Search results for: 17-4PH stainless steel
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1733

Search results for: 17-4PH stainless steel

293 Hybrid Laser-Gas Metal Arc Welding of ASTM A106-B Steel Pipes

Authors: Masoud Mohammadpour, Nima Yazdian, Radovan Kovacevic

Abstract:

The Oil and Gas industries are vigorously looking for new ways to increase the efficiency of their pipeline constructions. Besides the other approaches, implementing of new welding methods for joining pipes can be the best candidate on this regard. Hybrid Laser Arc Welding (HLAW) with the capabilities of high welding speed, deep penetration, and excellent gap bridging ability can be a possible alternative method in pipeline girth welding. This paper investigates the feasibility of applying the HLAW to join ASTM A106-B as the mostly used piping material for transporting high-temperature and high-pressure fluids and gases. The experiments were carried out on six-inch diameter pipes with the wall thickness of 10mm. AWS ER 70 S6 filler wire with diameter of 1.2mm was employed. Relating to this welding procedure, characterization of welded samples such as hardness, tensile testing and Charpy V-notch testing were performed and the results will be reported in this paper. In order to have better understanding about the thermal history and the microstructural alterations caused by the welding heat cycle, a comprehensive Finite Element (FE) model was also conducted. The obtained results have shown that the Gas Metal Arc Welding (GMAW) procedure with the minimum number of 5 passes to complete the wall thickness, was reduced to only single pass by using the HLAW process with the welding time less than 15s.

Keywords: finite element modeling, high-temperature service, hybrid laser/arc welding, welding pipes

Procedia PDF Downloads 208
292 Experimental Device to Test Corrosion Behavior of Materials in the Molten Salt Reactor Environment

Authors: Jana Petru, Marie Kudrnova

Abstract:

The use of technologies working with molten salts is conditioned by finding suitable construction materials that must meet several demanding criteria. In addition to temperature resistance, materials must also show corrosion resistance to salts; they must meet mechanical requirements and other requirements according to the area of use – for example, radiation resistance in Molten Salt Reactors. The present text describes an experimental device for studying the corrosion resistance of candidate materials in molten mixtures of salts and is a partial task of the international project ADAR, dealing with the evaluation of advanced nuclear reactors based on molten salts. The design of the device is based on a test exposure of Inconel 625 in the mixture of salts Hitec in a high temperature tube furnace. The result of the pre-exposure is, in addition to the metallographic evaluation of the behavior of material 625 in the mixture of nitrate salts, mainly a list of operational and construction problems that were essential for the construction of the new experimental equipment. The main output is a scheme of a newly designed gas-tight experimental apparatus capable of operating in an inert argon atmosphere, temperature up to 600 °C, pressure 3 bar, in the presence of a corrosive salt environment, with an exposure time of hundreds of hours. This device will enable the study of promising construction materials for nuclear energy.

Keywords: corrosion, experimental device, molten salt, steel

Procedia PDF Downloads 119
291 Natural Fibre Composite Structural Sections for Residential Stud Wall Applications

Authors: Mike R. Bambach

Abstract:

Increasing awareness of environmental concerns is leading a drive towards more sustainable structural products for the built environment. Natural fibres such as flax, jute and hemp have recently been considered for fibre-resin composites, with a major motivation for their implementation being their notable sustainability attributes. While recent decades have seen substantial interest in the use of such natural fibres in composite materials, much of this research has focused on the materials aspects, including fibre processing techniques, composite fabrication methodologies, matrix materials and their effects on the mechanical properties. The present study experimentally investigates the compression strength of structural channel sections of flax, jute and hemp, with a particular focus on their suitability for residential stud wall applications. The section geometry is optimised for maximum strength via the introduction of complex stiffeners in the webs and flanges. Experimental results on both natural fibre composite channel sections and typical steel and timber residential wall studs are compared. The geometrically optimised natural fibre composite channels are shown to have compression capacities suitable for residential wall stud applications, identifying them as a potentially viable alternative to traditional building materials in such application, and potentially other light structural applications.

Keywords: channel sections, natural fibre composites, residential stud walls, structural composites

Procedia PDF Downloads 314
290 Influence of Concrete Cracking in the Tensile Strength of Cast-in Headed Anchors

Authors: W. Nataniel, B. Lima, J. Manoel, M. P. Filho, H. Marcos, Oliveira Mauricio, P. Ferreira

Abstract:

Headed reinforcement bars are increasingly used for anchorage in concrete structures. Applications include connections in composite steel-concrete structures, such as beam-column joints, in several strengthening situations as well as in more traditional uses in cast-in-place and precast structural systems. This paper investigates the reduction in the ultimate tensile capacity of embedded cast-in headed anchors due to concrete cracking. A series of nine laboratory tests are carried out to evaluate the influence of cracking on the concrete breakout strength in tension. The experimental results show that cracking affects both the resistance and load-slip response of the headed bar anchors. The strengths measured in these tests are compared to theoretical resistances calculated following the recommendations presented by fib Bulletin no. 58 (2011), ETAG 001 (2010) and ACI 318 (2014). The influences of parameters such as the effective embedment depth (hef), bar diameter (ds), and the concrete compressive strength (fc) are analysed and discussed. The theoretical recommendations are shown to be over-conservative for both embedment depths and were, in general, inaccurate in comparison to the experimental trends. The ACI 318 (2014) was the design code which presented the best performance regarding to the predictions of the ultimate load, with an average of 1.42 for the ratio between the experimental and estimated strengths, standard deviation of 0.36, and coefficient of variation equal to 0.25.

Keywords: cast-in headed anchors, concrete cone failure, uncracked concrete, cracked concrete

Procedia PDF Downloads 205
289 Wear Resistance of Graphene Oxide and Carbon Nanotubes Silanized Coatings

Authors: Henrique Gomes dos Santos, Manoel Henrique Alves, Jane Zoppas Ferreira, Annelise Kopp Alves

Abstract:

This work aimed to seek an environmentally sustainable surface coating alternative by researching the influence of the addition of graphene oxide (GO) and carbon nanotubes (CNT) on the silanization of coatings to increase the wear resistance in galvanized steel, using the pin-on-disk test. The results obtained were compared between different concentrations of additives and the number of coating layers, in addition to comparing with samples without coating and only with silane layers. Bis-1,2-(triethoxysilyl)ethane (BTSE) silane was used in silanizing the coatings with CNT or GO and applied to the samples through dip-coating to form one, four, or eight layers. The wear test results found that three samples stood out in relation to the objective, showing an increase in wear resistance compared to the galvanized sample only. The rolling effect and the lubricity character presented by carbon nanotubes were positive for the increase in wear resistance obtained. The reduction in wear compared to the galvanized-only sample reached 82%. Raman spectroscopy was also carried out to detect the presence of silane, GO, and CNT, in addition to roughness tests and SEM to assess the homogeneity of the coating. The carbonaceous additives, graphene oxide, and carbon nanotubes in certain amounts of layers and specific concentrations fulfilled their objective against the wear imposed on the substrate.

Keywords: silane, coating, graphene oxide, carbon nanotubes, wear resistance

Procedia PDF Downloads 13
288 A Fundamental Study on the Anchor Performance of Non-Surface Treated Multi CFRP Tendons

Authors: Woo-tai Jung, Jong-sup Park, Jae-yoon Kang, Moon-seoung Keum

Abstract:

CFRP (Carbon Fiber Reinforced Polymer) is mainly used as reinforcing material for degraded structures owing to its advantages including its non-corrodibility, high strength, and lightweight properties. Recently, dedicated studies focused not only on its simple bonding but also on its tensioning. The tension necessary for prestressing requires the anchoring of multi-CFRP tendons with high capacity and the surface treatment of the CFRP tendons may also constitute an important issue according to the type of anchor. The wedge type, swage type or bonded type anchor can be used to anchor the CFRP tendon. The bonded type anchor presents the disadvantage to lengthen the length of the anchor due to the low bond strength of the CFRP tendon without surface treatment. This study intends to overcome this drawback through the application of a method enlarging the bond area at the end of the CFRP tendon. This method enlarges the bond area by splitting the end of the CFRP tendon along its length and can be applied when CFRP is produced by pultrusion. The application of this method shows that the mono-CFRP tendon and 3-multi CFRP tendon secured the anchor performance corresponding to the tensile performance of the CFRP tendon and that the 7-multi tendon secured anchor performance corresponding to 90% of the tensile strength due to the occurrence of buckling in the steel tube anchorage.

Keywords: carbon fiber reinforced polymer (CFRP), tendon, anchor, tensile property, bond strength

Procedia PDF Downloads 247
287 Impact of Welding Distortion on the Design of Fabricated T-Girders Using Finite Element Modeling

Authors: Ahmed Hammad, Yehia Abdel-Nasser, Mohamed Shamma

Abstract:

The main configuration of ship construction consists of standard and fabricated stiffening members which are commonly used in shipbuilding such as fabricated T-sections. During the welding process, the non-uniform heating and rapid cooling lead to the inevitable presence of out-of-plane distortion and welding induced residual stresses. Because of these imperfections, the fabricated structural members may not attain their design load to be carried. The removal of these imperfections will require extra man-hours. In the present work, controlling these imperfections has been investigated at both design and fabrication stages. A typical fabricated T-girder is selected to investigate the problem of these imperfections using double-side welding. A numerical simulation based on finite element (FE) modeling has been used to investigate the effect of different parameters of the selected fabricated T-girder such as geometrical properties and welding sequences on the magnitude of welding imperfections. FE results were compared with the results of experimental model of a double-side fillet weld. The present work concludes that: Firstly, in the design stage, the optimum geometry of the fabricated T- girder is determined based on minimum steel weight and out- of- plane distortion. Secondly, in the fabrication stage, the best welding sequence is determined on the basis of minimum welding out- of- plane distortion.

Keywords: fabricated T-girder, FEM, out-of-plane distortion, section modulus, welding residual stresses

Procedia PDF Downloads 122
286 Effect of Concrete Strength and Aspect Ratio on Strength and Ductility of Concrete Columns

Authors: Mohamed A. Shanan, Ashraf H. El-Zanaty, Kamal G. Metwally

Abstract:

This paper presents the effect of concrete compressive strength and rectangularity ratio on strength and ductility of normal and high strength reinforced concrete columns confined with transverse steel under axial compressive loading. Nineteen normal strength concrete rectangular columns with different variables tested in this research were used to study the effect of concrete compressive strength and rectangularity ratio on strength and ductility of columns. The paper also presents a nonlinear finite element analysis for these specimens and another twenty high strength concrete square columns tested by other researchers using ANSYS 15 finite element software. The results indicate that the axial force – axial strain relationship obtained from the analytical model using ANSYS are in good agreement with the experimental data. The comparison shows that the ANSYS is capable of modeling and predicting the actual nonlinear behavior of confined normal and high-strength concrete columns under concentric loading. The maximum applied load and the maximum strain have also been confirmed to be satisfactory. Depending on this agreement between the experimental and analytical results, a parametric numerical study was conducted by ANSYS 15 to clarify and evaluate the effect of each variable on strength and ductility of the columns.

Keywords: ANSYS, concrete compressive strength effect, ductility, rectangularity ratio, strength

Procedia PDF Downloads 510
285 Dissimilar Welding Of New High Oxidation Material – Thor™ 115 With Vm-12 Shc

Authors: Michal Urzynicok, Krzysztof Kwiecinski

Abstract:

The development of materials used in the power generation industry for the production of boilers and their parts is characterized by high steam parameters, which present new challenges. Implementation of new combinations of alloying elements that lead to the best possible mechanical properties, including creep resistance, greatly affects new steels' weldability. All new grades have to undergo many different examinations, in regards to bending and welding, in order to enable the development of fabrication technologies, ensuring failure-free production and assembly of boiler components. 12% Cr martensitic steels like THOR™ 115 or VM-12 SHC are characterized by high oxidation resistance in high-temperature environments. At the moment, VM-12 SHC can be found in many boilers where both headers and superheater coils were produced. As this material is very difficult to obtain, a search for a proper replacement has begun. A new creep strength-enhanced ferritic steel for service in supercritical and ultra-supercritical boiler applications was developed by Tenaris in Italy and it is designated as Thor™115 (Tenaris High Oxidation Resistance). As high demand in power plants occurred to replace some parts of existing installations fabricated from VM12-SHC with other alternatives, a new development of welding procedures has begun to prepare fabricators for the challenges of joining old components with new THOR™ 115 material. This paper covers the first research of welding of dissimilar joints made out of VM12-SHC and THOR™ 115.

Keywords: thor, vm12, dissimilar welding, weldability

Procedia PDF Downloads 153
284 Blast Load Resistance of Bridge Columns

Authors: Amir Kavousifard, Lan Lin

Abstract:

The objective of this study is to evaluate the effects of the detailing in the seismic design of reinforced concrete (RC) bridge columns on the blast load resistance. A generic two-span continuous RC bridge located in Victoria, British Columbia, which represents the highest seismicity in Canada, was examined in the study. The bridge superstructure consists of a single cell box girder while the substructure consists of two circular columns. The bridge was designed according to the 2006 Canadian Highway Bridge Design Code. More specifically, response spectrum analysis was performed to determine the seismic demands using CSI Bridge. The 3D blast load analysis is carried out in the platform of LS-DYNA. Two charge heights, i.e., one at the mid-height of the column and the other at the bottom of the column, are considered. For each height, three cases are analyzed in order to investigate the effects of standoff and charge weight on the structural response. The blast load resistance of the column is assessed in terms of the concrete failure mechanism, steel stress distribution, and column lateral displacement. The results from the study indicate that a column designed in accordance with the code requirements could survive during the blast attack. Spiral columns perform much better than tied columns. The results also show that the charge weight has more impact on the structural response than the standoff. These results are beneficial for the development of the Canadian standards for the design of bridges under blast loads.

Keywords: blast, bridge, charge, height, seismic, standoff

Procedia PDF Downloads 19
283 Dynamic Analysis of a Moderately Thick Plate on Pasternak Type Foundation under Impact and Moving Loads

Authors: Neslihan Genckal, Reha Gursoy, Vedat Z. Dogan

Abstract:

In this study, dynamic responses of composite plates on elastic foundations subjected to impact and moving loads are investigated. The first order shear deformation (FSDT) theory is used for moderately thick plates. Pasternak-type (two-parameter) elastic foundation is assumed. Elastic foundation effects are integrated into the governing equations. It is assumed that plate is first hit by a mass as an impact type loading then the mass continues to move on the composite plate as a distributed moving loading, which resembles the aircraft landing on airport pavements. Impact and moving loadings are modeled by a mass-spring-damper system with a wheel. The wheel is assumed to be continuously in contact with the plate after impact. The governing partial differential equations of motion for displacements are converted into the ordinary differential equations in the time domain by using Galerkin’s method. Then, these sets of equations are solved by using the Runge-Kutta method. Several parameters such as vertical and horizontal velocities of the aircraft, volume fractions of the steel rebar in the reinforced concrete layer, and the different touchdown locations of the aircraft tire on the runway are considered in the numerical simulation. The results are compared with those of the ABAQUS, which is a commercial finite element code.

Keywords: elastic foundation, impact, moving load, thick plate

Procedia PDF Downloads 313
282 Reliability of the Estimate of Earthwork Quantity Based on 3D-BIM

Authors: Jaechoul Shin, Juhwan Hwang

Abstract:

In case of applying the BIM method to the civil engineering in the area of free formed structure, we can expect comparatively high rate of construction productivity as it is in the building engineering area. In this research, we developed quantity calculation error applying it to earthwork and bridge construction (e.g. PSC-I type segmental girder bridge amd integrated bridge of steel I-girders and inverted-Tee bent cap), NATM (New Austrian Tunneling Method) tunnel construction, retaining wall construction, culvert construction and implemented BIM based 3D modeling quantity survey. we confirmed high reliability of the BIM-based method in structure work in which errors occurred in range between -6% ~ +5%. Especially, understanding of the problem and improvement of the existing 2D-CAD based of quantity calculation through rock type quantity calculation error in range of -14% ~ +13% of earthwork quantity calculation. It is benefit and applicability of BIM method in civil engineering. In addition, routine method for quantity of earthwork has the same error tolerance negligible for that of structure work. But, rock type's quantity calculated as the error appears significantly to the reliability of 2D-based volume calculation shows that the problem could be. Through the estimating quantity of earthwork based 3D-BIM, proposed method has better reliability than routine method. BIM, as well as the design, construction, maintenance levels of information when you consider the benefits of integration, the introduction of BIM design in civil engineering and the possibility of applying for the effectiveness was confirmed.

Keywords: BIM, 3D modeling, 3D-BIM, quantity of earthwork

Procedia PDF Downloads 442
281 Analysis of Construction Waste Generation and Its Effect in a Construction Site

Authors: R. K. D. G. Kaluarachchi

Abstract:

The generation of solid waste and its effective management are debated topics in Sri Lanka as well as in the global environment. It was estimated that the most of the waste generated in global was originated from construction and demolition of buildings. Thus, the proportion of construction waste in solid waste generation cannot be underestimated. The construction waste, which is the by-product generated and removed from work sites is collected in direct and indirect processes. Hence, the objectives of this research are to identify the proportion of construction waste which can be reused and identify the methods to reduce the waste generation without reducing the quality of the process. A 6-storey building construction site was selected for this research. The site was divided into six zones depending on the process. Ten waste materials were identified by considering the adverse effects on safety and health of people and the economic value of them. The generated construction waste in each zone was recorded per week for a period of five months. The data revealed that sand, cement, wood used for form work and rusted steel rods were the generated waste which has higher economic value in all zones. Structured interviews were conducted to gather information on how the materials are categorized as waste and the capability of reducing, reusing and recycling the waste. It was identified that waste is generated in following processes; ineffective storage of material for a longer time and improper handling of material during the work process. Further, the alteration of scheduled activities of construction work also yielded more waste. Finally, a proper management of construction waste is suggested to reduce and reuse waste.

Keywords: construction-waste, effective management, reduce, reuse

Procedia PDF Downloads 202
280 Role of Amount of Glass Fibers in PAEK Composites to Control Mechanical and Tribological Properties

Authors: Jitendra Narayan Panda, Jayashree Bijwe, Raj K. Pandey

Abstract:

PAEK (Polyaryl ether ketone) being a high-performance polymer, is currently being explored for its tribo-potential by incorporating various fibers, solid lubricants. In this work, influence of amount (30 and 40 %) of short glass fibers (GF) in two composites containing PAEK (60 and 50 %) and synthetic graphite (10 %) on mechanical and tribological behaviour was studied. The composites were developed by injection molding and evaluated in adhesive wear mode (pin on disc configuration) against mild steel disc. The load and speed were selected as variable input parameters while coefficient of friction (µ), specific wear rate (K0) and PVlimit (pressure × velocity) values were selected as output parameters for performance evaluation. Although higher amount of GF lead to better mechanical properties, tribological properties were not in tune to this. Overall, µ and K0 for both composites were in the range 0.04-0.08 and 3-8x 10-16 m3/Nm respectively and decreased with increase in applied PV values till failure was observed. PVlimit was indicated by 112 and 100 MPa m/s. Such high PVlimit values are not reported for any polymer composites running in dry conditions in the literature. The mechanical properties of the C40 composite (40 % GF) proved superior to C30 composite (30 % GF). However, all tribological properties of C40 were inferior to C30. It exhibited higher µ, higher K0 and slightly lower PVlimit value. The higher % fibers proved detrimental for tribo-performance and worn surface analysis by SEM & EDAX was done on the discs & pins to understand wear mechanisms.

Keywords: PAEK composites, pin-on-disk, PV limit, friction

Procedia PDF Downloads 201
279 Experimental Parameters’ Effects on the Electrical Discharge Machining Performances

Authors: Asmae Tafraouti, Yasmina Layouni, Pascal Kleimann

Abstract:

The growing market for Microsystems (MST) and Micro-Electromechanical Systems (MEMS) is driving the research for alternative manufacturing techniques to microelectronics-based technologies, which are generally expensive and time-consuming. Hot-embossing and micro-injection modeling of thermoplastics appear to be industrially viable processes. However, both require the use of master models, usually made in hard materials such as steel. These master models cannot be fabricated using standard microelectronics processes. Thus, other micromachining processes are used, such as laser machining or micro-electrical discharge machining (µEDM). In this work, µEDM has been used. The principle of µEDM is based on the use of a thin cylindrical micro-tool that erodes the workpiece surface. The two electrodes are immersed in a dielectric with a distance of a few micrometers (gap). When an electrical voltage is applied between the two electrodes, electrical discharges are generated, which cause material machining. In order to produce master models with high resolution and smooth surfaces, it is necessary to well control the discharge mechanism. However, several problems are encountered, such as a random electrical discharge process, the fluctuation of the discharge energy, the electrodes' polarity inversion, and the wear of the micro-tool. The effect of different parameters, such as the applied voltage, the working capacitor, the micro-tool diameter, and the initial gap, has been studied. This analysis helps to improve the machining performances, such as the workpiece surface condition and the lateral crater's gap.

Keywords: craters, electrical discharges, micro-electrical discharge machining, microsystems

Procedia PDF Downloads 74
278 Depression of Copper-Activated Pyrite by Potassium Ferrate in Copper Ore Flotation Using High Salinity Process Water

Authors: Yufan Mu

Abstract:

High salinity process water (HSPW) is often applied in copper ore flotation to alleviate freshwater shortage; however, it is detrimental to copper flotation as it strongly enhances copper activation of pyrite. In this study, the depression effect of a strong oxidiser, potassium ferrate (𝐾₂𝐹₄), on the flotation of copper-activated pyrite was tested to realise the selective separation of pyrite from copper minerals (e.g., chalcopyrite) in flotation using HSPW. The flotation results show that when (𝐾₂𝐹₄) was added in the flotation cell during conditioning, (𝐾₂𝐹₄) could selectively depress copper-activated pyrite while improving chalcopyrite flotation. The depression mechanism of (𝐾₂𝐹₄) on pyrite was ascribed to the significant increase in the pulp potential (Eₕ), dissolved oxygen (DO) concentration and the amount of ferric oxyhydroxides as a result of ferrate decomposition. In the flotation cell, the high Eh and DO concentration promoted the oxidation of low valency metal species (𝐶⁺𝐹e²⁺) released from mineral surfaces and forged steel grinding media, and the resultant high valency metal oxyhydroxides 𝐶u(𝑂H)₂⁄Fe(OH)₃ together with the ferric oxyhydroxides from ferrate decomposition preferentially precipitated on pyrite surface due to its more cathodic nature compared with chalcopyrite, which increased pyrite surface hydrophilicity and reduced its floatability. This study reveals that (𝐾₂𝐹₄) is a highly efficient depressant for pyrite when separating copper minerals from pyrite in flotation using HSPW if dosed properly.

Keywords: copper flotation, pyrite depression, copper-activated pyrite, potassium ferrate, high salinity process water

Procedia PDF Downloads 72
277 Effect of Different FRP Wrapping and Thickness of Concrete Cover on Fatigue Bond Strength of Spliced Concrete Beam

Authors: Rayed Alyousef, Tim Topper, Adil Al-Mayah

Abstract:

This paper presents results of an ongoing research program at University of Waterloo to study the effect of external FRP sheet wrap confinement along a lap splice of reinforced concrete (RC) beams on their fatigue bond strength. Fatigue loading of RC beams containing a lap splice resulted in an increase in the number and width of cracks, an increase in deflection and a decrease of the bond strength between the steel rebar and the surrounding concrete. The phase of the research described here consists of monotonic and fatigue tests of thirty two reinforced concrete beam with dimensions 2200⨉350⨉250 mm. Each beam was reinforced with two 20M bars lap spliced in the constant moment region of the tension zone and two 10M bars in the compression zone outside the constant moment region. The test variables were the presence or absence of a FRP wrapping, the type of the FRP wrapping (GFRP or CFRP), the type of loading and the fatigue load range. The test results for monotonic loading showed that the stiffness of all beams was almost same, but that the FRP sheet wrapping increased the bond strength and the deflection at ultimate load. All beams tested under fatigue loading failed by a bond failure except one CFRP wrapped beam that failed by fatigue of the main reinforcement. The FRP sheet increased the bond strength for all specimens under fatigue loading.

Keywords: lap splice, bond strength, fatigue loading, FRP

Procedia PDF Downloads 293
276 Parametric Study and Design on under Reamed Pile - An Experimental and Numerical Study

Authors: S. Chandrakaran, Aarthy D.

Abstract:

Abstract: Under reamed piles are piles which are of different types like bored cast in-situ pile or bored compaction concrete piles where one or more bulbs are provided. In this paper, the design procedure of under reamed pile by both experimental study and numerical study using PLAXIS 3D Foundation software was studied. The soil chosen for study was M Sand. The Single and double under reamed pile modelling was made using mild steel. The pile load test experiment was conducted in the laboratory and the ultimate compression load for 25 mm settlement on single and double under reamed pile was observed and finally the result was compared with conventional pile (pile without bulb). The parametric influence on under reamed pile was studied by varying the geometrical parameters like diameter of bulbs, spacing between bulbs, position of bulbs and number of bulbs. The results of the numerical model showed that when the diameter of bulb D u =2.5D, the ultimate compression load for an under-reamed pile with a single bulb increased by 55 % compared to a pile without a bulb. It was observed that when the spacing between the bulbs was S=6D u with three different positions of bulb from bottom of pile as D u , 2D u and 3D u , the ultimate compression load increased by 88%, 94% and 73 % respectively, compared to the ultimate compression load for 25 mm settlement on conventional pile and if spacing was more than 6D u , ultimate compression load for 25 mm settlement started to decrease. It was observed that when the bucket length was more than 2D u , the ultimate compression

Keywords: load capcity, under remed bulb . sand, model study, sand

Procedia PDF Downloads 88
275 The Relationship between EFL Learners' Self-Regulation and Willingness to Communicate

Authors: Mania Nosratinia, Zahra Deris

Abstract:

The purpose of the present study was to investigate the relationship between EFL learners' self-regulation (SR) and willingness to communicate (WTC). To this end, 520 male and female EFL learners, ranging between 19 and 34 years old (Mage = 26), majoring in English Translation, English Language Teaching and English Literature at Islamic Azad University, Fars Province, were randomly selected. They were given two questionnaires: Self-Regulation Questionnaire devised by Brown, Miller, and Lawendowski (1999) and Willingness to Communicate Scale devised by McCroskey and Baer (1985). Preliminarily, pertinent analyses were performed on the data to check the assumptions of normality, linearity, and homoscedasticity. Since the assumption of normality was violated, Spearman's rank-order correlation was employed to probe the relationships between SR and WTC. The results indicated a significant and positive correlation between the two variables, ρ = .56, n = 520, p < .05, which signified a large effect size supplemented by a very small confidence interval (0.503 – 0.619). The results of the Kruskal-Wallis tests indicated that there is a statistically significant difference in WTC score between the different levels of SR, χ2(2) = 157.843, p = 0.000 with a mean rank SR score of 128.13 for low-SR level, 286.64 for mid-SR level, and 341.12 for high-SR level. Also, a post-hoc comparison through running a Dwass-Steel-Critchlow-Fligner indicated significant differences among the SR level groups on WTC scores. Given the findings of the study, the obtained results may help EFL teachers, teacher trainers, and material developers to possess a broader perspective towards the TEFL practice and to take practical steps towards the attainments of the desired objectives and effective instruction.

Keywords: EFL learner, self-regulation, willingness to communicate, relationship

Procedia PDF Downloads 332
274 A Finite Element Model to Study the Behaviour of Corroded Reinforced Concrete Beams Repaired with near Surface Mounted Technique

Authors: B. Almassri, F. Almahmoud, R. Francois

Abstract:

Near surface mounted reinforcement (NSM) technique is one of the promising techniques used nowadays to strengthen reinforced concrete (RC) structures. In the NSM technique, the Carbon Fibre Reinforced Polymer (CFRP) rods are placed inside pre-cut grooves and are bonded to the concrete with epoxy adhesive. This paper studies the non-classical mode of failure ‘the separation of concrete cover’ according to experimental and numerical FE modelling results. Experimental results and numerical modelling results of a 3D finite element (FE) model using the commercial software Abaqus and 2D FE model FEMIX were obtained on two beams, one corroded (25 years of corrosion procedure) and one control (A1CL3-R and A1T-R) were each repaired in bending using NSM CFRP rod and were then tested up to failure. The results showed that the NSM technique increased the overall capacity of control and corroded beams despite a non-classical mode of failure with separation of the concrete cover occurring in the corroded beam due to damage induced by corrosion. Another FE model used external steel stirrups around the repaired corroded beam A1CL3-R which failed with the separation of concrete cover, this model showed a change in the mode of failure form a non-classical mode of failure by the separation of concrete cover to the same mode of failure of the repaired control beam by the crushing of compressed concrete.

Keywords: corrosion, repair, Reinforced Concrete, FEM, CFRP, FEMIX

Procedia PDF Downloads 165
273 Influence of Ground Granulated Blast Furnace Slag on Geotechnical Characteristics of Jarosite Waste

Authors: Chayan Gupta, Arun Prasad

Abstract:

The quick evolution of industrialization causes the scarcity of precious land. Thus, it is vital need to influence the R&D societies to achieve sustainable, economic and social benefits from huge utilization of waste for universal aids. The current study promotes the influence of steel industries waste i.e. ground granulated blast furnace slag (GGBS) in geotechnical properties of jarosite waste (solid waste residues produced from hydrometallurgy operations involved in extraction of Zinc). Numerous strengths tests (unconfined compression (qu) and splitting tensile strength (qt)) are conducted on jarosite-GGBS blends (GGBS, 10-30%) with different curing periods (7, 28 & 90 days). The results indicate that both qu and qt increase with the increase in GGBS content along with curing periods. The increased strength with the addition of GGBS is also observed from microstructural study, which illustrates the occurrence of larger agglomeration of jarosite-GGBS blend particles. The Freezing-Thawing (F-T) durability analysis is also conducted for all the jarosite-GGBS blends and found that the reduction in unconfined compressive strength after five successive F-T cycles enhanced from 62% (natural jarosite) to 48, 42 and 34% at 7, 14 and 28 days curing periods respectively for stabilized jarosite-GGBS samples containing 30% GGBS content. It can be concluded from this study that blending of cementing additives (GGBS) with jarosite waste resulted in a significant improvement in geotechnical characteristics.

Keywords: jarosite, GGBS, strength characteristics, microstructural study, durability analysis

Procedia PDF Downloads 168
272 Experimental Parameters’ Effects on the Electrical Discharge Machining Performances (µEDM)

Authors: Asmae Tafraouti, Yasmina Layouni, Pascal Kleimann

Abstract:

The growing market for Microsystems (MST) and Micro-Electromechanical Systems (MEMS) is driving the research for alternative manufacturing techniques to microelectronics-based technologies, which are generally expensive and time-consuming. Hot-embossing and micro-injection modeling of thermoplastics appear to be industrially viable processes. However, both require the use of master models, usually made in hard materials such as steel. These master models cannot be fabricated using standard microelectronics processes. Thus, other micromachining processes are used, as laser machining or micro-electrical discharge machining (µEDM). In this work, µEDM has been used. The principle of µEDM is based on the use of a thin cylindrical micro-tool that erodes the workpiece surface. The two electrodes are immersed in a dielectric with a distance of a few micrometers (gap). When an electrical voltage is applied between the two electrodes, electrical discharges are generated, which cause material machining. In order to produce master models with high resolution and smooth surfaces, it is necessary to well control the discharge mechanism. However, several problems are encountered, such as a random electrical discharge process, the fluctuation of the discharge energy, the electrodes' polarity inversion, and the wear of the micro-tool. The effect of different parameters, such as the applied voltage, the working capacitor, the micro-tool diameter, the initial gap, has been studied. This analysis helps to improve the machining performances, such: the workpiece surface condition and the lateral crater's gap.

Keywords: craters, electrical discharges, micro-electrical discharge machining (µEDM), microsystems

Procedia PDF Downloads 96
271 Optimizing Oxidation Process Parameters of Al-Li Base Alloys Using Taguchi Method

Authors: Muna K. Abbass, Laith A. Mohammed, Muntaha K. Abbas

Abstract:

The oxidation of Al-Li base alloy containing small amounts of rare earth (RE) oxides such as 0.2 wt% Y2O3 and 0.2wt% Nd2O3 particles have been studied at temperatures: 400ºC, 500ºC and 550°C for 60hr in a dry air. Alloys used in this study were prepared by melting and casting in a permanent steel mould under controlled atmosphere. Identification of oxidation kinetics was carried out by using weight gain/surface area (∆W/A) measurements while scanning electron microscopy (SEM) and x-ray diffraction analysis were used for micro structural morphologies and phase identification of the oxide scales. It was observed that the oxidation kinetic for all studied alloys follows the parabolic law in most experimental tests under the different oxidation temperatures. It was also found that the alloy containing 0.2 wt %Y 2O3 particles possess the lowest oxidation rate and shows great improvements in oxidation resistance compared to the alloy containing 0.2 wt % Nd2O3 particles and Al-Li base alloy. In this work, Taguchi method is performed to estimate the optimum weight gain /area (∆W/A) parameter in oxidation process of Al-Li base alloys to obtain a minimum thickness of oxidation layer. Taguchi method is used to formulate the experimental layout, to analyses the effect of each parameter (time, temperature and alloy type) on the oxidation generation and to predict the optimal choice for each parameter and analyzed the effect of these parameters on the weight gain /area (∆W/A) parameter. The analysis shows that, the temperature significantly affects on the (∆W/A) parameter.

Keywords: Al-Li base alloy, oxidation, Taguchi method, temperature

Procedia PDF Downloads 372
270 Torsional Behavior of Reinforced Concrete (RC) Beams Strengthened by Fiber Reinforced Cementitious Materials– a Review

Authors: Sifatullah Bahij, Safiullah Omary, Francoise Feugeas, Amanullah Faqiri

Abstract:

Reinforced concrete (RC) is commonly used material in the construction sector, due to its low-cost and durability, and allowed the architectures and designers to construct structural members with different shapes and finishing. Usually, RC members are designed to sustain service loads efficiently without any destruction. However, because of the faults in the design phase, overloading, materials deficiencies, and environmental effects, most of the structural elements will require maintenance and repairing over their lifetime. Therefore, strengthening and repair of the deteriorated and/or existing RC structures are much important to extend their life cycle. Various techniques are existing to retrofit and strengthen RC structural elements such as steel plate bonding, external pre-stressing, section enlargement, fiber reinforced polymer (FRP) wrapping, etc. Although these configurations can successfully improve the load bearing capacity of the beams, they are still prone to corrosion damage which results in failure of the strengthened elements. Therefore, many researchers used fiber reinforced cementitious materials due to its low-cost, corrosion resistance, and result in improvement of the tensile and fatigue behaviors. Various types of cementitious materials have been used to strengthen or repair structural elements. This paper has summarized to accumulate data regarding on previously published research papers concerning the torsional behaviors of RC beams strengthened by various types of cementitious materials.

Keywords: reinforced concrete beams, strengthening techniques, cementitious materials, torsional strength, twisting angle

Procedia PDF Downloads 121
269 Design, Analysis and Simulation of a Lightweight Fire-Resistant Door

Authors: Zainab Fadhil Al Toki, Nader Ghareeb

Abstract:

This study investigates how lightweight a fire resistance door will perform with under types of insulation materials. Data is initially collected from various websites, scientific books and research papers. Results show that different layers of insulation in a single door can perform better than one insulator. Furthermore, insulation materials that are lightweight, high strength and low thermal conductivity are the most preferred for fire-rated doors. Whereas heavy weight, low strength, and high thermal conductivity are least preferred for fire resistance doors. Fire-rated door specifications, theoretical test methodology, structural analysis, and comparison between five different models with diverse layers insulations are presented. Five different door models are being investigated with different insulation materials and arrangements. Model 1 contains an air gap between door layers. Model 2 includes phenolic foam, mild steel and polyurethane. Model 3 includes phenolic foam and glass wool. Model 4 includes polyurethane and glass wool. Model 5 includes only rock wool between the door layers. It is noticed that model 5 is the most efficient model, and its design is simple compared to other models. For this model, numerical calculations are performed to check its efficiency and the results are compared to data from experiments for validation. Good agreement was noticed.

Keywords: fire resistance, insulation, strength, thermal conductivity, lightweight, layers

Procedia PDF Downloads 51
268 Numerical Study of Jet Impingement Heat Transfer

Authors: A. M. Tiara, Sudipto Chakraborty, S. K. Pal

Abstract:

Impinging jets and their different configurations are important from the viewpoint of the fluid flow characteristics and their influence on heat transfer from metal surfaces due to their complex flow characteristics. Such flow characteristics results in highly variable heat transfer from the surface, resulting in varying cooling rates which affects the mechanical properties including hardness and strength. The overall objective of the current research is to conduct a fundamental investigation of the heat transfer mechanisms for an impinging coolant jet. Numerical simulation of the cooling process gives a detailed analysis of the different parameters involved even though employing Computational Fluid Dynamics (CFD) to simulate the real time process, being a relatively new research area, poses many challenges. The heat transfer mechanism in the current research is actuated by jet cooling. The computational tool used in the ongoing research for simulation of the cooling process is ANSYS Workbench software. The temperature and heat flux distribution along the steel strip with the effect of various flow parameters on the heat transfer rate can be observed in addition to determination of the jet impingement patterns, which is the major aim of the present analysis. Modelling both jet and air atomized cooling techniques using CFD methodology and validating with those obtained experimentally- including trial and error with different models and comparison of cooling rates from both the techniques have been included in this work. Finally some concluding remarks are made that identify some gaps in the available literature that have influenced the path of the current investigation.

Keywords: CFD, heat transfer, impinging jets, numerical simulation

Procedia PDF Downloads 235
267 Performance Evaluation of Reinforced Concrete Framed Structure with Steel Bracing and Supplemental Energy Dissipation

Authors: Swanand Patil, Pankaj Agarwal

Abstract:

In past few decades, seismic performance objectives have shifted from earthquake resistance to earthquake resilience of the structures, especially for the lifeline buildings. Features such as negligible post-earthquake damage and replaceable damaged components, makes energy dissipating systems a valid choice for a seismically resilient building. In this study, various energy dissipation devices are applied on an eight-storey moment resisting RC building model. The energy dissipating devices include both hysteresis-based and viscous type of devices. The seismic response of the building is obtained for different positioning and mechanical properties of the devices. The investigation is carried forward to the deficiently ductile RC frame also. The performance assessment is done on the basis of drift ratio, mode shapes and displacement response of the model structures. Nonlinear dynamic analysis shows largely improved displacement response. The damping devices improve displacement response more efficiently in the deficient ductile frames than that in the perfectly moment resisting frames. This finding is important considering the number of deficient buildings in India and the world. The placement and mechanical properties of the dampers prove to be a crucial part in modelling, analyzing and designing of the structures with supplemental energy dissipation.

Keywords: earthquake resilient structures, lifeline buildings, retrofitting of structures, supplemental energy dissipation

Procedia PDF Downloads 345
266 Influence of Stacking Sequence and Temperature on Buckling Resistance of GFRP Infill Panel

Authors: Viriyavudh Sim, SeungHyun Kim, JungKyu Choi, WooYoung Jung

Abstract:

Glass Fiber Reinforced Polymer (GFRP) is a major evolution for energy dissipation when used as infill material for seismic retrofitting of steel frame, a basic PMC infill wall system consists of two GFRP laminates surrounding an infill of foam core. This paper presents numerical analysis in terms of buckling resistance of GFRP sandwich infill panels system under the influence of environment temperature and stacking sequence of laminate skin. Mode of failure under in-plane compression is studied by means of numerical analysis with ABAQUS platform. Parameters considered in this study are contact length between infill and frame, laminate stacking sequence of GFRP skin and variation of mechanical properties due to increment of temperature. The analysis is done with four cases of simple stacking sequence over a range of temperature. The result showed that both the effect of temperature and stacking sequence alter the performance of entire panel system. The rises of temperature resulted in the decrements of the panel’s strength. This is due to the polymeric nature of this material. Additionally, the contact length also displays the effect on the performance of infill panel. Furthermore, the laminate stiffness can be modified by orientation of laminate, which can increase the infill panel strength. Hence, optimal performance of the entire panel system can be obtained by comparing different cases of stacking sequence.

Keywords: buckling resistance, GFRP infill panel, stacking sequence, temperature dependent

Procedia PDF Downloads 374
265 Integrated Clean Development Mechanism and Risk Management Approach for Infrastructure Transportation Project

Authors: Debasis Sarkar

Abstract:

Clean development mechanism (CDM) can act as an effective instrument for mitigating climate change. This mechanism can effectively reduce the emission of CO2 and other green house gases (GHG). Construction of a mega infrastructure project like underground corridor construction for metro rail operation involves in consumption of substantial quantity of concrete which consumes huge quantity of energy consuming materials like cement and steel. This paper is an attempt to develop an integrated clean development mechanism and risk management approach for sustainable development for an underground corridor metro rail project in India during its construction phase. It was observed that about 35% reduction in CO2 emission can be obtained by adding fly ash as a part replacement of cement. The reduced emission quantity of CO2 which is of the quantum of about 21,646.36 MT would result in cost savings of approximately INR 8.5 million (USD 1,29,878).But construction and operation of such infrastructure projects of the present era are subject to huge risks and uncertainties throughout all the phases of the project, thus reducing the probability of successful completion of the project within stipulated time and cost frame. Thus, an integrated approach of combining CDM with risk management would enable the metro rail authorities to develop a sustainable risk mitigation measure framework to ensure more cost and energy savings and lesser time and cost over-run.

Keywords: clean development mechanism (CDM), infrastructure transportation, project risk management, underground metro rail

Procedia PDF Downloads 475
264 Experimental Investigation on the Anchor Behavior of Planar Clamping Anchor for Carbon Fiber-Reinforced Polymer Plate

Authors: Yongyu Duo, Xiaogang Liu, Qingrui Yue

Abstract:

The anchor plays a critical role in the utilization of the tensile strength of carbon fiber-reinforced polymer (CFRP) plate when it is applied for the prestressed retrofitted and cable structures. In this paper, the anchor behavior of planar clamping anchor (PCA) under different interface treatment forms and normal pressures was investigated by the uniaxial static tensile test. Two interface treatment forms were adopted, including pure friction and the coupling action of friction and bonding. The results indicated that the load-bearing capacity of PCA could be obviously improved by the coupling action of friction and bonding compared with the action of pure friction. Under the normal pressure of 11 MPa, 22 MPa, and 33 MPa, the load-bearing capacity of PCA was enhanced by 164.61%, 68.40%, and 52.78%, respectively, and the tensile strength of the CFRP plate was fully exploited when the normal pressure reached 44 MPa. In addition, the experimental coefficient of static friction between the galling CFRP plate and a sandblasted steel plate was in the range of 0.28-0.30, corresponding to various normal pressure. Moreover, the failure mode was determined by the interface treatment form and normal pressure. The research in this paper has important guiding significance to optimize the design of the mechanical clamping anchor, contributing to promoting the application of CFRP plate in reinforcement and cable structure.

Keywords: PCA, CFRP plate, interface treatment form, normal pressure, friction, coupling action

Procedia PDF Downloads 81