institutional logics perspective to explain the contradictory practices in modern western societies. Accordingly, distinct institutional logics are embedded in central institutions such as the market, state, democracy, family, and religion. They guide individual and organizational actors and constraint their behaviors in a particular organizational field. Through this perspective, actors are assumed to have a situated, embedded, boundedly intentional, and adaptive role against the structure in social, cultural and political context. On the other hand, over a decade, there is an emerging attempt focusing on the role of actors on creating, maintaining, and changing the institutions. Such attempts brought out the concept of institutional entrepreneurs to explain the role of individual actors in relation to institutions. Institutional entrepreneurs are individuals, groups of individuals, organizations or groups of organizations that are able to initiate some actions to build, maintain or change institutions. While recent studies on institutional logics perspective have attempted to explain roles of entrepreneurial actors who have resources and skills, little is known about the effects of multiple institutional logics on the ability of institutional entrepreneurs. In this study, we aim to find out that how multiple institutional logics affect the ability of institutional entrepreneurs during the process of institutional change. We examine this issue in the Turkish Education Field. While institutional logics were identified based on the previous studies in the education field, the actions taken by Turkish National Education Ministry from 2003 to 2013 was examined through content analysis The early results indicate that there are remarkable shift and contradictions in the ability of institutional entrepreneur in taking actions to change the field in relationship to balance of power shift among the carriers of institutional logics.

Keywords: institutional theory, institutional logics, institutional entrepreneurs, Turkish national education

Procedia PDF Downloads 354