Search results for: Computational Fluid Dynamics
4326 Effect of Viscosity on Void Structure in Dusty Plasma
Authors: El Amine Nebbat
Abstract:
A void is a dust-free region in dusty plasma, a medium formed of electrons, ions, and charged dust (grain). This structure appears in multiple experimental works. Several researchers have developed models to understand it. Recently, Nebbat and Annou proposed a nonlinear model that describes the void in non-viscos plasma, where the particles of the dusty plasma are treated as a fluid. In fact, the void appears even in dense dusty plasma where viscosity exists through the strong interaction between grains, so in this work, we augment the nonlinear model of Nebbat and Annou by introducing viscosity into the fluid equations. The analysis of the data of the numerical resolution confirms the important effect of this parameter (viscosity). The study revealed that the viscosity increases the dimension of the void for certain dimensions of the grains, and its effect on the value of the density of the grains at the boundary of the void is inversely proportional to their radii, i.e., this density increase for submicron grains and decrease for others. Finally, this parameter reduces the rings of dust density which surround the void.Keywords: voids, dusty plasmas, variable charge, density, viscosity
Procedia PDF Downloads 624325 Modeling of Flows in Porous Materials under Pressure Difference
Authors: Nicoleta O. Tanase, Ciprian S. Mateescu
Abstract:
This paper is concerned with the numerical study of the flow through porous media. The purpose of this project is to determine the permeability of a medium and its connection to porosity to be able to identify how the permeability of said medium can be altered without changing the porosity. The numerical simulations are performed in 2D flow configurations with the laminar solvers implemented in Workbench - ANSYS Fluent. The direction of flow of the working fluid (water) is axial, from left to right, and in steady-state conditions. The working fluid is water. The 2D geometry is a channel with 300 mm length and 30 mm width, with a different number of circles that are positioned differently, modelling a porous medium. The permeability of a porous medium can be altered without changing the porosity by positioning the circles differently (by missing the same number of circles) in the flow domain, which induces a change in the flow spectrum. The main goal of the paper is to investigate the flow pattern and permeability under controlled perturbations induced by the variation of velocity and porous medium. Numerical solutions provide insight into all flow magnitudes, one of the most important being the WSS distribution on the circles.Keywords: CFD, porous media, permeability, flow spectrum
Procedia PDF Downloads 594324 Pull-In Instability Determination of Microcapacitive Sensor for Measuring Special Range of Pressure
Authors: Yashar Haghighatfar, Shahrzad Mirhosseini
Abstract:
Pull-in instability is a nonlinear and crucial effect that is important for the design of microelectromechanical system devices. In this paper, the appropriate electrostatic voltage range is determined by measuring fluid flow pressure via micro pressure sensor based microbeam. The microbeam deflection contains two parts, the static and perturbation deflection of static. The second order equation regarding the equivalent stiffness, mass and damping matrices based on Galerkin method is introduced to predict pull-in instability due to the external voltage. Also the reduced order method is used for solving the second order nonlinear equation of motion. Furthermore, in the present study, the micro capacitive pressure sensor is designed for measuring special fluid flow pressure range. The results show that the measurable pressure range can be optimized, regarding damping field and external voltage.Keywords: MEMS, pull-in instability, electrostatically actuated microbeam, reduced order method
Procedia PDF Downloads 2314323 Architecture - Performance Relationship in GPU Computing - Composite Process Flow Modeling and Simulations
Authors: Ram Mohan, Richard Haney, Ajit Kelkar
Abstract:
Current developments in computing have shown the advantage of using one or more Graphic Processing Units (GPU) to boost the performance of many computationally intensive applications but there are still limits to these GPU-enhanced systems. The major factors that contribute to the limitations of GPU(s) for High Performance Computing (HPC) can be categorized as hardware and software oriented in nature. Understanding how these factors affect performance is essential to develop efficient and robust applications codes that employ one or more GPU devices as powerful co-processors for HPC computational modeling. This research and technical presentation will focus on the analysis and understanding of the intrinsic interrelationship of both hardware and software categories on computational performance for single and multiple GPU-enhanced systems using a computationally intensive application that is representative of a large portion of challenges confronting modern HPC. The representative application uses unstructured finite element computations for transient composite resin infusion process flow modeling as the computational core, characteristics and results of which reflect many other HPC applications via the sparse matrix system used for the solution of linear system of equations. This work describes these various software and hardware factors and how they interact to affect performance of computationally intensive applications enabling more efficient development and porting of High Performance Computing applications that includes current, legacy, and future large scale computational modeling applications in various engineering and scientific disciplines.Keywords: graphical processing unit, software development and engineering, performance analysis, system architecture and software performance
Procedia PDF Downloads 3674322 Elucidation of Dynamics of Murine Double Minute 2 Shed Light on the Anti-cancer Drug Development
Authors: Nigar Kantarci Carsibasi
Abstract:
Coarse-grained elastic network models, namely Gaussian network model (GNM) and Anisotropic network model (ANM), are utilized in order to investigate the fluctuation dynamics of Murine Double Minute 2 (MDM2), which is the native inhibitor of p53. Conformational dynamics of MDM2 are elucidated in unbound, p53 bound, and non-peptide small molecule inhibitor bound forms. With this, it is aimed to gain insights about the alterations brought to global dynamics of MDM2 by native peptide inhibitor p53, and two small molecule inhibitors (HDM201 and NVP-CGM097) that are undergoing clinical stages in cancer studies. MDM2 undergoes significant conformational changes upon inhibitor binding, carrying pieces of evidence of induced-fit mechanism. Small molecule inhibitors examined in this work exhibit similar fluctuation dynamics and characteristic mode shapes with p53 when complexed with MDM2, which would shed light on the design of novel small molecule inhibitors for cancer therapy. The results showed that residues Phe 19, Trp 23, Leu 26 reside in the minima of slowest modes of p53, pointing to the accepted three-finger binding model. Pro 27 displays the most significant hinge present in p53 and comes out to be another functionally important residue. Three distinct regions are identified in MDM2, for which significant conformational changes are observed upon binding. Regions I (residues 50-77) and III (residues 90-105) correspond to the binding interface of MDM2, including (α2, L2, and α4), which are stabilized during complex formation. Region II (residues 77-90) exhibits a large amplitude motion, being highly flexible, both in the absence and presence of p53 or other inhibitors. MDM2 exhibits a scattered profile in the fastest modes of motion, while binding of p53 and inhibitors puts restraints on MDM2 domains, clearly distinguishing the kinetically hot regions. Mode shape analysis revealed that the α4 domain controls the size of the cleft by keeping the cleft narrow in unbound MDM2; and open in the bound states for proper penetration and binding of p53 and inhibitors, which points to the induced-fit mechanism of p53 binding. P53 interacts with α2 and α4 in a synchronized manner. Collective modes are shifted upon inhibitor binding, i.e., second mode characteristic motion in MDM2-p53 complex is observed in the first mode of apo MDM2; however, apo and bound MDM2 exhibits similar features in the softest modes pointing to pre-existing modes facilitating the ligand binding. Although much higher amplitude motions are attained in the presence of non-peptide small molecule inhibitor molecules as compared to p53, they demonstrate close similarity. Hence, NVP-CGM097 and HDM201 succeed in mimicking the p53 behavior well. Elucidating how drug candidates alter the MDM2 global and conformational dynamics would shed light on the rational design of novel anticancer drugs.Keywords: cancer, drug design, elastic network model, MDM2
Procedia PDF Downloads 1334321 Effect of Viscous Dissipation and Axial Conduction in Thermally Developing Region of the Channel Partially Filled with a Porous Material Subjected to Constant Wall Heat Flux
Authors: D Bhargavi, J. Sharath Kumar Reddy
Abstract:
The present investigation has been undertaken to assess the effect of viscous dissipation and axial conduction on forced convection heat transfer in the entrance region of a parallel plate channel with the porous insert attached to both walls of the channel. The flow field is unidirectional. Flow in the porous region corresponds to Darcy-Brinkman model and the clear fluid region to that of plane Poiseuille flow. The effects of the parameters Darcy number, Da, Peclet number, Pe, Brinkman number, Br and a porous fraction γp on the local heat transfer coefficient are analyzed graphically. Effects of viscous dissipation employing the Darcy model and the clear fluid compatible model have been studied.Keywords: porous material, channel partially filled with a porous material, axial conduction, viscous dissipation
Procedia PDF Downloads 1644320 Computational Model for Predicting Effective siRNA Sequences Using Whole Stacking Energy (ΔG) for Gene Silencing
Authors: Reena Murali, David Peter S.
Abstract:
The small interfering RNA (siRNA) alters the regulatory role of mRNA during gene expression by translational inhibition. Recent studies shows that up regulation of mRNA cause serious diseases like Cancer. So designing effective siRNA with good knockdown effects play an important role in gene silencing. Various siRNA design tools had been developed earlier. In this work, we are trying to analyze the existing good scoring second generation siRNA predicting tools and to optimize the efficiency of siRNA prediction by designing a computational model using Artificial Neural Network and whole stacking energy (ΔG), which may help in gene silencing and drug design in cancer therapy. Our model is trained and tested against a large data set of siRNA sequences. Validation of our results is done by finding correlation coefficient of experimental versus observed inhibition efficacy of siRNA. We achieved a correlation coefficient of 0.727 in our previous computational model and we could improve the correlation coefficient up to 0.753 when the threshold of whole tacking energy is greater than or equal to -32.5 kcal/mol.Keywords: artificial neural network, double stranded RNA, RNA interference, short interfering RNA
Procedia PDF Downloads 5274319 Exploring the Interplay Between Emotions, Employee’s Social Cognition and Decision Making Among Employees
Abstract:
The study aims to investigate the relationship between emotions and employee's social cognition and decision-making among employees. The sample of the study was the total number of participants, which included employees from various industries and job positions. Research papers in the same area were reviewed, providing a comprehensive review of existing literature and theoretical frameworks and shedding light on the interpersonal effects of emotions in the workplace. It emphasizes how one worker's emotions can significantly impact the overall work environment and productivity as well as the work of a common phenomenon known as Emotional contagion at the workplace, affecting social interactions and group dynamics. Therefore, this study concludes that Emotional contagion can lead to a ripple effect within the workplace, influencing the overall atmosphere and productivity. Emotions can shape how employees process information and make choices, ultimately impacting organizational outcomes.Keywords: employee decision making, social cognition, emotions, industry, emotional contagion, workplace dynamics
Procedia PDF Downloads 654318 Numerical and Experimental Comparison of Surface Pressures around a Scaled Ship Wind-Assisted Propulsion System
Authors: James Cairns, Marco Vezza, Richard Green, Donald MacVicar
Abstract:
Significant legislative changes are set to revolutionise the commercial shipping industry. Upcoming emissions restrictions will force operators to look at technologies that can improve the efficiency of their vessels -reducing fuel consumption and emissions. A device which may help in this challenge is the Ship Wind-Assisted Propulsion system (SWAP), an actively controlled aerofoil mounted vertically on the deck of a ship. The device functions in a similar manner to a sail on a yacht, whereby the aerodynamic forces generated by the sail reach an equilibrium with the hydrodynamic forces on the hull and a forward velocity results. Numerical and experimental testing of the SWAP device is presented in this study. Circulation control takes the form of a co-flow jet aerofoil, utilising both blowing from the leading edge and suction from the trailing edge. A jet at the leading edge uses the Coanda effect to energise the boundary layer in order to delay flow separation and create high lift with low drag. The SWAP concept has been originated by the research and development team at SMAR Azure Ltd. The device will be retrofitted to existing ships so that a component of the aerodynamic forces acts forward and partially reduces the reliance on existing propulsion systems. Wind tunnel tests have been carried out at the de Havilland wind tunnel at the University of Glasgow on a 1:20 scale model of this system. The tests aim to understand the airflow characteristics around the aerofoil and investigate the approximate lift and drag coefficients that an early iteration of the SWAP device may produce. The data exhibits clear trends of increasing lift as injection momentum increases, with critical flow attachment points being identified at specific combinations of jet momentum coefficient, Cµ, and angle of attack, AOA. Various combinations of flow conditions were tested, with the jet momentum coefficient ranging from 0 to 0.7 and the AOA ranging from 0° to 35°. The Reynolds number across the tested conditions ranged from 80,000 to 240,000. Comparisons between 2D computational fluid dynamics (CFD) simulations and the experimental data are presented for multiple Reynolds-Averaged Navier-Stokes (RANS) turbulence models in the form of normalised surface pressure comparisons. These show good agreement for most of the tested cases. However, certain simulation conditions exhibited a well-documented shortcoming of RANS-based turbulence models for circulation control flows and over-predicted surface pressures and lift coefficient for fully attached flow cases. Work must be continued in finding an all-encompassing modelling approach which predicts surface pressures well for all combinations of jet injection momentum and AOA.Keywords: CFD, circulation control, Coanda, turbo wing sail, wind tunnel
Procedia PDF Downloads 1414317 Application of Terminal Sliding Mode Control to the Stabilization of the Indoor Temperature in Buildings
Authors: Pawel Skruch, Marek Dlugosz
Abstract:
The paper starts with a general model of the temperature dynamics in buildings. The modelling approach relies on thermodynamics, in particular heat transfer, principles. The model considers heat loses by conduction and ventilation and internal heat gains. The parameters of the model can be determined uniquely from the geometry of the building and from thermal properties of construction materials. The model is presented using state space notation and this form is used in the control design procedure. A sliding surface is defined by the system output and the desired trajectory. The control law is designed to force the trajectory of the system from any initial condition to the sliding surface in finite time. The trajectory of the system after reaching the sliding surface remains on it. A simulation example is included to verify the approach and to demonstrate the achievable performance improvement by the proposed solution in the temperature control in buildings.Keywords: modelling, building, temperature dynamics, sliding-mode control, sliding surface
Procedia PDF Downloads 5554316 Preparation and in vitro Characterisation of Chitosan/Hydroxyapatite Injectable Microspheres as Hard Tissue Substitution
Authors: H. Maachou, A. Chagnes, G. Cote
Abstract:
The present work reports the properties of chitosan/hydroxyapatite (Cs/HA: 100/00, 70/30 and 30/70) composite microspheres obtained by emulsification processing route. The morphology of chitosane microspheres was observed by a scanning electron microscope (SEM) which shows an aggregate of spherical microspheres with a particle size, determined by optical microscope, ranged from 4 to 10 µm. Thereafter, a biomimetic approach was used to study the in vitro biomineralization of these composites. It concerns the composites immersion in simulated body fluid (SBF) for different times. The deposited calcium phosphate was studied using X-ray diffraction analysis (XRD), FTIR spectroscopy and ICP analysis of phosphorus. In fact, the mineral formed on Cs/HA microspheres was a mixture of carbonated HA and β-TCP as showed by FTIR peaks at 1419,5 and 871,8 cm-1 and XRD peak at 29,5°. This formation was induced by the presence of HA in chitosan microspheres. These results are confirmed by SEM micrographs which chow the Ca-P crystals growth in form of cauliflowers. So, these materials are of great interest for bone regeneration applications due to their ability to nucleate calcium phosphates in presence of simulated body fluid (SBF).Keywords: hydroxyapatite, chitosan, microsphere, composite, bone regeneration
Procedia PDF Downloads 3324315 Heat Transfer and Turbulent Fluid Flow over Vertical Double Forward-Facing Step
Authors: Tuqa Abdulrazzaq, Hussein Togun, M. K. A. Ariffin, S. N. Kazi, A. Badarudin, N. M. Adam, S. Masuri
Abstract:
Numerical study of heat transfer and fluid flow over vertical double forward facing step were presented. The k-w model with finite volume method was employed to solve continuity, momentum, and energy equations. Different step heights were adopted for range of Reynolds number varied from 10000 to 40000, and range of temperature varied from 310K to 340 K. The straight side of duct is insulated while the side of double forward facing step is heated. The result shows augmentation of heat transfer due to the recirculation region created after and before steps. Effect of step length and Reynolds number observed on increase of local Nusselt number particularly at recirculation regions. Contour of streamline velocity is plotted to show recirculation regions after and before steps. Numerical simulation in this paper done by used ANSYS Fluent 14.Keywords: turbulent flow, double forward, heat transfer, separation flow
Procedia PDF Downloads 4664314 Activated Carbon Content Influence in Mineral Barrier Performance
Authors: Raul Guerrero, Sandro Machado, Miriam Carvalho
Abstract:
Soil and aquifer pollution, caused by hydrocarbon liquid spilling, is induced by misguided operational practices and inefficient safety guidelines. According to the Environmental Brazilian Institute (IBAMA), during 2013 alone, over 472.13 m3 of diesel oil leaked into the environment nationwide for those reported cases only. Regarding the aforementioned information, there’s an indisputable need to adopt appropriate environmental safeguards specially in those areas intended for the production, treatment, transportation and storage of hydrocarbon fluids. According to Brazilian norm, ABNT-NBR 7505-1:2000, compacted soil or mineral barriers used in structural contingency levees, such as storage tanks, are required to present a maximum water permeability coefficient, k, of 1x10-6 cm/s. However, as discussed by several authors, water can not be adopted as the reference fluid to determine the site’s containment performance against organic fluids. Mainly, due to the great discrepancy observed in polarity values (dielectric constant) between water and most organic fluids. Previous studies, within this same research group, proposed an optimal range of values for the soil’s index properties for mineral barrier composition focused on organic fluid containment. Unfortunately, in some circumstances, it is not possible to encounter a type of soil with the required geotechnical characteristics near the containment site, increasing prevention and construction costs, as well as environmental risks. For these specific cases, the use of an organic product or material as an additive to enhance mineral-barrier containment performance may be an attractive geotechnical solution. This paper evaluates the effect of activated carbon (AC) content additions into a clayey soil towards hydrocarbon fluid permeability. Variables such as compaction energy, carbon texture and addition content (0%, 10% and 20%) were analyzed through laboratory falling-head permeability tests using distilled water and commercial diesel as percolating fluids. The obtained results showed that the AC with smaller particle-size reduced k values significantly against diesel, indicating a direct relationship between particle-size reduction (surface area increase) of the organic product and organic fluid containment.Keywords: activated carbon, clayey soils, permeability, surface area
Procedia PDF Downloads 2594313 Longitudinal Vortices Mixing in Three-Stream Micromixers with Two Inlets
Authors: Yi-Tun Huang, Chih-Yang Wu, Shu-Wei Huang
Abstract:
In this work, we examine fluid mixing in a full three-stream mixing channel with longitudinal vortex generators (LVGs) built on the channel bottom by numerical simulation and experiment. The effects of the asymmetrical arrangement and the attack angle of the LVGs on fluid mixing are investigated. The results show that the micromixer with LVGs at a small asymmetry index (defined by the ratio of the distance from the center plane of the gap between the winglets to the center plane of the main channel to the width of the main channel) is superior to the micromixer with symmetric LVGs and that with LVGs at a large asymmetry index. The micromixer using five mixing modules of the LVGs with an attack angle between 16.5 degrees and 22.5 degrees can achieve excellent mixing over a wide range of Reynolds numbers. Here, we call a section of channel with two pairs of staggered asymmetrical LVGs a mixing module. Besides, the micromixer with LVGs at a small attack angle is more efficient than that with a larger attack angle when pressure losses are taken into account.Keywords: microfluidics, mixing, longitudinal vortex generators, two stream interfaces
Procedia PDF Downloads 5244312 Clinically-Based Improvement Project Focused on Reducing Risks Associated with Diabetes Insipidus, Syndrome of Inappropriate ADH, and Cerebral Salt Wasting in Paediatric Post-Neurosurgical and Traumatic Brain Injury Patients
Authors: Shreya Saxena, Felix Miller-Molloy, Phillipa Bowen, Greg Fellows, Elizabeth Bowen
Abstract:
Background: Complex fluid balance abnormalities are well-established post-neurosurgery and traumatic brain injury (TBI). The triple-phase response requires fluid management strategies reactive to urine output and sodium homeostasis as patients shift between Diabetes Insipidus (DI) and Syndrome of Inappropriate ADH (SIADH). It was observed, at a tertiary paediatric center, a relatively high prevalence of the above complications within a cohort of paediatric post-neurosurgical and TBI patients. An audit of the clinical practice against set institutional guidelines was undertaken and analyzed to understand why this was occurring. Based on those results, new guidelines were developed with structured educational packages for the specialist teams involved. This was then reaudited, and the findings were compared. Methods: Two independent audits were conducted across two time periods, pre and post guideline change. Primary data was collected retrospectively, including both qualitative and quantitative data sets from the CQUIN neurosurgical database and electronic medical records. All paediatric patients post posterior fossa (PFT) or supratentorial surgery or with a TBI were included. A literature review of evidence-based practice, initial audit data, and stakeholder feedback was used to develop new clinical guidelines and nursing standard operation procedures. Compliance against these newly developed guidelines was re-assessed and a thematic, trend-based analysis of the two sets of results was conducted. Results: Audit-1 January2017-June2018, n=80; Audit-2 January2020-June2021, n=30 (reduced operative capacity due to COVID-19 pandemic). Overall, improvements in the monitoring of both fluid balance and electrolyte trends were demonstrated; 51% vs. 77% and 78% vs. 94%, respectively. The number of clear fluid management plans documented postoperatively also increased (odds ratio of 4), leading to earlier recognition and management of evolving fluid-balance abnormalities. The local paediatric endocrine team was involved in the care of all complex cases and notified sooner for those considered to be developing DI or SIADH (14% to 35%). However, significant Na fluctuations (>12mmol in 24 hours) remained similar – 5 vs six patients – found to be due to complex pituitary hypothalamic pathology – and the recommended adaptive fluid management strategy was still not always used. Qualitative data regarding useability and understanding of fluid-balance abnormalities and the revised guidelines were obtained from health professionals via surveys and discussion in the specialist teams providing care. The feedback highlighted the new guidelines provided a more consistent approach to the post-operative care of these patients and was a better platform for communication amongst the different specialist teams involved. The potential limitation to our study would be the small sample size on which to conduct formal analyses; however, this reflects the population that we were investigating, which we cannot control. Conclusion: The revised clinical guidelines, based on audited data, evidence-based literature review and stakeholder consultations, have demonstrated an improvement in understanding of the neuro-endocrine complications that are possible, as well as increased compliance to post-operative monitoring of fluid balance and electrolytes in this cohort of patients. Emphasis has been placed on preventative rather than treatment of DI and SIADH. Consequently, this has positively impacted patient safety for the center and highlighted the importance of educational awareness and multi-disciplinary team working.Keywords: post-operative, fluid-balance management, neuro-endocrine complications, paediatric
Procedia PDF Downloads 964311 Development of an in vitro Fermentation Chicken Ileum Microbiota Model
Authors: Bello Gonzalez, Setten Van M., Brouwer M.
Abstract:
The chicken small intestine represents a dynamic and complex organ in which the enzymatic digestion and absorption of nutrients take place. The development of an in vitro fermentation chicken small intestinal model could be used as an alternative to explore the interaction between the microbiota and nutrient metabolism and to enhance the efficacy of targeting interventions to improve animal health. In the present study we have developed an in vitro fermentation chicken ileum microbiota model for unrevealing the complex interaction of ileum microbial community under physiological conditions. A two-vessel continuous fermentation process simulating in real-time the physiological conditions of the ileum content (pH, temperature, microaerophilic/anoxic conditions, and peristaltic movements) has been standardized as a proof of concept. As inoculum, we use a pool of ileum microbial community obtained from chicken broilers at the age of day 14. The development and validation of the model provide insight into the initial characterization of the ileum microbial community and its dynamics over time-related to nutrient assimilation and fermentation. Samples can be collected at different time points and can be used to determine the microbial compositional structure, dynamics, and diversity over time. The results of studies using this in vitro model will serve as the foundation for the development of a whole small intestine in vitro fermentation chicken gastrointestinal model to complement our already established in vitro fermentation chicken caeca model. The insight gained from this model could provide us with some information about the nutritional strategies to restore and maintain chicken gut homeostasis. Moreover, the in vitro fermentation model will also allow us to study relationships between gut microbiota composition and its dynamics over time associated with nutrients, antimicrobial compounds, and disease modelling.Keywords: broilers, in vitro model, ileum microbiota, fermentation
Procedia PDF Downloads 684310 Weak Instability in Direct Integration Methods for Structural Dynamics
Authors: Shuenn-Yih Chang, Chiu-Li Huang
Abstract:
Three structure-dependent integration methods have been developed for solving equations of motion, which are second-order ordinary differential equations, for structural dynamics and earthquake engineering applications. Although they generally have the same numerical properties, such as explicit formulation, unconditional stability and second-order accuracy, a different performance is found in solving the free vibration response to either linear elastic or nonlinear systems with high frequency modes. The root cause of this different performance in the free vibration responses is analytically explored herein. As a result, it is verified that a weak instability is responsible for the different performance of the integration methods. In general, a weak instability will result in an inaccurate solution or even numerical instability in the free vibration responses of high frequency modes. As a result, a weak instability must be prohibited for time integration methods.Keywords: dynamic analysis, high frequency, integration method, overshoot, weak instability
Procedia PDF Downloads 2274309 Polymer Spiral Film Gas-Liquid Heat Exchanger for Waste Heat Recovery in Exhaust Gases
Authors: S. R. Parthiban, C. Elajchet Senni
Abstract:
Spiral heat exchangers are known as excellent heat exchanger because of far compact and high heat transfer efficiency. An innovative spiral heat exchanger based on polymer materials is designed for waste heat recovery process. Such a design based on polymer film technology provides better corrosion and chemical resistance compared to conventional metal heat exchangers. Due to the smooth surface of polymer film fouling is reduced. A new arrangement for flow of hot flue gas and cold fluid is employed for design, flue gas flows in axial path while the cold fluid flows in a spiral path. Heat load recovery achieved with the presented heat exchanger is in the range of 1.5 kW thermic but potential heat recovery about 3.5kW might be achievable. To measure the performance of the spiral tube heat exchanger, its model is suitably designed and fabricated so as to perform experimental tests. The paper gives analysis of spiral tube heat exchanger.Keywords: spiral heat exchanger, polymer based materials, fouling factor, heat load
Procedia PDF Downloads 3734308 Single Phase Fluid Flow in Series of Microchannel Connected via Converging-Diverging Section with or without Throat
Authors: Abhishek Kumar Chandra, Kaushal Kishor, Wasim Khan, Dhananjay Singh, M. S. Alam
Abstract:
Single phase fluid flow through series of uniform microchannels connected via transition section (converging-diverging section with or without throat) was analytically and numerically studied to characterize the flow within the channel and in the transition sections. Three sets of microchannels of diameters 100, 184, and 249 μm were considered for investigation. Each set contains 10 numbers of microchannels of length 20 mm, connected to each other in series via transition sections. Transition section consists of either converging-diverging section with throat or without throat. The effect of non-uniformity in microchannels on pressure drop was determined by passing water/air through the set of channels for Reynolds number 50 to 1000. Compressibility and rarefaction effects in transition sections were also tested analytically and numerically for air flow. The analytical and numerical results show that these configurations can be used in enhancement of transport processes. However, converging-diverging section without throat shows superior performance over with throat configuration.Keywords: contraction-expansion flow, integrated microchannel, microchannel network, single phase flow
Procedia PDF Downloads 2864307 Hydration Evaluation In A Working Population in Greece
Authors: Aikaterini-Melpomeni Papadopoulou, Kyriaki Apergi, Margarita-Vasiliki Panagopoulou, Olga Malisova
Abstract:
Introduction: Adequate hydration is a vital factor that enhances concentration, memory, and decision-making abilities throughout the workday. Various factors may affect hydration status in workplace settings, and many variables, such as age, gender and activity level affect hydration needs. Employees frequently overlook their hydration needs amid busy schedules and demanding tasks, leading to dehydration that can negatively affect cognitive function, productivity, and overall well-being In addition, dietary habits, including fluid intake and food choices, can either support or hinder optimal hydration. However, factors that affect hydration balance among workers in Greece have not been adequately studied. Objective: This study aims to evaluate the hydration status of the working population in Greece and investigate the various factors that impact hydration status in workplace settings, considering demographic, dietary, and occupational influences in a Greek sample of employees from diverse working environments Materials & Methods: The study included 212 participants (46.2% women) from the working population in Greece. Water intake from both solid and liquid foods was recorded using a semi-quantified drinking frequency questionnaire the validated Water Balance Questionnaire was used to evaluate hydration status. The calculation of water from solid and liquid foods was based on data from the USDA National Nutrient Database. Water balance was calculated subtracting the total fluid loss from the total fluid intake in the body. Furthermore, the questionnaire including additional questions on drinking habits and work-related factors.volunteers answered questions of different categories such as a) demographic socio-economic b) work style characteristics c) health, d) physical activity, e) food and fluid intake, f) fluid excretion and g) trends on fluid and water intake. Individual and multivariate regression analyses were performed to assess the relationships between demographic, work-related factors, and hydration balance. Results: Analysis showed that demographic factors like gender, age, and BMI, as well as certain work-related factors, had a weak and statistically non-significant effect on hydration balance. However, the use of a bottle or water container during work hours (b = 944.93, p < 0.001) and engaging in intense physical activity outside of work (b = -226.28, p < 0.001) were found to have a significant impact. Additionally, the consumption of beverages other than water (b = -416.14, p = 0.059) could negatively impact hydration balance. On average, the total consumption of the sample is 3410 ml of water daily, with men consuming approximately 440 ml / day more water (3470 ml / day) compared to women (3030 ml / day) with this difference also being statistically significant. Finally, the water balance, defined as the difference between water intake and water excretion, was found to be negative on average for the entire sample. Conclusions: This study is among the first to explore hydration status within the Greek working population. Findings indicate that awareness of adequate hydration and individual actions, such as using a water bottle during work, may influence hydration balance.Keywords: hydration, working population, water balance, workplace behavior
Procedia PDF Downloads 294306 Computational Simulations and Assessment of the Application of Non-Circular TAVI Devices
Authors: Jonathon Bailey, Neil Bressloff, Nick Curzen
Abstract:
Transcatheter Aortic Valve Implantation (TAVI) devices are stent-like frames with prosthetic leaflets on the inside, which are percutaneously implanted. The device in a crimped state is fed through the arteries to the aortic root, where the device frame is opened through either self-expansion or balloon expansion, which reveals the prosthetic valve within. The frequency at which TAVI is being used to treat aortic stenosis is rapidly increasing. In time, TAVI is likely to become the favoured treatment over Surgical Valve Replacement (SVR). Mortality after TAVI has been associated with severe Paravalvular Aortic Regurgitation (PAR). PAR occurs when the frame of the TAVI device does not make an effective seal against the internal surface of the aortic root, allowing blood to flow backwards about the valve. PAR is common in patients and has been reported to some degree in as much as 76% of cases. Severe PAR (grade 3 or 4) has been reported in approximately 17% of TAVI patients resulting in post-procedural mortality increases from 6.7% to 16.5%. TAVI devices, like SVR devices, are circular in cross-section as the aortic root is often considered to be approximately circular in shape. In reality, however, the aortic root is often non-circular. The ascending aorta, aortic sino tubular junction, aortic annulus and left ventricular outflow tract have an average ellipticity ratio of 1.07, 1.09, 1.29, and 1.49 respectively. An elliptical aortic root does not severely affect SVR, as the leaflets are completely removed during the surgical procedure. However, an elliptical aortic root can inhibit the ability of the circular Balloon-Expandable (BE) TAVI devices to conform to the interior of the aortic root wall, which increases the risk of PAR. Self-Expanding (SE) TAVI devices are considered better at conforming to elliptical aortic roots, however the valve leaflets were not designed for elliptical function, furthermore the incidence of PAR is greater in SE devices than BE devices (19.8% vs. 12.2% respectively). If a patient’s aortic root is too severely elliptical, they will not be suitable for TAVI, narrowing the treatment options to SVR. It therefore follows that in order to increase the population who can undergo TAVI, and reduce the risk associated with TAVI, non-circular devices should be developed. Computational simulations were employed to further advance our understanding of non-circular TAVI devices. Radial stiffness of the TAVI devices in multiple directions, frame bending stiffness and resistance to balloon induced expansion are all computationally simulated. Finally, a simulation has been developed that demonstrates the expansion of TAVI devices into a non-circular patient specific aortic root model in order to assess the alterations in deployment dynamics, PAR and the stresses induced in the aortic root.Keywords: tavi, tavr, fea, par, fem
Procedia PDF Downloads 4434305 Flow Control Optimisation Using Vortex Generators in Turbine Blade
Authors: J. Karthik, G. Vinayagamurthy
Abstract:
Aerodynamic flow control is achieved by interaction of flowing medium with corresponding structure so that its natural flow state is disturbed to delay the transition point. This paper explains the aerodynamic effect and optimized design of Vortex Generators on the turbine blade to achieve maximum flow control. The airfoil is chosen from NREL [National Renewable Energy Laboratory] S-series airfoil as they are characterized with good lift characteristics and lower noise. Vortex generators typically chosen are Ogival, Rectangular, Triangular and Tapered Fin shapes attached near leading edge. Vortex generators are typically distributed from the primary to tip of the blade section. The design wind speed is taken as 6m/s and the computational analysis is executed. The blade surface is simulated using k- ɛ SST model and results are compared with X-FOIL results. The computational results are validated using Wind Tunnel Testing of the blade corresponding to the design speed. The effect of Vortex generators on the flow characteristics is studied from the results of analysis. By comparing the computational and test results of all shapes of Vortex generators; the optimized design is achieved for effective flow control corresponding to the blade.Keywords: flow control, vortex generators, design optimisation, CFD
Procedia PDF Downloads 4114304 Cloud-Based Mobile-to-Mobile Computation Offloading
Authors: Ebrahim Alrashed, Yousef Rafique
Abstract:
Mobile devices have drastically changed the way we do things on the move. They are being extremely relied on to perform tasks that are analogous to desktop computer capability. There has been a rapid increase of computational power on these devices; however, battery technology is still the bottleneck of evolution. The primary modern approach day approach to tackle this issue is offloading computation to the cloud, proving to be latency expensive and requiring high network bandwidth. In this paper, we explore efforts to perform barter-based mobile-to-mobile offloading. We present define a protocol and present an architecture to facilitate the development of such a system. We further highlight the deployment and security challenges.Keywords: computational offloading, power conservation, cloud, sandboxing
Procedia PDF Downloads 3914303 Parameter Estimation with Uncertainty and Sensitivity Analysis for the SARS Outbreak in Hong Kong
Authors: Afia Naheed, Manmohan Singh, David Lucy
Abstract:
This work is based on a mathematical as well as statistical study of an SEIJTR deterministic model for the interpretation of transmission of severe acute respiratory syndrome (SARS). Based on the SARS epidemic in 2003, the parameters are estimated using Runge-Kutta (Dormand-Prince pairs) and least squares methods. Possible graphical and numerical techniques are used to validate the estimates. Then effect of the model parameters on the dynamics of the disease is examined using sensitivity and uncertainty analysis. Sensitivity and uncertainty analytical techniques are used in order to analyze the affect of the uncertainty in the obtained parameter estimates and to determine which parameters have the largest impact on controlling the disease dynamics.Keywords: infectious disease, severe acute respiratory syndrome (SARS), parameter estimation, sensitivity analysis, uncertainty analysis, Runge-Kutta methods, Levenberg-Marquardt method
Procedia PDF Downloads 3664302 Flow Dynamics of Nanofluids in a Horizontal Cylindrical Annulus Using Nonhomogeneous Dynamic Model
Authors: M. J. Uddin, M. M. Rahman
Abstract:
Transient natural convective flow dynamics of nanofluids in a horizontal homocentric annulus using nonhomogeneous dynamic model has been experimented numerically. The simulation is carried out for four different shapes of the inner wall, which is either cylindrical, elliptical, square or triangular. The outer surface of the annulus is maintained at constant low temperature while the inner wall is maintained at a uniform temperature; higher than the outer one. The enclosure is permeated by a uniform magnetic field having variable orientation. The Brownian motion and thermophoretic deposition phenomena of the nanoparticles are taken into account in model construction. The governing nonlinear momentum, energy, and concentration equations are solved numerically using Galerkin weighted residual finite element method. To find the best performer, the local Nusselt number is demonstrated for different shapes of the inner wall. The heat transfer enhancement for different nanofluids for four different shapes of the inner wall is exhibited.Keywords: nanofluids, annulus, nonhomogeneous dynamic model, heat transfer
Procedia PDF Downloads 1734301 Chemical and Biomolecular Detection at a Polarizable Electrical Interface
Authors: Nicholas Mavrogiannis, Francesca Crivellari, Zachary Gagnon
Abstract:
Development of low-cost, rapid, sensitive and portable biosensing systems are important for the detection and prevention of disease in developing countries, biowarfare/antiterrorism applications, environmental monitoring, point-of-care diagnostic testing and for basic biological research. Currently, the most established commercially available and widespread assays for portable point of care detection and disease testing are paper-based dipstick and lateral flow test strips. These paper-based devices are often small, cheap and simple to operate. The last three decades in particular have seen an emergence in these assays in diagnostic settings for detection of pregnancy, HIV/AIDS, blood glucose, Influenza, urinary protein, cardiovascular disease, respiratory infections and blood chemistries. Such assays are widely available largely because they are inexpensive, lightweight, and portable, are simple to operate, and a few platforms are capable of multiplexed detection for a small number of sample targets. However, there is a critical need for sensitive, quantitative and multiplexed detection capabilities for point-of-care diagnostics and for the detection and prevention of disease in the developing world that cannot be satisfied by current state-of-the-art paper-based assays. For example, applications including the detection of cardiac and cancer biomarkers and biothreat applications require sensitive multiplexed detection of analytes in the nM and pM range, and cannot currently be satisfied with current inexpensive portable platforms due to their lack of sensitivity, quantitative capabilities and often unreliable performance. In this talk, inexpensive label-free biomolecular detection at liquid interfaces using a newly discovered electrokinetic phenomenon known as fluidic dielectrophoresis (fDEP) is demonstrated. The electrokinetic approach involves exploiting the electrical mismatches between two aqueous liquid streams forced to flow side-by-side in a microfluidic T-channel. In this system, one fluid stream is engineered to have a higher conductivity relative to its neighbor which has a higher permittivity. When a “low” frequency (< 1 MHz) alternating current (AC) electrical field is applied normal to this fluidic electrical interface the fluid stream with high conductivity displaces into the low conductive stream. Conversely, when a “high” frequency (20MHz) AC electric field is applied, the high permittivity stream deflects across the microfluidic channel. There is, however, a critical frequency sensitive to the electrical differences between each fluid phase – the fDEP crossover frequency – between these two events where no fluid deflection is observed, and the interface remains fixed when exposed to an external field. To perform biomolecular detection, two streams flow side-by-side in a microfluidic T-channel: one fluid stream with an analyte of choice and an adjacent stream with a specific receptor to the chosen target. The two fluid streams merge and the fDEP crossover frequency is measured at different axial positions down the resulting liquidKeywords: biodetection, fluidic dielectrophoresis, interfacial polarization, liquid interface
Procedia PDF Downloads 4484300 Stability of Solutions of Semidiscrete Stochastic Systems
Authors: Ramazan Kadiev, Arkadi Ponossov
Abstract:
Semidiscrete systems contain both continuous and discrete components. This means that the dynamics is mostly continuous, but at certain instants, it is exposed to abrupt influences. Such systems naturally appear in applications, for example, in biological and ecological models as well as in the control theory. Therefore, the study of semidiscrete systems has recently attracted the attention of many specialists. Stochastic effects are an important part of any realistic approach to modeling. For example, stochasticity arises in the population dynamics, demographic and ecological due to a change in time of factors external to the system affecting the survival of the population. In control theory, random coefficients can simulate inaccuracies in measurements. It will be shown in the presentation how to incorporate such effects into semidiscrete systems. Stability analysis is an essential part of modeling real-world problems. In the presentation, it will be explained how sufficient conditions for the moment stability of solutions in terms of the coefficients for linear semidiscrete stochastic equations can be derived using non-Lyapunov technique.Keywords: abrupt changes, exponential stability, regularization, stochastic noises
Procedia PDF Downloads 1944299 Optimization of Pumping Power of Water between Reservoir Using Ant Colony System
Authors: Thiago Ribeiro De Alencar, Jacyro Gramulia Junior, Patricia Teixeira Leite Asano
Abstract:
The area of the electricity sector that deals with energy needs by the hydropower and thermoelectric in a coordinated way is called Planning Operating Hydrothermal Power Systems. The aim of this area is to find a political operative to provide electrical power to the system in a specified period with minimization of operating cost. This article proposes a computational tool for solving the planning problem. In addition, this article will be introducing a methodology to find new transfer points between reservoirs increasing energy production in hydroelectric power plants cascade systems. The computational tool proposed in this article applies: i) genetic algorithms to optimize the water transfer and operation of hydroelectric plants systems; and ii) Ant Colony algorithm to find the trajectory with the least energy pumping for the construction of pipes transfer between reservoirs considering the topography of the region. The computational tool has a database consisting of 35 hydropower plants and 41 reservoirs, which are part of the southeastern Brazilian system, which has been implemented in an individualized way.Keywords: ant colony system, genetic algorithms, hydroelectric, hydrothermal systems, optimization, water transfer between rivers
Procedia PDF Downloads 3284298 Analysis of an Error Estimate for the Asymptotic Solution of the Heat Conduction Problem in a Dilated Pipe
Authors: E. Marušić-Paloka, I. Pažanin, M. Prša
Abstract:
Subject of this study is the stationary heat conduction problem through a pipe filled with incompressible viscous fluid. In previous work, we observed the existence and uniqueness theorems for the corresponding boundary-value problem and within we have taken into account the effects of the pipe's dilatation due to the temperature of the fluid inside of the pipe. The main difficulty comes from the fact that flow domain changes depending on the solution of the observed heat equation leading to a non-standard coupled governing problem. The goal of this work is to find solution estimate since the exact solution of the studied problem is not possible to determine. We use an asymptotic expansion in order of a small parameter which is presented as a heat expansion coefficient of the pipe's material. Furthermore, an error estimate is provided for the mentioned asymptotic approximation of the solution for inner area of the pipe. Close to the boundary, problem becomes more complex so different approaches are observed, mainly Theory of Perturbations and Separations of Variables. In view of that, error estimate for the whole approximation will be provided with additional software simulations of gotten situation.Keywords: asymptotic analysis, dilated pipe, error estimate, heat conduction
Procedia PDF Downloads 2404297 A Data-Driven Optimal Control Model for the Dynamics of Monkeypox in a Variable Population with a Comprehensive Cost-Effectiveness Analysis
Authors: Martins Onyekwelu Onuorah, Jnr Dahiru Usman
Abstract:
Introduction: In the realm of public health, the threat posed by Monkeypox continues to elicit concern, prompting rigorous studies to understand its dynamics and devise effective containment strategies. Particularly significant is its recurrence in variable populations, such as the observed outbreak in Nigeria in 2022. In light of this, our study undertakes a meticulous analysis, employing a data-driven approach to explore, validate, and propose optimized intervention strategies tailored to the distinct dynamics of Monkeypox within varying demographic structures. Utilizing a deterministic mathematical model, we delved into the intricate dynamics of Monkeypox, with a particular focus on a variable population context. Our qualitative analysis provided insights into the disease-free equilibrium, revealing its stability when R0 is less than one and discounting the possibility of backward bifurcation, as substantiated by the presence of a single stable endemic equilibrium. The model was rigorously validated using real-time data from the Nigerian 2022 recorded cases for Epi weeks 1 – 52. Transitioning from qualitative to quantitative, we augmented our deterministic model with optimal control, introducing three time-dependent interventions to scrutinize their efficacy and influence on the epidemic's trajectory. Numerical simulations unveiled a pronounced impact of the interventions, offering a data-supported blueprint for informed decision-making in containing the disease. A comprehensive cost-effectiveness analysis employing the Infection Averted Ratio (IAR), Average Cost-Effectiveness Ratio (ACER), and Incremental Cost-Effectiveness Ratio (ICER) facilitated a balanced evaluation of the interventions’ economic and health impacts. In essence, our study epitomizes a holistic approach to understanding and mitigating Monkeypox, intertwining rigorous mathematical modeling, empirical validation, and economic evaluation. The insights derived not only bolster our comprehension of Monkeypox's intricate dynamics but also unveil optimized, cost-effective interventions. This integration of methodologies and findings underscores a pivotal stride towards aligning public health imperatives with economic sustainability, marking a significant contribution to global efforts in combating infectious diseases.Keywords: monkeypox, equilibrium states, stability, bifurcation, optimal control, cost-effectiveness
Procedia PDF Downloads 92